转Bar基因抗除草剂稻谷对小鼠的安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以昆明小鼠为动物模型(animal model),应用行为学、环境生态学、毒理学、生理学、遗传学、发育生物学、蛋白质组学和数理生态学等研究方法,从生理生化、毒理病理、生殖发育和遗传多样性等方面对转Bar基因抗除草剂稻谷的安全性进行了综合评价。
     1.选取6周龄、体重18-22g的SPF级昆明小鼠200只,按编号随机分成5组,每组4个重复,每个重复10只小鼠,雌雄各半。用不同含量(40%和60%)的转Bar基因抗除草剂稻谷及其亲本非转基因稻谷日粮分别喂养小鼠,亲代小鼠饲养90天后开始繁殖子一代(F1),子一代饲养90天后开始繁殖子二代(F2),每代小鼠饲养180天。在180后分别从亲代、子一代和子二代每组按编号随机抓取10只小鼠对其血常规、血生化指标和主要脏器指数进行了检测。结果显示,P、F,和F2三代小鼠中,各处理组间器官指数和血生理生化指标均不存在显著差异(P>0.05),转Bar基因抗除草剂稻谷对小鼠的生长、器官发育以及血生理生化未产生显著影响。
     2.将120只SPF级昆明小鼠分为5组,每组4个重复,每个重复6只小鼠,雌雄各半,分别饲喂含不同剂量转基因稻谷Bar68-1和常规非转基因稻谷D68180天,持续3代。采用SDAP、FARRP和NCBI三大数据库对磷丝菌素乙酰转移酶(PAT)进行致敏原序列对比,并用蛋白质结构模拟SWISS-MODEL预测PAT的三维构象并对其进行分析。每组按编号随机抽样6只小鼠,用ELISA分别检测其肠道粘液免疫球蛋白A(sIgA)、血清二胺氧化酶(DAO)和血清免疫球蛋白E(IgE)。蛋白质生物信息学比对结果表明,PAT酶与数据库中已知致敏原无同源性,三维构象亦表明其与其他N-乙酰转移酶大家族(NATSF)成员相似,无致敏性;转基因组与非转基因组小鼠比较,sIgA、 DAO和IgE三项检测指标值均无显著性差异(P>0.05)。结果显示,转Bar基因的稻谷对小鼠无明显致敏性。
     3.选择体重在18~22g SPF级昆明小鼠100只,按编号随机分成5组,分别饲喂含不同剂量(40%和60%)的转基因稻谷Bar68-1和常规非转基因稻谷D68180天,持续2代。180天后每组按编号随机抓取6只小鼠,分别检测其腿肌、肝脏、肾脏、脾脏、小肠中是否含有Bar基因片段和其表达蛋白——磷丝菌素乙酰转移酶(PAT),进而探讨转基因成分在小鼠体内的代谢残留状况;同时,还进行了小鼠消化道内对外源蛋白消化降解情况的初步检测,并对小肠线粒体(mtDNA)基因组12S rDNA和16S rDNA保守区域测序。结果表明:采用定性PCR法检测的实验组小鼠各脏器组织中没有发现Bar基因片段和其表达的PAT蛋白酶;而小鼠消化道外源蛋白检测结果表明PAT酶在胃肠道内无耐受性,外源蛋白成分能够被机体完全消化;小鼠小肠线粒体(mtDNA)基因组12S rDNA和16S rDNA保守区域的测序结果也无异常,没有发现突变点。
     4.选取6周龄、体重18-22g的SPF级昆明小鼠120只,按编号随机分成5组,每组4个重复,每个重复6只小鼠,雌雄各半。用不同含量(40%和60%)的转Bar基因抗除草剂稻谷和非转基因稻谷日粮分别喂养小鼠,亲代小鼠饲养90天后开始繁殖子一代(F1),每代小鼠饲养180天。在180后分别从亲代和子一代每组按编号随机抓取6只小鼠,提取肠道内容物基因组DNA,利用细菌通用引物对细菌16S rDNA的V3区序列进行PCR扩增,并将扩增产物用变性梯度凝胶电泳(DGGE)后进行比较、分析,并对小鼠肠道微生物主要优势菌群进行了鉴别。结果显示,饲喂转Bar基因抗除草剂稻谷和非转基因稻谷日粮的小鼠肠道细菌种类和数量相似度大,无显著差异(P>0.05),转Bar基因抗除草剂稻谷对小鼠肠道微生物区系的种类、数量和分布没有产生显著影响。
     5.通过体外实验评价转基因大米Bar68-1的细胞毒性,分别以25、50、100和200μg/mL转基因大米Bar68-1全蛋白作用于昆明小鼠淋巴细胞,并各孵育2h、6h、24h,然后用CCK-8及中性红摄取试验检测细胞毒性大小。在经过不同的孵育时间段后,阳性对照组淋巴细胞的细胞存活率与空白对照组相比,存在显著差异(P<0.05)。其中,CCK-8试验、中性红试验测得细胞存活率存在着明显的损伤作用-时间效应关系。转基因大米Bar68-1全蛋白暴露组淋巴细胞存活率与非转基因大米D68全蛋白暴露组淋巴细胞相比无明显差异(P>0.05),且与空白对照组细胞差异不显著(P>0.05)。结果显示,转基因大米Bar68-1与非转基因大米D68两者在细胞毒性上性状相似,实质等同,对淋巴细胞无明显毒性作用。
     6.为探测PAT酶长期胁迫下小鼠遗传多态性的变化,应用AFLP技术对饲喂转Bar基因抗除草剂稻谷子二代(F2)小鼠遗传多样性进行了研究分析。36只体重18-22g的F2代小鼠分为实验组(Z2)和对照组(C2),分别饲喂Bar基因稻谷Bar68-1和非转基因稻谷D68。每组3个重复,每个重复6只小鼠,雌雄各半。6对引物组合扩增出108个AFLP条带,其中多态性条带占25.9%。在聚类图上Z2组肝脏和小肠样品和C2组肝脏和小肠样品有微小差异,但差异不明显。结果表明,PAT对小鼠肝脏和小肠的DNA多态性没有明显影响。
Applying the methods of ethology, environmental ecology, toxicology, physiology, Genetics, developmental biology, proteomics and mathematical ecology, comprehensive assessment of food safety of Bar-transgenic rice with herbicide resistance was made using Mus musculus as animal model in this study on physiology and biochemistry, toxicology and pathology, reproductive development, genetic diversity and so on.
     1. Kunming mice(Mus musculus) of200SPF-grade (20g±2g), half of which were male and the other half female, were randomly divided into five groups with four replications per group and ten mice per replication to assess the safety of Bar-transgenic rice. They were fed with diets containing low and high doses of genetically modified (GM) Bar68-1rice, D68(non-GM) rice, and routine feed for180days. After90days, parental generation (P) was bred to produce the first filial generation (F1), and then F1, which was fed for90days, produced the second filial generation (F2). Each generation was fed for180days. On the180th day, ten mice from each group were randomly sampled, and organ coefficient, and blood biochemistry values were quantified. The quantification of these chemicals was done for three generations of mice. The results indicated that no significant difference in organ coefficient, and blood biochemistry values between the Bar68-1GM rice group and the non-GM D68rice groups (P>0.05), and the Bar-transgenic rice did not have allergenic effects on the growth, development of organs and blood biochemistry values.
     2. To assess the safety of Bar-transgenic rice, its allergenicity were tested on120Kunming mice (Mus musculus). The test mice were randomly divided into five groups with four replications per group and six mice per replication, and were given diets containing varying doses of genetically modified (GM) Bar68-1rice, D68(non-GM) rice, and routine feed. Database SDAP, Farrp and NCBI were used in protein sequence alignment of PAT, and the three-dimensional conformation of PAT was formed and analysed in SWISS-MODEL. On the180th day,6mice from each group were sampled at random and the IgE and DAO levels in their serum and the sIA in their small intestinal mucus were quantified. The quantification of these chemicals was done for three generations of mice. The results indicated that no significant difference in the serum sIgA, DAO, and IgE between the Bar68-1GM rice group and the non-GM D68rice groups (P>0.05), and the Bar-transgenic rice did not have allergenic effects on the mice. Besides, there was no positive match through the protein-bioinformatics comparison, PAT had no homology with any of the known allergens. The three-dimensional conformation inspection indicated that PAT had a similar structure with other members in NATSF. There was little possibility to cause anaphylactic reaction. we could get a conclusion that Bar-transgenic rice had no obvious allegenicity.
     3.100Kunming mice (Mus musculus) were randomly divided into five groups of twenty mice each and were given diets containing varying doses of genetically modified (GM) Bar68-1rice, D68(non-GM) rice, and routine feed. On the180th day,6mice from each group were sampled at random to detecte the existence of Bar-gene segments and PAT in mice crureus, liver, kidney, spleen, small intestine to discuss the residue of the genetically modified component in the body metabolism. Besides, the preliminary investigation about the degradation of foreign protein in mice digestive system was discussed. Four pairs of oligonucleotide primers were designed for the12S rDNA and16S rDNA conserved region of the mice intestinal mitochondrial DNA (mtDNA), the PCR amplicons were examed for mutation study. It showed a negative result of the existence of Bar-gene segments and PAT enzyme in all parts of mice body that mentioned above. The foreign protein digestive experiment indicated that PAT were degradable in mice gastrointestinal tract, it had no tolerance for the digestion. No mutational site was found in the12S rDNA and16S rDNA conserved region of the intestinal mtDNA.
     4. Microbial molecular ecology approaches were used to the effects of Bar-transgenic rice on Intestinal Microflora of the Mice(Mus musculus). Kunming mice(Mus musculus) of120SPF-grade (20g±2g), half of which were male and the other half female, were randomly divided into five groups with four replications per group and six mice per replication to assess the safety of Bar-transgenic rice. Five diets meetinging or exceeding the minimum nutrient requirement were fed for180days. After90days, parental generation (P) was bred to produce the first filial generation (F1). Each generation was fed for180days. On the180th day, six mice from each group were randomly sampled, and their intestinal contents were collected for DNA isolation. The V3region of the16S rDNA was amplified by polymerase chain reaction (PCR) and analyzed via denaturing gradient gel electrophoresis (DGGE). The resulting PCR-DGGE band number(bacterial species) was counted, and the banding patterns were analyzed by calculating the Sorenson's pairwise similarity coefficients (Cs), an index used to measure bacterial species found among all samples. The sequence analysis of bands was performed to identify the intestinal predominant microflora of the mice. The intergroup Cs values of the samples across all groups did not differ (P>0.05) from each other. The effect of Bar-transgenic rice on the intestinal microflora of the mice was considered insignificant.
     5. To investigate the cytotoxicity of Bar68-1genetically modified(GM) rice in Mus musculus lymphocytes with different assays in vitro. Mus musculus lymphocytes were exposed to whole protein of Bar68-1GM rice at doses of25,50,100and200μg/mL and incubated for2h,6h and24h, respectively. The cytotoxicity induced by whole protein of Bar68-1M rice were measured by CCK-8assay and neutral red uptake (NRU) assay. After different incubation periods, the survival rate of lymphocytes in positive control group was significantly less than that of lymphocytes in blank control group(P<0.05). Moreover, the exposure time-effect relationship was observed in positive control group with CCK-8assay and neutral red uptake (NRU) assay. There was no significant difference in survival rate between Bar68-1GM rice group and non-GM rice group(P>0.05). Also, the Bar68-1GM rice group did not show higher survival rate than that of D68non-GM rice group(P>0.05). The results of this study indicated that Bar68-1GM rice had similar cytotoxicity with D68non-GM rice, and Bar68-1GM rice had no cytotoxicity effect on Mus musculus lymphocytes in vitro.
     6. To study the influence of long-period PAT force on genetic polymorphism of mice (Mus musculus), the genetic polymorphism of the second filial generation(F2) mice fed with of Bar-transgenic rice were analysed. F2mice (Mus musculus) of36SPF-grade (20g±2g), half of which were male and the other half female, were randomly divided into one experimental group (Group Z2, fed with rice Bar68-1)and one control group (Group C2, fed with rice D68) with three replications per group and six mice per replication. With six pairs of AFLP selective primers,108AFLP loci were recorded, of which25.9%were polymorphic. There was a tiny difference between liver and small intestine samples of Group Z2and Group C2based on dendrogram, but the difference wasn't obvious. The results indicated that the influence of long-period PAT force on genetic polymorphism of mice (Mus musculus) was insignificant.
引文
[1]Vaeck, M.& A. Reynaerts. Transgenic plants protected from insect attack[J]. Nature,1987,328:33-37.
    [2]吴延军,何伟,王江,等.植物基因工程技术在农业上的应用[J].中国农学通报,2002,18(4):71-74.
    [3]何华勤,林文雄.水稻化感作用潜力研究初报[J].中国生态农业学报,2001,9(2):47-49.
    [4]朱冰,黄大年,杨炜,等.利用基因枪法获得可遗传的转基因水稻植株[J].中国农业科学,1996,29(5):15-20.
    [5]Seelye JF, Borst WM, King GA, et al. Glutamine synthetase activity, ammonium accumulation and growth of callus of Asparagus fficinalis L. exposed to high ammonium or phosphinothricin[J]. Journal of plant physiology,1995,146:686-692.
    [6]Tachibana K., Watanabe, T., Sekizawa, Y, et al. Accumulation of ammonaia in plants treated with bialaphos[J]. Journal of pesticide science,1986,11:33-37.
    [7]向文胜.抗除草剂草甘膦转基因作物[J].东北农业大学学报.1998,29(1):92-98.
    [8]向文胜,肖振平,赵长山,等.抗除草剂转基因作物[J].东北农业大学学报.1998,29(2):201-208.
    [9]程焉平.抗除草剂转基因作物的研究及其安全性[J].吉林农业科学,2003,28(4):23-28.
    [10]J. Kent Moore, Hugh D. Braymer & Alworth D. Larson. Isolation of a Pseudo-monas sp.which utilizes the phosphonate herbicide glyphosate[J]. Appl. Environ. Microbiol.,1983, (46):316-320.
    [11]任江萍,王爱萍,王智琴,等.植物抗除草剂基因研究进展[J].山西农业大学学报(自然科学版),2001,21(2):168-172.
    [12]OECD. Consensus document on compositional considerations for new varieties of rice(Oryzasativa):key food and feed nutrients and anti-nutrients[R].Paris: OECD,2004.
    [13]玛丽莲,郭龙彪,钱前.转基因水稻安全性评价的内容[J].中国稻米,2004(5):48-49.
    [14]WHO. Application of the principles of substantial equivalence to the safety evaluation of food components from plants derived by modern biotechnology [R]. Geneva:WHO,1995.
    [15]OECD. Safety evaluation of foods produced by modern biotechnology:concepts and principles [R]. Paris:OECD,1993.
    [16]贾乾涛,石上柏,杨长举,等.转Bt基因水稻安全性评价研究进展[J].湖北农业科学,2005(1):103-107.
    [17]李艳红.水稻营养品质的改良及研究进展[J].农业与技术,2005,25(2):82-87.
    [18]王凤君,陈辑宝.转基因争论报告[J].中国社会导刊,2005(14):21-23.
    [19]李英华,朴建华,陈小萍,等.Xa21转基因大米的营养学评价[J].卫生研究,2004,3(33):303-306
    [20]李英华.Xa21转基因大米的食用安全性研究[D].北京:中国疾病预防控制中心营养与食品安全所,2005.
    [21]卓勤.转豇豆胰蛋白酶抑制剂水稻的食用安全性研究及其标记蛋白潮霉素磷酸转移酶的表达、纯化[D].北京:中国疾病预防控制中心营养与食品安全所,2004.
    [22]HAN J, YANG Y, CHEN S, et al. Comparison of nutrient composition of parental rice and rice genetically modified with cowpea trypsin inhibitor in China[J]. Jour-nal of Food Composition and Analysis,2005,18:297-302.
    [23]WANG Z H, WANG Y, CUI H R, et al. Toxicological evaluation of transgenic rice flour with a synthetic crylAb gene from Bacillus thuringiensis[J]. Journal of the Science of Food and Agriculture,2002,82:738-744.
    [24]LI X, HUANG K, HE X, et al. Comparison of nutritional qulity between Chinese Indica rice with sck and crylAc genes and its nontransgenic counterpart[J]. Journal of Food Science,2007,72(6):420-424.
    [25]MAFF and DH. Statistically valid data to support applications for safety clearance of crop products under EC regulations on novel foods and novel food ingredients 258/97[R]. London:Advisory committee on Novel Foods and Processes, 1999.
    [26]OBERDOERFER R B, SHILLITO R D, BEUCKELEER M D, et al. Rice (Oryza satival L.) containing the bar gene is compositionlly equivalent to the nontransgenic counterpart[J]. Journal of Agriculture and Food Chemistry,2005,53:1457-1465.
    [27]TADA Y, NAKASE M, ADACHI T, et al. Reduction of 14-16 KDa allergenic proteins in transgenic rice plants by antisense gene[J]. FEBS Letter,1996,391: 341-345.
    [28]YE X, AL BABILI S, KLOETI A, et al. Engineering the provitamin A(beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000,287:303-305.
    [29]MOMMA K, HASHIMOTO W, OZAWA S, et al. Quality and safety evaluation of genetically engineered rice with soybean glycinin:Analyses of the grain composition and digestibility of glycinin in transgenic rice[J]. Biosci Biotechnol Biochem,1999,63(2):314-318.
    [30]王茵,莱伟旗,陈建国,等.抗除草剂基因(BAR)转基因水稻的毒性试验[J].卫生研究,2000,29(3):141-142.
    [31]陈小萍,卓勤,顾履珍,等.转基因大米营养评价试验[J].营养学报,2004,26(2):119-123.
    [32]赵志辉,杨立桃,艾晓杰,等.抗codA基因的耐盐碱水稻对大鼠生理代谢的影响及外源基因的水平转移[J].农业生物技术学报,2005,13(3):341-346.
    [33]MOMMA K, HASHIMOTO W, YOON H, et al. Safety assessment of rice genetically modified with soybean glycinin by feeding studies rats[J]. Bioscience Biotechnology and Biochemistry,2000,64(9):1881-1886.
    [34]杨月欣,陈淑蓉,韩军花,等.转SCK基因大米的营养学评价——小型猪比较喂养研究[J].营养学报,2005,27(1):38-45.
    [35]韩军花,杨月欣,陈淑蓉,等.转SCK基因大米对小型猪生长发育的影响[J]. 中国食品卫生杂志,2004,16(6):489-493.
    [36]韩军花,杨月欣,门建华,等.转基因大米与亲本大米猪回肠蛋白质及氨基酸消化率的比较研究[J].营养学报,2004,26(5):362-365.
    [37]Herouet, C., Esdaile, D. J. and Mallyon, B.A..Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants[J]. Regul. Toxicol. Pharmacol.2005,41(2):134-149.
    [38]CROMWELL G L, HENRY B J, SCOTT A L, et al. Glufosinate herbicide-tolerant(Liberty Link) rice vs. conventional rice indiets for growing-finishing swine[J]. Journal of Animal Science,2005,83:1068-1074.
    [39]王忠华,舒庆尧,崔海瑞,等.转Bt基因水稻米粉对家蚕生长发育及中肠亚显微结构的影响[J].中国农业科学,2002,35(6):714-718.
    [40]FAO/WHO. Safety aspects of genetically modified foods of plant origin report of a join FAO/WHO expert consultation on foods derived from biotechnology [R]. Geneva: FAO/WHO,2000.
    [41]中华人民共和国农业行业标准.NY/T 1102-2006转基因植物及其产品食用安全性评价——大鼠90 d喂养实验[S].
    [42]王忠华,王茵,崔海瑞,等.Bt水稻“克螟稻”稻米毒理性评价研究初报[J].中国农业科学,2002,35(12):1487-1492.
    [43]李英华,朴建华,卓勤,等.Xa21转基因大米亚慢性毒性实验[J].卫生研究,2004,33(5):575-578.
    [44]卓勤,陈小萍,朴建华,等.转豇豆胰蛋白酶抑制剂大米90 d喂养实验研究[J].卫生研究,2004,33(2):176-179.
    [45]李英华,朴建华,卓勤,等.Xa21转基因大米对大鼠致畸的实验研究[J].卫生研究,2004,33(6):710-712.
    [46]卓勤,陈小萍,朴建华,等.转豇豆胰蛋白酶抑制剂大米的致畸作用研究[J].卫生研究,2004,33(1):74-77.
    [47]王忠华,王茵,舒庆尧,等.转Bt基因水稻稻米的诱变性研究[J].中国农业科学,2004,37(12):2043-2046.
    [48]薛大伟,马丽莲,姜华,等.抗除草剂转基因水稻的安全性评价[J].农业生物技术学报,2005,13(6):723-727.
    [49]李英华,朴建华,陈小萍,等.转基因大米的免疫毒理学评价[J].中国公共卫生,2004,20(4):404-406.
    [50]VAN HOOSER B, CRAWFORD L V. Allergy diets for inforts and children [J]. Ther,1989,15:38-47.
    [51]王文高,陈正行.低过敏大米研究进展[J].粮食与油脂,2001(5):32-33.
    [52]贾旭东,李宁,王伟,等.利用BN大鼠动物模型评价S86转基因大米的致敏性[J].中国食品卫生杂志,2005,17(1):7-9.
    [53]杨丽琛,李英华,杨晓光,等.转SCK基因水稻中标记基因表达蛋白HPT食用安全性的初步研究[J].卫生研究,2005,34(5):549-553.
    [54]FAO/WHO. Evaluation of allergenicity of genetically modified Foods. Report of a Jiont FAO/WHO Expert Consulation on Allergenicity of Foods Derived from Biotechnology[R]. January 22-25,2001. Italy:FAO/WHO,2001.
    [55]LU Y, XU W, KANG A, et al. Prokaryotic expression and allergenicity ass-essment of hygromycin B phosphotransferase protein derived from genetically modified plants[J]. Journal of Foods Science,2007,72(7):228-232.
    [56]沈立明,吴永宁,张建中,等.不同加工条件下转基因大米潮霉素标记基因(hpt)稳定性研究[J].卫生研究,2006,35(4):431-434.
    [57]徐海滨,殷昭雪.转基因水稻潮霉素标记基因在大鼠体内的代谢[J].毒理学杂志,2005,19(3):325-326.
    [58]赵志辉,杨立桃,艾晓杰,等.转codA基因的耐盐碱水稻对大鼠生理代谢的影响及外源基因的水平转移[J].农业生物技术学报,2005,13(3):341-346.
    [59]Muyzer G & Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in micobial ecology[J]. Antonie van Leeuwenhoek,1998,73:137-141.
    [60]Amannri, Ludwingw & Schleiferkh. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiology Review,1995,59:143-169.
    [61]Muyzer G, De waal E C & Uitterlinder A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microbiol, 1993, (59):695-700.
    [62]Kocherginskaya SA, Aminov RI & White BA. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches[J]. Anaerobe,2001,(7):119-134.
    [63]Regensbogenova M, Pristas P, Javorsky P, et al. Assessment of ciliates in the sheep rumen by DGGE[J]. Lett Appl Microbiol,2004,39(2):144-147.
    [64]Rattray RM & Craig AM. Molecular characterization of sheep ruminal enrichments that detoxify pyrrolizidine alkaloids by denaturing gradient gel electrophoresis and cloning[J]. Microb Ecol,2007,54(2):264-275.
    [65]Ferris M J, Muyzer G and Ward D M. Denaturing gradient gel electrophoresis of 16S rRNA-defined populations inhabiting a hot spring microbial mat community[J]. Appl Environ Microbiol,1996, (62):340-346.
    [66]罗海峰,齐鸿雁,薛凯,等PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1575.
    [67]刘新春,吴成强,张昱,等PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析[J].生态学报,2005,25(4):842-847.
    [68]朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报,2003,43(4):503-508.
    [69]图雅.虎粪细菌区系16S rDNA动态[D].南京农业大学硕士学位论文,2005.
    [70]姚文,朱伟云,韩正康,等.应用变性梯度凝胶电泳和16S rRNA序列分析对山羊瘤胃细菌多样性的研究[J].中国农业科学,2004,37(9):1374-1378.
    [71]卓凤萍.贡嘎蝠蛾幼虫肠道细菌多样性分析[D].重庆大学硕士学位论文,2005.
    [72]Nielsen DS, Moller PL, Rosenfeldt V, et al. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lacticacid bacteria in the human colon[J]. Appl Environ Microbiol,2003,69(12): 7545-7548.
    [73]Simpson J M, McCrack V J, White B A, et al. Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microtiota[J]. Journal of Microbiological Methods,1999,36:167-169.
    [74]Konstantinov S R, Zhu W Y, Williams B A, et al. Effect of fermentable carbohydrates on piglet fecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. FEMS Microbiology Ecology,2003,43:225-235.
    [75]Wang H F, Zhu W Y, Yao W, et al. DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice[J]. Anaerobe,2007,13:127-133.
    [76]Mao S Y, Zhang G & Zhu W Y. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J]. Animal Feed Science and Technology,2007,140:293-306.
    [77]Zhu W Y, Willianms B A, Konstantinov S R, et al. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum[J]. Anaerobe,2003,9:175-180.
    [78]Johansen C. H., Bjerrum L., Finster K and Pedersen K. Effects of a campylobacter jejuni infection on the development of the intestinal microbora of broiler chickens[J]. Poultry Science,2006,85:579-587.
    [79]沈仓良,姚文,陈伟华,等.伴大豆球蛋白水解肽对灌喂大肠杆菌(E.coli)的小鼠肠道微生物区系和健康的影响[J].中国现代医学杂志,2006,16(3):354-358.
    [80]Pedroso A. A., Menten J. F. M, Lambais M. R, et al. Intestinal bacterial community and growth performance of chickens fed diets containing antibiotics[J]. Poultry Science,2006,85:747-752.
    [81]Van der Wielen P W J J, Keuzenkamp D A, Lipman L J A, et al. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth[J]. Microbiology Ecology,2002,44,286-293.
    [82]姚文,朱伟云,毛胜勇16S rRNA技术研究新生腹泻仔猪粪样细菌区系的多样性变化[J].微生物学报,2006,46(1):150-154.
    [83]. Sadet S, Martin C, Meunier B, et al. PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to rumen epithelium[J]. Animal, 2007,1:939-944.
    [84]Simpson J M, McCrack V J, Gaskins H R, et al. Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53[J]. Applied and Environmental Microbiology,2000,66(11): 4705-4714.
    [85]苏勇,朱伟云.仔猪哺乳期和断奶后胃中细菌和乳酸杆菌菌群的变化[J].场外与场内营养,2006,13(1):1-4.
    [86]淡瑞芳.用Real Time PCR和DGGE技术研究放牧臧系绵羊瘤胃微生物季节动态[D].兰州:甘肃农业大学,2006.
    [87]Collier C T, Smiricky-Tjardes M R, Albin D M, et al. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters[J]. Joural of Animal Science,2003,81:3035-3045.
    [88]Li C Y, Liu J X, Wang Y Z, et al. Influence of differing carbohydrate sources on 1-trptophan metabolism by porcine fecal microbiota studied in vitro[J]. Livestock Science,2009,120(1-2):43-50.
    [89]Messens W, Goris J, Dierick N, et al. Inhibition of Salmonella typhimurium by medium-chain fatty acids in an in vitro simulation of the porcine cecum[J]. Vet Microbiol,2010,141(1-2):73-80.
    [90]肖非,付永,冷青文,等.新疆地方绵羊遗传多样性AFLP检测方法的建立[J].遗传育种,2009,(240):36-38.
    [91]陈美,黄勋和,王参谋,等.黄嘴白鹭遗传多样性AFLP分析方法的建立[J].厦门大学学报(自然科学版),2008,47(S2):6-10.
    [92]张东,隋正红,易恒,等.青岛裙带菜孢子体野生种群遗传多样性的AFLP分析[J].中国海洋大学学报,2009,39(4):664-668.
    [93]车卓,张艳欣,孙建,等.中国芝麻核心收集品的育成品种(系)的遗传多样性分析[J].植物遗传资源学报,2009,10(3):373-377.
    [94]汤洪敏,吴刚,虞泓,等.云南野生大白口蘑遗传多样性研究[J].菌物学报,2007,26(1):128-134.
    [95]旦巴,傅廷栋,孟霞,等.西藏野生油菜遗传多样性分析[J].中国油料作物学报,2009,31(2):109-113.
    [96]周遵春,包振民,董颖,等.中间球海胆、光棘球海胆及杂交F1代(中间球海胆♀×光棘球海胆♂)群体遗传多样性AFLP分析[J].遗传,2007,29(4):443-448.
    [97]徐冬冬,尤锋,李军,等.三种鲆鲽鱼养殖群体的遗传多样性及特异性AFLP标记研究[J].高技术通讯,2008,18(2):216-220.
    [98]任军,黄路生,Gary Evens,等.猪基因组AFLP指纹图谱的构建[J].农业生物技术学报,2003,11(2):179-182.
    [99]岳志芹,王伟继,孔杰,等AFLP分子标记构建中国对虾遗传连锁图谱的初步研究[J].高技术通讯,2004,14(5):88-93.
    [100]李健,刘萍,王清印,等.中国对虾遗传连锁图谱的构建[J].水产学报,2008,32(2):161-173.
    [101]喻达辉,王小玉,黄桂菊,等.合浦珠母贝遗传连锁图谱的构建[J].中国水产科学,2007,14(3):361-368.
    [102]齐靖,董祯,毛永民,等.枣高密度遗传图谱的构建与树干直径的QTL分析[J].林业科学,2009,45(8):44-49.
    [103]高丽霞,刘念,黄邦海.姜花属SRAP分子标记连锁图谱构建[J].云南植物研究,2009,31(4):317-325.
    [104]蔡长春,柴利广,王毅,等.白肋烟分子标记遗传图谱的构建及部分性状的遗传剖析[J].作物学报,2009,35(9):1646-1654.
    [105]Cui J Z, Shen X Y, Gong Q L, et al. Identification of sex marks by cDNA-AFLP in Takifugu rubripes [J]. Aquaculture,2006,257(1-4):30-36.
    [106]刘平武,李赞,何庆彪,等.橄榄型油菜polCMS育性恢复基因的分子标记[J].中国油料作物学报,2007,29(1):14-19.
    [107]陈迪文,柴利广,蔡长春.白肋烟遗传连锁图谱的构建及黑胫病抗性QTL分析[J].自然科学进展,2009,19(8):852-858.
    [108]张弛,关媛,何欢乐.利用SRAP分子标记对黄瓜G1基因的初步定为分析[J].上海交通大学学报(农业科学版),2009,27(4):380-383.
    [109]刘丽,马永毅,张志明,等.利用cDNA-AFLP分析纹枯病菌诱导的玉米差异表达基因[J].植物病理学报,2009,39(4):385-391.
    [110]Bachem C W, vander Hoeven R S, de Bruijn S M, et al. Visualization of differential gene expression using a novelmethod of RNA fingerprinting based on AFLP analysis of gene expression during potato tuber development[J]. Plant Journal,1996,9(5):745-753.
    [111]Gregory J T, Bagley M, Agresti J J, et al. Development of codom inant marker for identifying species hybrids[J]. Conservation Genetics,2003,4(4):537-541.
    [112]Cervera M T, Cabezas J A, Sancha J C, et al. Application of AFLP to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja(spain) [J]. Theor. Appl. Genet.,1998,97(1-2):51-59.
    [113]Piepho H P,& Koch G. Codom inant analysis of banding data from a dominant marker system by normal mixtures[J], Genetics,2000,155(3):1459-1468.
    [114]Mueller U G & Wolfenbarger L L. AFLP genotyping and fingerprinting [J]. Trends Ecol. Evol,1999,14(10):389-394.
    [115]Piao Z Y, Deng Y Q, Choi S R, et al. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage(Brassica rapa ssp. pekinensis) [J]. Theor. Appl. Genet.,2004,108(8):1458-1465.
    [116]Huaracha E, Xu M & Korban SS. Narrowing down the region of the Vf locus for scab resistance in apple using AFLP-derived SCARs[J]. Theor. Appl. Genet., 2004,108(2):274-279.
    [117]刘岭峰,曹江山,吴文花,等.转基因食品安全性评价及我国管理现状[J].江西农业学报,2009,21(4):155-158.
    [118]Kuipera HA, Konig A, Kletera GA, et al. Concluding remarks[J]. Food and Chemical Toxicology,2004, (42):1195-1202.
    [119]Anthony J C & Jeanne M E J. Genetic engineering of crops as potential source of genetic hazard in the human diet[J]. Mutation Research,1999, (443): 223-234.
    [120]WANG Z H, WANG Y, CUI H R, et al. Toxicological evaluation of trans-genic rice flour with a synthetic crylAb gene from Bacillus thuringiensis[J]. Journal of the Science of Food and Agriculture.2002,82:738-744.
    [121]王茵,莱伟旗,陈建国,等.抗除草剂基因(BAR)转基因水稻的毒性试验[J].卫生研究,2000,29(3):141-142.
    [122]Reeves PG, Rossow KL & Lindlauf J. Development and Testing of the AIN-93 Purified Diets for Rodents:Results on Growth, Kidney Calcification and Bone Mineralization in Rats and Mice[J]. The Journal of Nutrition,1993,123(11): 1923-1931.
    [123]李文霞,曾本华,袁静,等.GF昆明小鼠主要重量系数和血液生理指标的测定[J].中国微生态学杂志,2011,23(9):780-783.
    [124]宋应同,韦玉梅,李秀琴.小鼠外周血白细胞计数及分类.北京大学学报(医学版),1989,(1):56-58.
    [125]韦玉梅,宋应同,龚兆龙,等.低浓度苯暴露对小鼠行为功能及外周血白细胞的影响.卫生毒理学杂志[J].1989,3(3):181-182.
    [126]孙全文,吴淑琴,张丹参,等.青霉素菌渣残留降解物对小鼠生理生化指标的影响[J].黑龙江畜牧兽医,2011,(2):18-21.
    [127]薛大伟,马丽莲,姜华等.抗除草剂转基因水稻的安全性评价[J].农业生物技术学报,2005,13(6):723-727.
    [128]刘洪艳,弭晓菊,崔继哲.Bar基因、PAT蛋白和草丁膦的特性与安全性[J].生态学杂志,2007,26(6):938-942.
    [129]张婷.关注转基因食物的潜在过敏性[J].免疫学杂志,2004,20:124-126.
    [130]林海霞,常艳,梅其炳.转基因作物食用潜在致敏性的安全评价[J].国外医学卫生学分册,2004,34(3):187-191.
    [131]FAO/ WHO. Evaluation of allergenicity of genetically modifiedfoods[R]. Report of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy,2001:27-28.
    [132]Codex Alimentarius Commission. Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission, Twenty-Fifth Session [S]. Appendix III, Guideline for the Conduct of FoodSafety Assessment of Foods Derived from Recombinant-DNA Plants and Appendix IV, Annex on the Assessment of Possible Allergenicity. Rome, Italy,2003:47-60.
    [133]赵杰宏,韩浩,赵德刚.转基因作物标记蛋白潜在致敏性的生物信息学预测[J].中国烟草学报,2010,16(3):76-79.
    [134]黄煌,郑鹏远,罗予,张利利.食物过敏对小鼠肠道屏障功能及CD4+CD25+调节性T细胞的影响[J].世界华人消化杂志,2008,16(17):1932-1937.
    [135]倪挺,李宏,胡鸢雷等.食物过敏原数据库的建立和使用[J].科学通报,2000,45(14):1567-1568.
    [136]邢立国,杨错,王捷,蔡磊明.转基因植物致敏性的预测方法[J].中国生物工程杂志,2003,23(12):31-35.
    [137]Wohlleben W, Arnold W, Broer I, et al. Nucleotide sequence of the Phosphinothricin N-acetyltransferase gene from the Streptomyces hygroscopicus Tu 494 and its expression in Nicotiana tobacum[J]. Gene,1988,70(1):25-37.
    [138]Herouet C, Esdaile D J, Mallyon B A, et al. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants[J]. Regul Toxicol Pharmacol,2005,41(2):134-149.
    [139]王魁.分泌型Ig A及其在黏膜局部免疫抗感染中的研究现状[J].中国兽医科技,2001,20(8):18-22.
    [140]杨定周,周其全,李素芝,刘福玉.高原缺氧致大鼠肠黏膜屏障功能损伤及谷氨酰胺的保护作用观察[J].解放军医学杂志,2011,36(3):301-306.
    [141]Kleter GA & Peijnenburg AA. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE-binding linear epitopes of allergens[J]. BMC Struct Biology, 2002,2(1):2-8.
    []42]蒋显斌.转Bar基因抗除草剂水稻Bar68-1的生态风险评估[D].湖南:中 国科学院亚热带农业生态研究所,2010.
    [143]肖国樱,唐俐,袁定阳,等.转Bar基因抗除草剂两系杂交早稻恢复系Bar68-1的培育研究[J].杂交水稻,2007,22(6):57-61.
    [144]张珍誉,刘立军,张琳,等.转Bt基因稻谷对小鼠的亚慢性毒性试验[J].毒理学杂志,2010,24(2):126-129.
    [145]刘莎莎,谭建庄,孙哲,等.转基因成分在肉鸡体内的代谢残留及对生化指标、器官发育的影响[J].饲料工业,2011,32(9):19-25.
    [146]贾士荣.转基因植物食品中标记基因的安全性评价[J].中国农业科学,1997,30(2):1-15.
    [147]M. De Block, J. Botterman, M. Vandewiele, et al. Engineering herbicide resistance in plants by expression of a detoxifying enzyme[J].THE EMBO Journal,1987,6(9):2513-2518.
    [148]Mackie R I, White B A & Isaacson R E. Gastrointestinnal microbiology: Gastrointestinnal microbes and host interactions[M]. New York:Chapman & Hall,1997:425-436.
    [149]Savory C J. Enzyme supplementation degradation and metabolism of three U-14C-labelled cell-wall substrates in the fowl[J]. British Journal of Nutrition, 1992,67(1):91-102.
    [150]Reid C A.& Hillman K.. The effects of retrogradation and amylose/amylopectin ratio of starches on carbohydrate fermentation and microbial populations in the porcine colon[J]. Animal Science,1999,68:503-510.
    [151]倪学勤,Joshua Gong, Hai Yu,等.采用PCR-DGGE技术分析蛋鸡肠道微生物细菌种群结构及多样性[J].畜牧兽医学报,2008,39(7):955-961.
    [152]Gong J H, Si W, Forster R J, et al. 16S rRNA genebased analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts:from crops to ceca[J]. FEMS Microbiology Ecology, 2007,59:147-157.
    [153]Yu, Z.& Morrison, M. Improved extraction of PCR 2 quality community DNA from digesta and fecal samples[J]. Bio-Techniques,2004,36:808-812.
    [154]祝小枫,熊德鑫,李小燕,等.几种动物的菌群与肠内容物菌群比较[J].中国实验动物学杂志,1995,5:30-32.
    [155]Suzie K, Julian KC M & Pascal M W D. Genetically modified plants and human health[J]. JR Soc Med,2008, (101):290-298.
    [156]顾祖维.转基因食品的安全性及其毒理学评价[J].毒理学杂志,2005,19(1):9-11.
    [157]焦哲,李攻科.转基因食品及其安全性评价[J].大学化学.2007,22(4):31-37.
    [158]张文平,李云云,王伟刚,等.转几丁质酶和p-],3葡聚糖基因玉米的致突变性检测[J].中国药物与临床,2009,9(5):405-407.
    [159]Pereira A. A transgenic perspective on plant functional genomics[J]. Transgenic Res.,2000,9 (45):245-260.
    [160]Millstone E, Brunner E & Mayer S. Beyond substantial equivalence[J]. Nature, 1999,401(7):525-526.
    [161]Anldanl E, Gadani F & Heinze P. Analytical methods for detection and deter mination of genetically modified organisms in agricultural crops and plant-derived food products[J]. Eur. Food Res. Technol.,2002,214(1):3-26.
    [162]Kuiper H A, Noteborn H P & Peijnenbury A A. Adequacy of methods for testing the safety of genetically modified foods[J]. The Lancet,1999,354(9187): 1315-1316.
    [163]Bryan D, James D A, Helen C, et al. Evaluation of protein safety in the context of agricultural biotechnology[J]. Food and Chemical Toxicology,2008, (46): 71-97.
    [164]Kristina Hug. Genetically modified organisms:do the benefits outweigh the risks? [J]. Medicina (Kaunas),2008,44(2):87-99.
    [165]Konig A, Cockburnb A, Crevelc RWR, et al. Assessment of the safety of foods derived from genetically modified (GM) crops[J]. Food and Chemical Toxicolo-gy,2004, (42):1047-1088.
    [166]Kok E J, Keijer J, Kleter G A, et al. Comparative safety assessment of plant-derived foods[J]. Regulatory Toxicology and Pharmacology,2008, (50): 98-113.
    [167]Jiang Y, Ahn E Y, Ryu S H, et al. Cytotoxicity of psammaplin A from a two-sponge association may correlate with the inhibition of DNA replication[J]. BMC Cancer,2004,30(4):70.
    [168]K. P. Putnam, D. W. Bombick & D.J. Doolittle. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate[J]. Toxicol. In Vitro,2002,16:599-607.
    [169]M. Canal-Raffin, B.1'Azou, J. Jorly, et al. Cytotoxicity of folpet fungiside on human bronchial epithelial cells[J]. Toxicology,2008,249:160-166.
    [170]Geh S. Yucel R. Duffin R, et al. Cellular uptake and cytotoxic of potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts[J]. Arch Toxicol,2006,80:98-106.
    [171]Heckel D G, Gahan L J, Daly J C, et al. A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides[J]. Philosophical Transactions of the Royal Society B: Biological Sciences,1998, 353(1376):1713-1722.
    [172]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23(21):4407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700