微动目标高分辨雷达信号建模及特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般把目标或目标组成部分除主体平动之外的振动、转动等小幅运动称为微动。微动在自然界广泛存在并反映了目标一些特有的运动及结构特征,在雷达目标探测与识别中受到广泛关注。本文针对高分辨体制下的微动目标回波信号处理进行研究,开展的工作和取得的成果主要包括如下几方面:
     第二章系统研究了微动目标的运动模型及其对高分辨雷达的调制效应。首先建立了目标的三维运动模型,然后结合线性调频(LFM)及频率步进(SF)两种典型高分辨体制分析了微动对多普勒频率、距离像、距离像序列及二维像的影响,并针对SF雷达体制距离-多普勒耦合严重的问题,提出了等效瞬时多普勒频率的概念。
     第三章对微多普勒信号与目标主体回波信号分离展开研究。首先阐述了基于调频率参数微多普勒信号分离的基本原理;然后对基于Chirplet分解的微多普勒信号分离算法展开研究,提出了一种快速Chirplet参数估计算法,并推导了其克拉美罗限(CRB),分析了各参数变化对调频率参数估计性能的影响;为进一步减少计算量,提出了一种基于调幅-线性调频(AM-LFM)分解的微多普勒信号分离算法,该算法对信号包络形式没有严格限制,具有运算量少、分离效果好的优点。
     第四章对典型微动结构的参数估计展开研究。通过对高分辨体制下(LFM、SF)振动及旋转微动结构回波模型的分析,指出它们的调制效应表现为二维图像中(时间-距离像、时间-频率像)的正弦曲线,推导了正弦曲线参数与微动参数之间的对应关系,提出了一种基于分步参数估计的正弦曲线快速提取算法。对中段弹头这一特殊微动目标,就LFM体制下的进动参数估计展开研究,提出了基于成像质量的进动参数估计算法,并设计了搜索参数降维流程:通过对回波信号对称轴位置的估计将搜索参数维数降至二维,并进一步利用弹头目标的结构特性及散射特性将搜索参数降至一维。该算法合理挖掘了弹头的结构特性及散射特性,可在未知目标结构尺寸条件下在一个进动周期内实现进动参数的估计。
     第五章对小角度微转动目标的高维成像进行研究。目标转动产生的多普勒信息是二维成像的基础,但传统成像算法只能对平面内匀速转动目标成像。通过对海面颠簸舰船回波相位的分析,本章提出利用如下调幅-调频模型对复杂运动目标的雷达回波进行建模:利用Q阶多项式对调幅函数进行描述,利用包含高阶误差项的三次多项式对相位进行描述。针对上述模型,提出了参数估计算法,得到了目标上多个强等效散射中心的相位历程,组成相位矩阵。然后通过对相位矩阵的分析,提出了基于相位矩阵奇异值分解的小角度微转动目标高维成像方法:对平面非匀速转动目标可得到聚焦的二维像,对三维空间转动目标可得到失真的三维散射中心模型。
     第六章总结了论文的研究工作和主要创新点,指出需要进一步研究的问题。
Generally, micro-motion is defined as the mechanical vibrations or rotations or other high-order motions of a target or any structure of target in addition to its bulk translation. Micro-motion is widespread in nature and reflects some unique movement and structure character of objects. Therefore, it draws great attentions to the researchers from the areas of target detection and recognition. This dissertation researches the problem of how to deal with the high resolution radar echos from micro-motion targets, and the main studies and contributions can be summarized as follows:
     In chapterⅡ, the motion model for micro-motion targets and its modulation effect for high-resolution radar is studied systemly. First of all, the three-dimensional motion model of target is established. Then, combined with the two typical wideband waveform, LFM signal and SF signal, the modulation effects caused by micro-motion on Doppler frequency, high resolution range profile, profile sequence and ISAR image are analyzed. Especially, the equivalent instantaneous Doppler frequency is introduced to deal with the coupling between range and Doppler for SF wideband radar.
     The issue of micro-Doppler signal separation for targets with micro-motion structures is addressed in chapter III. Firstly, the basic principle of signal separation based on chirp rate is introduced. Then, a fast algorithm on parameter estimation of chirplet signlas is proposed. Also, the CRB on Chirplet parameter estimates is deduced and the influence of other parameters on the Chirp rate estimate is analysed. To further reduce computation, a micro-Doppler signal separation method based on AM-LFM decomposition is proposed, which has no constraint on signal envelope and can obtain a better separation results with less computation.
     The parameter estimation for some typical micro-motion structure is studied in chapter IV. It’s pointed out that the vibration and rotation structures will appear as a sinusoid in two-dimensional image (time-range image or time-Doppler image) under the LFM or SF wideband systems. The relationship between the sinusoid parameters and micro-motion parameters is deduced and a time saving approach to extract the sinusoid is proposed. Then, a method based on imaging quality is proposed to estimate the precession parameters for the precessing warhead in middle course. Also, an approach is designed to reduce the searching parameters for the proposed method: searching parameters is reduced to two dimensions after estimating the symmetry axis of echos, and they are further reduced to one dimension by ultilizing the structural and scatter characters of warheads. This algorithm exploits the warheads’s structural and scatter characters reasonably, which can estimate the precssion parameters of warheads with unknown size during one period.
     ChapterⅤstudies how to obtain high-dimensional image for small-angle micro-rotation targets. The Doppler frequency casued by rotation is the foundation for two dimensional imaging, but traditional imaging algorithms only suit for the uniform rotation situation. Taking the oscillating ships in sea as an example, this chapter proposes to use the following AM–FM function to model the radar echoes of complex moving targets: the amplitude of scattering centers are modeled by Q-order polynomial functions, the phase of scattering centers are modeled by cubic polynomial with higher-order error items. Also, a parameter estimation algorithm is proposed for the above model and the phase matrix is formed after the phase history being established for each scattering center. Then, a method based on the singular value decomposition of the phase matrix is proposed to obtain the image for small-angle micro-rotation targets. The image is a focused two-dimensional image for nonuniform rotating targets in plane or a three-dimensional scattering center model for three dimensional rotation targets.
     In chapterⅥ, the contributions of this dissertation are summarized and the potential problems and difficulties are also pointed out.
引文
[1]陈坚等编著. NMD&TMD大写真—图说美国弹道导弹防御[M].北京:解放军出版社, 2001.
    [2] Mehrholz D. Radar Observation in Low Earth oOrbit [J]. Advance Space Research, 1997, 19(2): 203-212.
    [3] Victor C.Chen. Analysis of Radar Micro-Doppler Signature with Time-frequency Transform [C]. Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing, 2000:463-466.
    [4] Victor C.Chen, Fayin LI, Shen-Shyang Ho, H.Wechsler. Analysis of Micro-Doppler Signatures [J].IEE Proc-Radar Sonar Naving, 2003, 150(4):271-276.
    [5] Victor C.Chen, Fayin LI, Shen-Shyang Ho. Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study [J]. IEEE Transaction on Serospace and Electronic Systems, 2006, 42(1):2-20.
    [6] Victor C.Chen. Doppler Signatures of Radar Backscattering from Objects with Micro-Motions [J]. IET Signal Processing, 2008, 3(02):291-300.
    [7] Victor C.Chen, Ching-Tai Lin , William P. Pala.Time-Varying Doppler Analysis of Electromagnetic Backscattering From Rotating Object[C]. IEEE Radar Conference on Radar, 2006: 807-812.
    [8] Victor C.Chen. Micro-Doppler Effect of Micromotion Dynamics: a Review[C]. Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks, Orlando (UAS) , April 2003, 5102: 240-249.
    [9] Victor C.Chen,William J. Miceli, Braham Himed. Micro-Doppler Analysis in ISAR-Review and Perspectives[C]. International Radar Conference-Surveillance for a Safer World, Bordeaux , France,Oct 2009:1-6.
    [10] Victor C.Chen, Des Rosiers A.P. Micro-Doppler Phenomenon and Radar Signature[C]. Proceedings of the 2003 IEEE Radar Conference, Huntsville(USA), May 2003:198-202.
    [11]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科学技术大学, 2006年6月.
    [12] T.Sparr, B.Krane. Micro-Doppler Analysis of Vibrating Tarets in SAR[J]. IEE Proc.-Radar Sonar Naving, 2003, 150(4):277-283.
    [13] Maurice Ruegg, Erich Merier, Daniel Nuesch. Constant Motion, Acceleration, Vibration, and Rotation of Objects in SAR Data[C]. Proceedings of SPIE on SAR Image Analysis, Modeling, and Techniques VII, Orlando(USA), April 2005, 5980: 1-12.
    [14] Maurice Ruegg, Erich Merier, Daniel Nuesch. Vibration and Rotation inMillimetr-Wave SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(02): 293-304.
    [15]吴晓芳. SAR-GMTI运动调制干扰技术研究[D].长沙:国防科学技术大学,2009年10月.
    [16] Nicholas A.Hatch. Radar Based Estimation of Asymmetric Target Inertial Parameters[D]. Boston, MA, USA: Worcester Polytechnic Institute , 2006.
    [17]高红卫,谢良贵,文树梁,匡勇.基于微多普勒分析的弹道导弹目标进动特性研究[J].系统工程与电子技术,2008,30(1):50-52.
    [18]孙照强,李宝柱,鲁耀兵.弹道中段进动目标的微多普勒研究[J].系统工程与电子技术,2009,31(3):538-540.
    [19] J.Misiurewicz, K Kulpa, Z Czekala. Analysis of Recorded Helicopter Echo[C]. IEE Radar'97,Edinburgh(UK),1997:449-451.
    [20] Wellman R.J., Silvious J.L., Doppler Signature Measurements of a Mi-24 Hind-D Helicopter at 92 GHz[R]. ARL-TR-1637, AD, Air Research Laboratory, Adelphi, Maryland, July 1998.
    [21] Victor C.Chen. Radar Signatures of Rotor Blades[C]. Proceedings of SPIE on RadarProcessing, Orlando(USA), April 2001, 4391:63-70.
    [22]蒙志君,吕明云,武哲.动态桨叶RCS特性的实验研究[J].北京航空航天大学学报,2006,32(9):1003-1006.
    [23]叶少波,熊峻江.直升机旋翼桨叶动态特性研究[J].航空学报,2006,27(05):816-822.
    [24] A.Ghaleb, L.Vignaud, JM.Nicolas. Micro-Doppler Analysis of Wheels and Pedestrians in ISAR Imaging [J]. IET Signal Process, 2008, 2(03): 301-311.
    [25] A.Ghaleb, L.Vignaud, JM.Nicolas. Fine micro-Doppler Analysis in ISAR imaging [C]. IET International Conference on Radar Systems, Edinburgh(UK), Oct 2007:1-4.
    [26] Carstens-Behrens S, J.F. Bohme. Applying time-frequency Methods to Pressure and Structure-borne Sound for Combustion Diagnosis[C]. IEEE International Symposium on Signal Processing and its Applications, 2001:256-259.
    [27] Greneker G., Geisheimer J., Asbell D.. Extraction of Micro-Doppler from Vehicle Target at X-band Frequency[C]. Proceedings of SPIE on Radar Sensor Technique, Orlando(USA), April. 2001, 4374: 1-9.
    [28]陈行勇,刘永祥,黎湘,郭桂蓉.微多普勒分析和参数估计[J].红外与毫米波学报, 2006,25(5):360-363.
    [29] S.Lawrence, Marple Jr.Sharpening Techniques for Sensor Feature Enhancement [R].2005,http://www.vissta.ncsu.edu/workshop/presentations/Marple/Marple_afosr05.ppt.
    [30] Junfei Li, H. Ling. Application of Adaptive Chirplet Representation for ISAR Feature Extraction From Targets with Rotating Parts [J]. IEE Proc.-Radar Sonar Navig, 2003,150(04): 284-291.
    [31] Junfei Li, Hao Ling. ISAR Feature Extraction from Targets with Non-Rigid Body Motion Using Adaptive Chirplet Representation[C]. IEEE Antennas and Propagation Society International Symposium, 2002:294-297.
    [32] Lin Bin, Wan Jian-wei, Yao Kangze, et al. ISAR Based on Micro-Doppler Analysis and Chirplet Parameter Separation[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan(China),Nov 2007: 379-384.
    [33]李斌,姚康泽,王岩等.基于微动分析和Chirplet分解的ISAR成像[J].信号处理, 2009, 25(2):264-269.
    [34]白雪茹,周峰,邢孟道等.空中微动旋转目标的二维ISAR成像算法[J].电子学报, 2009, 37(9):1937-1943.
    [35] T.Thayaparan, S.Abrol, E. Riseborough, L. Stankovic, D. Lamothe , G. Duff. Analysis of Radar Micro-Doppler Signatures From Experimental Helicopter and Human Data [J]. IEE Proc.-Radar Sonar Navig, 2007,1(04): 289-299.
    [36] Chengjie Cai, Weixian Liu, Jeffrey S.Fu, Lilong Lu. Empirical Mode Decomposition of Micro-Doppler Signature[C]. Proceedings of IEEE International Conference on Radar, Washington(USA), May 2005: 895-899.
    [37] Xueru Bai, Mengdao Xing, Feng Zhou, etc. Imaging of Micromotion Targets With Rotating Parts Based on Empirical-Mode Decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3514-3522.
    [38] Ljubi Sa StankoviC, Igor DjuroviC, Thayananthan Thayaparan. Separation of Target Rigid Body and Micro-Doppler Effects in ISAR Imaging[J]. IEEE Transactions On Aerospace and Electronic Systems, 2006, 42(04):1496-1506.
    [39] Zhang Qun,Tat Soon Yeo,Hwee Siang Tan,Ying Luo. Imageing of a Moving Target With Rotating Parts Based on the Hough Transform [J], IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(01):291-299.
    [40] Zhang Qun, Guan Hua,Guo Ying,Bai Youqing. Separation of Micro-Doppler Signal Using an Extended Hough Transform[C]. International Conference on Communications, Circuits and Systems, Guilin(China),2006: 361-365.
    [41]张群,管华,郭英,宋元鹤,李宏伟.具有大旋翼一类旋转部件的雷达目标成像[J].遥感技术与应用, 2007, 22(2):282-286.
    [42] Luo Ying, Chi Long, Zhang Qun, Jin Ya-qiu. A Novel Method for Extraction of Micro-Doppler Signal[C].IEEE 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologyes For Wireless Communications, 2007: 1458-1462.
    [43]罗迎,张群,封同安,金亚秋.强杂波下含旋转部件的目标成像及微多普勒提取[J].系统工程与电子技术, 2009, 31(2):261-264.
    [44]罗迎,池龙,张群,郭英.用慢时间域积分法实现雷达目标微多普勒信息的提取[J].电子与信息学报, 2008, 30(9): 2055-2059.
    [45]李开明,罗迎,梁贤姣,张群.基于谱图域相消的含旋转部件目标成像新方法[J].弹箭与制导学报,2009,29(2):212-216.
    [46] Hwee Siang Tan, Changzheng Ma,Tat Soon Yeo, Qun Zhang, Chun Sum Ng , Bin Zou. ISAR Imaging of Targets with Moving Parts Using Micro-Doppler Detection on the Range Profile Image[C]. IEEE International Geoscience and Remote Sensing Symposium, Barcelona(Spain), 2007:499-502.
    [47]马梁,王涛,冯德军,刘进,王雪松[J].旋转目标距离像长度特性及微运动特征提取.电子学报, 2008, 36(12): 2273-2279.
    [48]吴晓芳,刘阳,王雪松,卢焕章[J].基于频率步进雷达时间-距离像的宽带微动特征提取.电子学报, 2009,37(7):1416-1421.
    [49]李金梁,王雪松,刘扬,刘进,孟刚,王涛.雷达目标旋转部件的微Doppler效应[J].电子与信息学报, 2009, 31(3): 583-587.
    [50] Setlur P, Amin M, Ahmad F. Analysis of Micro-Doppler Signals Using Linear FM Basis Decomposition[C]. SPIE Proceedings on Radar Sensor Technology, 2006, 6210: 1~11.
    [51] Setlur P, Amin M, Ahmad F. Indoor Imaging of Targets Enduring Simple Harmonic Using Doppler Radars[C]. IEEE International Symposium on Signal Processing and Information Technology, Athens(Greece), 2005:141~146.
    [52] Setlur P, Amin M, Thayaparan T. Micro-Doppler Signal Estimation for Vibrating and Rotating Targets[C]. Proceedings of the 8th International Symposium on Signal Processing and Its Applications, Orlando(USA),2005:639~642.
    [53] Jiajin Lei,Chao LU. Target Classification Based on Micro-Doppler signatures[C]. Proceedings of IEEE International Conference on Radar, Washington(USA), May 2005, 179-183.
    [54] Yinan Yang, Jiajin Lei, Wenxue Zhang, Chao Lu. Target Classification and Pattern Recognition Using Micro-Doppler Radar Signatures[C]. Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Las Vegas(USA), June 2006:213-217.
    [55] JiajinLei. Pattern Recognition Based on Time-Frequency Distributions of Radar Micro-Doppler Dynamics[C]. SNPD/SAWN 2005, May 2005:14-18.
    [56] Huixia Sun, Zheng Liu, QIng Lin. Radar Target Recognition Based on Micro-Doppler Effect. 8th International Conference on Signal Processing, Beijing(China), April 2006.
    [57] Knott Eugexe F. Simulation of reentry vehicle motion during laboratory measurements of radar cross section[J]. IEEE Trans. on Antennas and Propagation, 1969, 17(3):242-244.
    [58] Schultz Kenneth I, Davidson Steven A, Stein Alan J, Parker Jeffrey K. Range Doppler laser radar for midcourse discrimination: The Firefly Experiments[C]. 2nd Annual AIAA SDIO Interceptor Technology Conference, June 1993.
    [59] Gschwendtner Alfred B, Keicher William E. Development of coherent laser radar at Lincoln laboratory [J]. Lincoln Laboratory Journal, 2000, 12(2):245-266.
    [60] Lemnios William Z, Grometstein Alan A. Overview of the Lincoln laboratory ballistic missile defense program [J]. Lincoln Laboratory Journal, 2002;13(1):9-32.
    [61] Camp W.W, Mayhan J.T, O’Donnell R.M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. The Lincoln Laboratory Journal, 2000, 12(2):267-280.
    [62]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].长沙:国防科技大学博士学位论文, 2004年3月.
    [63]王涛,周颖,王雪松,肖顺平,郭桂蓉.雷达目标的章动特性与章动频率估计[J].自然科学进展, 2006,16(03):344-350.
    [64] Liu Li-hua, Wang Zhuang, Hu Wei-dong. Precession Period Extraction of Ballistic Missile Based on Radar Measurement.International Conference on radar, Shanghai(China) , 2006: 1490-1493.
    [65]陈行勇,黎湘,郭桂蓉,姜斌.中段目标进动雷达特征提取[J].信号处理,2006, 22(05):701-711.
    [66]陈行勇,黎湘,郭桂蓉,姜斌.微进动弹道导弹目标雷达特征提取[J].电子与信息学报. 2006, 28(04):643-646.
    [67]李康乐.雷达目标微动特征提取与估计技术研究[D].长沙:国防科技大学博士学位论文, 2010年5月.
    [68]刘进.微动目标雷达信号参数估计与物理特征提取[D].长沙:国防科技大学博士学位论文, 2010年4月.
    [69]贺思三,周剑雄,付强.利用一维距离像序列估计弹道中段目标进动参数[J].信号处理,2009,25(6):925-929.
    [70]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].长沙:国防科学技术大学博士论文,2009年10月.
    [71]汤子跃,王永良,蒋兴舟.相控阵机载预警雷达对悬停直升机的探测[J].电子学报, 2001,29(9):1249-1252.
    [72]贺治华.机载毫米波雷达目标识别关键技术研究[D].长沙:国防科技大学博士学位论文,2005.
    [73] Mark R.Bell, Robert A.Grubbs. JEM Modeling and Measurement for Radar Target Identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(01): 73-87.
    [74]陈行勇,魏玺章,黎湘,郭桂蓉.基于盲数理论的空中目标粗分类[J].电子与信息学报,2006, 28(2): 322-325.
    [75]陈行勇,黎湘,郭桂蓉,姜斌.基于旋翼微动雷达特征的空中目标识别[J].系统工程与电子技术,2006,28(3) :372-375.
    [76]陈行勇,黎湘,姜斌.基于微多普勒特征的空中目标识[J].现代雷达, 2006,28(10):30-33.
    [77] Stove A.G., Sykes S.R.. A Doppler-based automatic target classifier for a battlefield surveillance radar[C]. Proceedings of IEEE International Conference on Radar, Edinburgh(UK), October 2002, 419-423.
    [78] Evan Hughes, Mike Lewis.The Application of Speech Recognition Techniques to Radar Target Doppler Recognition:A Case Study. IET Seminar on High Resolution Imaging and Target Classification, London(UK), Nov. 2006: 147-152.
    [79] Graeme E.Smith, Karl Woodbridge and Chris J.Baker. Template Based Micro-Doppler Signature Classification[J]. Proceedings of the 3rd European Radar Conference, 2006:158-161.
    [80] Graeme E.Smith, Karl Woodbridge,Chris J.Baker. Multistatic Micro-Doppler Signature of Personnel. IEEE Radar Conference, Rome(Italy), May 2008:1961-1966.
    [81] Jonathan L.Geisheimer, Eugene F.Greneker, William S.Marshall. A High-Resolution Doppler Model of Human Gait. Proceedings of SPIE on Radar Sensor Technology and Data Visualization, Orlando(USA) 2002, 4744:8-18.
    [82] P.van Dorp, F.C.A. Groen. Human walking estimation with radar[J]. IEE Proc.-Radar Sonar Naving. 2003,150(5):356-365.
    [83] Shobha Sundar Ram, Hao Ling. Simulation of Human Micro-Dopplers Using Computer Animation Data[C]. IEEE Radar Conference, Rome(Italy), May 2008:1-6.
    [84] Youngwook Kim. Through-wall Human Monitoring Using Data-driven Models with Doppler Information[D]. The University of Texas at Austin,2008.
    [85] Michael Glen Anderson. Design of Multiple Frequency Continuous Wave Radar Hardware and Micro-Doppler Based Detection and Classification Algorithms[D]. The University of Texas at Austin, 2008.
    [86]张翼.人体微动雷达特征研究[D].长沙:国防科学技术大学, 2009年4月.
    [87]王根原,保铮,孙哓兵.基于匀加速多普勒模型的ISA成像[J],电子学报, 1997, 25(6): 58-61.
    [88] Ahmet K O, Liitjiye D, Orhan A. High resolution time-frequency analysis by fractional domain warping[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake(USA), 2001, 3553-3556.
    [89] Du L, Su G. Adaptive Inverse Synthetic Aperture Radar Imaging for Non-uniformly Moving Targets [J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3): 247-249.
    [90] Debora Pastina. Rotation motion estimation for high resolution ISAR and hybrid SAR/ISAR target imaging. IEEE Radar Conference, Rome(Italy), May 2008: 1933-1938.
    [91]韩兴斌,胡卫东,郁文贤,杜小勇.一种复杂运动目标的ISAR成像算法[J].电子学报,2007,35(6):1159-1164.
    [92]韩兴斌,胡卫东,郁文贤,杜小勇.一种非均匀转动目标的ISAR自聚焦算法[J].信号处理,Vol23(06):844-848.
    [93] Chen V C, Qian S. Joint Time-Frequency Transform for Radar Range-Dopplor Imaging[J]. IEEE Trans. Aerospace and Electronic System, 1998, 34(2): 486-499.
    [94] Chen V C, Lipps R. ISAR imaging of small craft with roll, pitch and yaw analysis[C]. IEEE International Radar Conference, Alexandria (USA), 2000: 493-498
    [95] V. C. Chen, H. Ling. Time-Frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House, 2002.
    [96]王勇,姜义成.两种线性时频分布在机动目标ISAR成像中的应用[J].哈尔滨工业大学学报, 2006,38(05):702-704
    [97]王勇,姜义成.基于两种时频分布的ISAR成像方法[J].现代雷达,2006,28(01):35-37.
    [98]金添,常文革.基于综合时频分析的机动目标ISAR成像[J].现代雷达. 2004,26(11):18-21.
    [99]金添,常文革.具有三维转动目标的ISAR成像新方法[J].系统工程与电子技术, 2004,26(05):686-689.
    [100] Bai X.R, Xing M.D, Zhang F. Adaptive S-method based ISAR imaging of maneuvering targets[C]. 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan(China),Nov 2007: 1322-1327.
    [101] T. Thayaparan, LJ. Stankovic, C. Wernik, M. Dakovic. Real-time motion compensation, image formation and image enhancement of moving targets in ISAR and SAR using S-methodbased approach[J]. IET Signal Process, 2008, 2(03), 247-264.
    [102] Zhu Yupeng, Wang Hongqiang, Xiao Shunping. Application of Adaptive Kernel Time-Frequency Distribution in ISAR Imaging with Complex Motion Target[C]. ICSP2008 Proceedings,Beijing(China), Oct 2008:2417-2420
    [103] Genyuan Wang, Zheng Bao. Inverse synthetic aperture radar imaging of ma neuvering targets based on chirplet decomposition. Optical Engineering, 1999, 38(9):1534-1541.
    [104]王勇,姜义成.基于自适应Chirplet分解的舰船目标ISAR成像[J].电子与信息学报, 2006,28(6):982-984.
    [105] Yong Wang, Yicheng Jiang. ISAR imaging for three-dimensional rotation targets based on adaptive Chirplet decomposition. Multidimensional Systems and Signal Processing,2010, 21(1):59-71
    [106]王勇,姜义成.一种新的信号分解算法及其在机动目标ISAR成像中的应用[J].电子学报,2007,35(03):445-449.
    [107]邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法[J].现代雷达, 2000,22(06):44-49.
    [108]邢孟道,保铮,冯大政.基于瞬时幅度和调频率估计的机动目标成像方法[J].西安电子科技大学学报, 2001,28(01):22-26.
    [109] Y.LI, R.Wu, M.xing, Z.Bao. Inverse Synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar Sonar Naving, 2008, 2(06): 395-403.
    [110]李亚超,苏军海,邢孟道,保铮.利用时间—调频率分布特性的复杂运动目标ISAR成像研究[J].西安电子科技大学学报(自然科学版),2008, 35(1):1-8
    [111] Yong Wang, Yicheng Jiang. ISAR Imaging of a Ship Target Using Product High-Order Matched-Phase Transform[J]. IEEE Geoscience and Remote Sensing Letters, 2009 6(4): 658-661.
    [112] Li J F. Model-based signal processing for radar imaging of targets with complex motions[D]. University of Texas at Austin, 2002.
    [113] Li J F, Ling H, Chen V C. An Algorithm to Detect the Presence of 3D Target[J]. Multi-dimensional Systems and Signal Processing, Special Issue on Radar and Signal Processing and its Applications, 2003, 14(1): 223-240.
    [114] T. Thayaparan, W. Brinkman. 3D motion model and detection method for ISAR imaging[C].International Radar Symposium, May 2006, Krakow(Poland), May 2006:1-4.
    [115] Brinkman W. Focusing ISAR Images Using Fast Adaptive Time-Frequency and 3d Motion Detection On Simulated And Experimental Radar Data[D]. Monterey, California: Naval Postgraduate School, 2005.
    [116] Willie Nel, Duncan Stanton, Mohammed Yunus, Abdul Gaffar. Detecting 3-D Rotational Motion and Extracting Target Information from the Principal Component Analysis of Scatterer Range Histories[C]. International Radar Conference-Surveillance for a Safer World, Bordeaux(Rance), Oct 2009:1-6.
    [117]沈丽红. ISAR三维运动检测技术[J].舰船电子对抗, 2008,31(02):53-55.
    [118]韩兴斌,胡卫东,郁文贤.基于散射点信号特性的ISAR成像时间选择算法[J].信号处理, 2007,23(05):704-709.
    [119]朱玉鹏.复杂运动目标ISAR及MIMO雷达成像技术研究[D].长沙:国防科学技术大学,2009.
    [120] Pastina, D., Montanari, A., Aprile A. Motion estimation and optimum time selection[C]. Proceedings of the 2003 IEEE Radar Conference, Huntsville(USA), 2003:7-14.
    [121] August W.R, Stephen J.H. Choosing imaging intervals for small ships [C]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3810:139-148.
    [122] Pastina D, Spina C. Slope-based frame selection and scaling technique for ship ISAR imaging [J]. IET Signal Processing, 2008, 2(3): 265-276.
    [123] Mark A.Stuff, Richard C.Sullivan, Brian J.Thelen, Susan A.S.Werness. Automated two and three dimensional, fine resolution, radar imaging of rigid targets with arbitrary unknown motion[C]. Proceedings of the 1994 SPIE International Symposium:Algorithms for Synthetic Aperture Radar Imagery, Orlando, FL, April 1994, 2230:180-189.
    [124] Mark A.Stuff, Martin Biancalana, Gregory Arnold, Joseph Garbarino. Imaging Moving Objects in 3D from Single Aperture Synthetic Aperture Radar[C]. IEEE Radar Conference, April 2004:94-98.
    [125] Mark A.Stuff. Three-dimensional analysis of moving target radar signals:Methods and implications for ATR and feature aided tracking[C]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3721:485-496.
    [126] Mark A. Stuff, Pedro Sanchez, Martin Biancalanna. Extraction of Three-Dimensional Motion and. Geometric Invariants from Range Dependent Signals[J]. Multidimensional Systems and Signal Processing, 2003, 14:161-181.
    [127] Tristrom Cooke. Ship 3D Model Estimation from an ISAR Image Sequence[C]. International Radar Conference, Sept 2003:36-41.
    [128] Tristrom Cooke. Scatterer labeling estimation for 3D Model Reconstruction from an ISAR Image Sequence[C]. International Radar Conference, Sept 2003:315-320.
    [129] Tristom Cooke, Marco Martorella, Brett Haywood, Danny Gibbins. Use of 3D ship scatterer models from ISAR image sequences for target recongnition[J]. Digital Signal Processing, 2006, 16: 523-532.
    [130] Feng Rice, Tristrom Cooke, Danny Gibbins. Model Based ISAR ship classification[J]. Digital Signal Processing, 2006, 16:628-637.
    [131] Qun Zhang,Yue-sheng Zeng,Yuan-qiao He,Ying Luo. Avian detection and identification with high-resolution radar[C]. IEEE Radar Conference 2008, Rome(Italy), May 2008:1-6.
    [132] YuanXun Wang, Hao Ling. ISAR Motion Compensation Via Adaptive Joint Time-Frequency Technique [J]. IEEE Transaction on Aerospace and Electronic Systems,1998, 34(02):670-677.
    [133] Thayaparan T, Lampropoulos G, Wong S K. Applications of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data[J]. IEE Proceedings on Radar, Sonar and Navigation, 2003, 150(4): 213-220.
    [134] Wang Junfeng, Liu Xingzhao. Improved Global Range Alignment for ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1070-1074.
    [135]高红卫,谢良贵,文树良,匡勇.速度对微多普勒的影响及其补偿研究[J].航天电子对抗, 2008, 24(04):46-50
    [136]刘延柱.高等动力学.北京:高等教育出版社,2001.
    [137]谢传锋.动力学.北京:高等教育出版社,2005.
    [138]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2004.
    [139]任香丽,龙腾,远海鹏. HRRF脉冲多普勒频率步进雷达信号处理与参数设计[J].电子学报, 2007, 35(9):1630-1636.
    [140] H.myers, R.Moore, W.Buter, S.Ware. Common aperture multi-band radar(CAMBR)[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 1996,2845: 2-13.
    [141] G.S.Gill, Aaulo A.Soares. Step Frequency High PRF Waveform Design[R]. AD:A315520, June 1996.
    [142]龙腾.高分辨率雷达数字信号处理[D].北京:北京理工大学电子工程系, 1995.
    [143] T.Thayaparan, S.Kennedy. Detection of a manoeuvring air target in sea-clutter using Joint Time-Frequency Analysis Techniques [J]. IEE Proc.-Radar Sonar Naving, 2004, 151(1):19-30.
    [144] Auger F., Flandrin P. Improving the readability of timefrequency and time-scale representations by the reassignment method [J]. IEEE Trans. Signal Process, 1995, 43,1068–1089.
    [145] G.Lopez-Risueno, J.Grajal, O.Yeste-Ojeda. Atomic Decomposition based Radar Complex Signal Interception.IEE Proc.-Radar Sonar and Navigation, 2003,15(4):324-331.
    [146] A.Bultan. A Four-Parameter Atomic Decomposition of Chirplets. IEEE Transaction on Siganl Processing, 1999, 47(3):731-744.
    [147] J.C.O’Neill, P.Flandrm, W.C.Karl. Sparse Representation with Chirplets via Maximum Likelihood Estimation. IEEE Transaction on Signal Processing, 2001, 25(7):593-602.
    [148]舒畅,宋叔飚,等.基于先验估计的自适应Chirplet信号展开[J] .电子与信息学报, 2005 ,27 (01) :21-25.
    [149]王勇,姜义成.一种自适应Chirplet分解的快速算法[J].电子学报, 2007, 35(04): 701-704.
    [150] Qinye Yin, Shie Qian, and Aigang Feng. A Fast Refinement for Adaptice Gaussian Chirplet Decomposition[J]. IEEE Transactions on Signal Processing, 2002, 50(06): 1298-1306.
    [151] Omar A.Yese-Ojeda, Gustavo Lopez-Risueno, Jesus Grajal. Performance Evaluation of Atomic Decomposition Algorithms. European Signal Processing Conference, Vienna(Austria) , Sep 2004:1183-1186
    [152]薛文虎,张明敏,唐颈送,韩树宗. Chirp信号参数估计算法性能比较[J].海军工程大学学报, 2007, 19(02):1-5.
    [153]李文臣.高速机动目标雷达信号参数估计与成像处理[D].中国长沙:国防科学技术大学, 2009
    [154] [美]Steven M. Key著,罗鹏飞,张文明,刘忠等译.统计信号处理基础——估计与检测理论[M].北京:电子工业出版社, 2006
    [155]黄克骥,李立萍,陈天麒.一种快速、高精度的LFM参数估计算法[J].电子学报,2004 , 32(03):377-380.
    [156] Zou Changchun, Shi Ge. A Hough Transform-Based Mehod for Fast Detection of Fixed Period Sinusoidal Curves in Images[C]. Sixth International Conference on Signal Processing, 2002:909-912.
    [157] Peter Handel. Properties of the IEEE-STD-1057 Four-Parameter Sine Wave Fit Algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(06):1189-1193.
    [158]黄培康.雷达目标特性[M].北京:电子工业出版社,2005.
    [159]王国雄,等.弹头技术(上)[M].北京:宇航出版社, 1993.
    [160] Zhishun S, Zhaoda Z. Cross-range scaling of inverse synthetic aperture radar[C].Proceedings of the IEEE NAECON, 1994:175-180.
    [161] Martorella M., Berizzi F., Haywood B. Contrast maximization based technique for 2D ISAR autofocusing [J]. IEE Prceedings, Radar, Sonar and Navigation, 2005,152(4) :253-262.
    [162] Fabrizio Berizzi, Marco Martorella, Andrea Cacciamano, Amerigo Capria. A Contrast-Based Algorithm for Synthetic Range-Profile Motion Compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10):3053-3062.
    [163]冯德军.弹道中段目标雷达识别与评估研究[D].长沙:国防科技大学,2006.
    [164]肖立,周剑雄,何峻,付强.弹道中段目标进动周期估计的改进自相关法[J].航空学报, 2010, 31(4):812-818.
    [165]雷杰,邢孟道,保铮.一种基于钟摆模型的舰船目标成像方法[J].电子与信息学报, 2006, 28(01): 1-6.
    [166] Donald R.Wehner. High Resolution Radar[M]. Boston: Artech House, 1987: 273~334.
    [167]汤洁.机载ISAR对舰船成像研究[D].南京:南京航空航天大学,2005.
    [168] Armin W. Doerry. Ship Dynamics for Maritime ISAR Imaging[R]. Sandia National Laboratories Report, SAND2008-1020.
    [169] Pu Wang, Jianyu Yang, Igor Djurovic. Algorithm Extension of Cubic Phase Function for Estimating Quardratic FM Signal[C]. IEEE International Conference on Acoustics, Speech and Siganal Processing, Honolulu(USA), Aprial 2007:1125-1128.
    [170] Yuntao Wu,hing Cheung So, Hongqing Liu. Subspace-Based Algorithm for Parameter Estimation of Polynomial Phase Signals [J]. IEEE Transactions on Signal Processing, 2008, 56(10):4977-4983.
    [171] S.Peleg, B.Friedlander.The discrete polynomial phase transform[J]. IEEE Transation on Signal Processing,1995, 43(8):1901-1914.
    [172] S.Peleg, B.Friedlander. Multicomponent signal analysis using the polynomial phase transform[J]. IEEE Transactions on Aerospace and Electronic Systems , 1996, 32(1):378-386.
    [173] S.Barbarossa, A.Scaglione, G.Giannakis. Product high-order ambiguity function for mulit-component polynomial phase signal modeling[J]. IEEE Transation on Signal Processing, 1998, 46(3):691–708.
    [174] P.O’Shea. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transaction on Signal Processing, 2004, 52(2):385–393.
    [175] P.O’Shea. A new technique for instantaneous frequency rate estimation[J]. IEEE Signal Processing Letter, 2002, 9(8):251–252.
    [176] Benjamin Friedlander, Joseph M.Francos. Estimation of Amplitude and Phase Parameters of Multicomponent Signals[J]. IEEE Transactions on Signal Processing, 1995,43(04):917-926.
    [177] Duc Son Pham, Abdelhan M.Zoubir. Analysis of Multicomponent Polynomial Phase Signals[J]. IEEE Transactions on Signal Processing, 2007, 55(1):56-65.
    [178] Pu Wang , Jianyu Yang. Parameter Estimation of Multicomponent Quadratic FM Signals Using Computationally Efficient Radon-CPF Transform[C]. Proceedings of the 2006 European Signal Processing Conference, Florence(Italy), Sept 2006.
    [179]粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社,2002.
    [180] Lagarias J.C., Reeds J.A., Wright M.H, Wright P.E. Convergence Propertiesof the Nelder-Mead Simplex Method in Low Dimensions[J]. SIAM Journal of Optimization,1998, 9(1):112-147.
    [181] Ling Wang, Daiyin Zhu, Zhaoda Zhu. Cross-range Scaling for Aircraft ISAR Images Based on Axis Slope Measurements[C]. IEEE radar Conference, 2008:1668-1673.
    [182] Chun-Mao Yeh, Jia Xu, Ying-Ning Peng, and Xiu-Tan Wang. Cross-Range Scaling for ISAR Based on Image Rotation Correlation[J]. IEEE Geoscience and Remote Sensing Letters,2009, 6(03):597-601.
    [183] M.Martorella. Novel Approach for ISAR Image Cross-Range Scaling. IEEE Transaction on Aerospace and Electronic Systems. 2008, 44(01): 281-294.
    [184]程肖.基于散射中心模型的SAR图像自动目标识别[D].长沙:国防科学技术大学,2009.
    [185] Michael L. Burrows. Two-dimensional ESPRIT with tracking for radar imaging and feature extraction[J]. IEEE Transaction on Antennas Propagat, 2004, 52(2):524-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700