农药对转Bt基因水稻生理生化及褐飞虱种群增长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着转Bt基因水稻的研究的不断深入,所带来的环境安全性和食品安全性问题越来越受到学术界和社会公众的广泛关注。本文从农药胁迫的角度出发,研究农药对转Bt基因水稻的生理生化影响,以及农药和Bt毒蛋白对非靶标害虫褐飞虱的双重影响。结果如下:
     1.农药对转Bt基因水稻和常规水稻受害级别的影响
     本文研究了四种农药亚致死剂量对常规水稻和转Bt基因抗虫水稻受害级别的影响。结果表明农药处理并接虫后7天,水稻受害级别在农药浓度间有显著差异,但品种间差异不显著。三唑磷10ppm、20ppm、40ppm、80ppm处理后,MH63受害级别分别比对照增加了84.6%、61.5%、76.9%、76.9%;T2A-1受害级别分别比对照增加了26.7%、66.7%、40%、53.3%。康宽20ppm、40ppm、80ppm、160ppm处理后,MH63受害级别分别比对照增加了123%、92.3%、69.2%、92.3%;T2A-1受害级别分别比对照增加了93.3%、107%、66.7%、80%。接虫后14天,水稻受害级别随施药浓度和品种变化呈显著变化。除井冈霉素外,吡蚜酮、三唑磷和康宽处理后,农药浓度显著影响水稻受害级别,且在水稻品种间也有显著差异,另外农药浓度与水稻品种间存在显著的交互作用,例如,康宽40ppm处理的T2A-1受害级别高达8.2,比对照增加了64%。
     2.农药对转Bt基因水稻和常规水稻生理生化的影响
     转Bt基因作物的Bt毒蛋白对靶标害虫具有非常有效的控制作用,特别是鳞翅目害虫。然而,在Bt毒蛋白高选择压下,靶标害虫抗性的产生以及非靶标害虫种群数量增加使化学防治依然成为必要的手段。本研究的目的是比较农药对转Bt基因水稻和常规水稻生理生化的影响。结果显示,井冈霉素、吡蚜酮、三唑磷和康宽处理7天和14天后,农药浓度和水稻品种对水稻可溶性糖、草酸以及类黄酮含量均有显著影响。生理生化的动态变化趋势因农药类型和水稻品种而异,如井冈霉素、吡蚜酮、三唑磷和康宽处理14天后,MH63和T2A-1草酸含量随井冈霉素和康宽浓度的增加而逐渐下降,但吡蚜酮和三唑磷处理后,草酸含量均出现先降低后升高。井冈霉素、吡蚜酮和康宽处理后,T2A-1植株可溶性糖和类黄酮的含量均显著高于MH63,但草酸含量显著低于MH63。
     3.农药对转Bt基因抗虫水稻和常规水稻上褐飞虱种群的影响
     对非靶标害虫的影响是转Bt基因水稻安全性评价的重要内容。目前评价转Bt基因水稻对稻飞虱的影响主要侧重于水稻对稻飞虱的直接效应,转基因水稻上农药对褐飞虱的影响还没有被研究。本文参照庞雄飞(1992)方法构建褐飞虱种群生命表。结果表明,在无农药处理时(CK),转基因水稻T2A-1上褐飞虱产卵量显著高于MH63。农药处理后,两种水稻都出现了褐飞虱若虫羽化率和产卵量等参数不同程度的增加,其中褐飞虱产卵量随三唑磷浓度增加而增加,显著刺激了褐飞虱产卵,另外三唑磷10ppm处理的T2A-1褐飞虱下代初孵若虫数和种群趋势指数显著高于MH63。而井冈霉素和康宽处理的MH63褐飞虱卵孵化率显著高于T2A-1。上述结果表明,有些农药在转基因水稻上使用可能增加褐飞虱发生再猖獗的风险。
     4.农药对转Bt基因水稻毒蛋白含量的影响及机理
     对转Bt基因作物进行安全性评价,其中很重要的一个方面是评价Bt毒蛋白对生态环境的影响。而水稻Bt毒蛋白的表达和合成受诸多外在因素的影响。本研究主要是研究农药对水稻Bt毒蛋白的含量及影响机制进行探讨。结果显示,苗期井冈霉素、吡蚜酮、三唑磷和康宽处理,转Bt基因水稻毒蛋白含量均显著升高,特别是低浓度处理增加量最为显著。分蘖期和孕穗期,农药处理显著降低了水稻Bt毒蛋白含量,但对抽穗期水稻Bt毒蛋白无显著影响。为探讨农药影响Bt毒蛋白表达量的生理生化机制,我们研究了农药对Bt毒蛋白合成途径相关的酶类活性和生化物质的影响。结果发现,农药处理后GOT、GPT活性及游离氨基酸、可溶性蛋白含量均显著降低,回归分析表明,GOT、GPT活性及游离氨基酸、可溶性蛋白的变化与同时期的Bt毒蛋白含量呈正相关。由此我们认为,农药影响了转Bt基因水稻GOT、GPT活性及游离氨基酸、可溶性蛋白含量,从而干扰了Bt毒蛋白的合成。
Environmental and food safety derived from Transgenic Bt rice have caused extensive concern from academia and public because of its commercialized and large scale of plantation. The present paper selected pesticides as a stress factor, investigated the effects of pesticides on physiology and biochemistry of trans-Bt rice and the combined effects of pesticides and Bt toxicity protein on BPH. The main results are as follows:
     1Effects of pesticides on injury level of conventional and transgenic Bt rice.
     The present part examined effect of four pesticides on injury level of conventional (MH63) and transgenic Bt rice (T2A-1). Result indicated that injury level increased with an increase of pesticides concentration for both rice varieties at7days after insect release (7DAI), but no significant difference on the level was found between conventional and transgenic rice. The other three pesticides significantly influenced Injury indexes of MH63and T2A-1except for jingangmycin. For example, the injury index of MH63treated with10,20,40and80ppm triazophos increased by84.6,61.5,76.9, and6.9%and that of T2A-1increased by26.7,66.7,40and53.3%compared to untreated control, respectively; Injury indexes of MH63treated with20,40,80and160ppm chlorantraniliprole increased by123,92.3,69.2and92.3%and that of T2A-1increased by93.3,107,66.7and80%, respectively. For14DAI, pymetrozine, triazophos and chlorantraniliprole significantly influenced injury indexes of MH63and T2A-1, there was a significant difference between MH63and T2A-1. In addition, there were significant interactions between pesticide concentration and rice variety, with a maximum injury index (8.2scale) of T2A-1treated with40ppm chlorantraniliprole, increasing by64%compared to control.
     2Effects of pesticides on biochemical substances of MH63and T2A-1
     Bt toxicity protein has high control efficacy for target inset pests, especially for Lepidopteran since the release of transgenic crops. However, resistance of target pest and increase of non-target pests under high selective pressure still need to apply chemical pesticides to control non-target pests. Therefore, this study examined effects of pesticides on biochemical substances of conventional and transgenic rice and approached biochemical changes of T2A-1following pesticide applications. Results indicated that there were significant differences on soluble sugar, oxalic acid and flavonoid contents at7and14days after pesticide applications (7and14DAA) among four pesticides and between MH63and T2A-1. Changes of the substances varied with pesticide concentration and rice variety. For example, oxalic acid content of MH63and T2A-1decreased with increases of jinggangmycin and chlorantraniliprole concentrations at14DAA, but oxalic acid content of rice plants treated with pymetrozine and triazophos decreased and then increased. Soluble sugar and flavonoid contents of T2A-1treated with jinggangmycin, pymetrozine and chlorantraniliprole were significantly higher than those of MH63, but oxalic acid content was significantly lower than that of MH63.
     3Effects of pesticides on Nilaparvata lugens Stal (Homptera:Delphacidae) feeding on MH63and T2A-1
     Effect of transgenic Bt rice on non-target pests are an important aspect for the evaluation of safety. However, the evaluation of effect of transgenic Bt rice on planthoppers concentrates on direct effect of the rice to planthoppers. Effect of pesticides on planthoppers via the rice has not been understood until date. The present experiment constructed life table of laboratory population of N. lugens according to Pang (1992). Results showed that the number of laying-egg of females on T2A-1was significantly higher than that on MH63under without pesticide applications. Adult emergence rate and fecundity of adult females on both MH63and T2A-1treated with pesticides increased compared untreated control, of which triazophos significantly stimulated fecundity of N. lugens. Nymph numbers of next generation and population trend index on T2A-1treated with10ppm triazophos were significantly higher than those on MH63. Hatchability of eggs on MH63treated with jinggangmycin and chlorantraniliprole was significantly higher than that on T2A-1. These findings indicated that applications of some of pesticides on T2A-1will induce resurgence of N. lugens.
     4Effects of pesticides on Bt toxicity protein content of transgenic rice and its mechanisms
     Effect of Bt toxicity protein on ecological environment is another aspect of safety evaluation. Synthesis and expression level of Bt toxicity protein in plants are influenced by many factors. Results showed that toxicity protein content (TPC) at the seedling stage following the four pesticide applications significantly increased, especially with maximum increase for low concentration treatments. In contrast, TPC at the tillering and booting stages significantly decreased for pesticide applications. However, no impact of pesticides on TPC at the heading stage was found. In addition, the present experiment investigated effect of pesticides on the enzymes related to the synthesis of Bt toxicity protein. Results demonstrated that there was a positive correlation between and TPC and GOT or GPT activity and soluble protein. GOT and GPT activity, free ammonia acids and soluble protein of insecticide-treated T2A-1decreased significantly, indicating that pesticides interfered the synthesis of Bt toxicity protein through effects on GOT, GPT, free ammonia acids and soluble protein.
引文
Altman D W. Quantitative trait variation in phenotypically normal regenerants of cotton in vitro cell. Developmental Biology,1991,27,132-138.
    Ammann K. Effects of biotechnology on biodiversity:herbicide-tolerant and insect-resistant GM. Trends in Biotechnology.2005,23(8),388-394.
    Andow DA, Zwahlen C. Assessing environmental risks of transgenic plants. Ecology Letters, 2006,9,196-214.
    Angle JS. Release of transgenic plants:biodiversity and population level consideration. Molecular Ecology,1994,3,45-50.
    Bashir K, Husnain T, Fatima T. Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Protection,2005,24(10),870-879.
    Bates SL, Zhao JZ, Roush RT, Shelton AM. Insect resistance management in GM crops:past, present and future. Nature Biotechnology,2005,23,57-62.
    Benedict JH, Sachs ES, Altman DE, Deaton WR, Kohel RJ, Ring DR, Berberich SA. Field performance of cottons expressing transgenic CryA insecticidal proteins for resistance to Heliothis cirescens and Helicoverpa zea(Lepidoptera:Noctuidae). Journal of Economic Entomology,1996,89,230-238.
    Bergvinson D, Willcox M, Hoisington D. Efficacy and deployment of transgenic plants for stem borer management. Insect Science Application,1997,17(1),157-167.
    Bernal CC, Aguda RM, Cohen MB. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomologia Experimentalis et Applicata,2002,102,21-28.
    Breitler JC, Marfa V, Royer M. Expression of a Bacillus thuringiensis crylB synthetic gene protects Mediterranean rice against the striped stem borer. Plant Cell Reports,2000,19(12), 1195-1202
    Bruns HA, Abel CA. Nitrogen feitility effects on Bt-endotoxin and nitrogen concentrations of maize during early growth. Agronomy Journal,2003,95,207-211.
    Cellini F, Chesson A, Colquhoun I. Unintended effects and their detection in genetically modified crops. Food Chemical Toxicology,2004,42,1089-1125.
    Chan MT, Chang HH, Ho SL, Tong WF, Yu SM. Agrobacterium mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Molecular Biology,1993,22(3),491-506.
    Chareyazie B, Alinia F, Corazon A. Enhenced resistance to two stem borers in an aromatic rice containing a sythetic cryIA(b) gene. Molecular Breeding,1997,3(5),401-414.
    Chelliah S, Heinrichs EA. Factors affecting insectecide induced resurgence of the brown planthopper Nilaparvata lugensom rice. Environmental Entomology,1980,9(6),773-777.
    Chen M, Liu ZC, Ye GY, Shen ZC, Hu C, Peng YF, Altosaar I, Shelton AM. Impacts of transgenic crylAb rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera:Miridae), A case study of the compatibility. Biological Control, 2007,42,242-250.
    Cheng X, Sardana R, Kaplan H. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proceedings of The National Academy of Sciences of The United States of America,1998,95 (6),2767-2772.
    Ci XY, Yao FY, Zhu CX, Song YZ, Wen FJ, Jiang MS. Breeding resistant rice varieties from transgenic parental lines with cryIAb and Xa21 genes and their field performance. Scientia Agricultura Sinica,2005,38(2),313-319.
    Cohen MB, Gould F, Bentur JS. Bt rice:practical steps to sustainable use. International Rice Research Newsletter,2000,25(2),5-10.
    Conner AJ, Jacobs JME. Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutation Research-Genetic Toxicology and Environmental Mutagenesis,1999, 443,223-234.
    Conner AJ, Glare TR, Nap JP. The release of genetically modified crops into the environment. Part Ⅱ. Overview of ecological risk assessment. Plant Journal,2003,33,19-46.
    Dalecky A, Bourguet D, Ponsard S. Does the European corn borer disperse enough for a sustainable control of resistance to Bt maize via the High Dose/Refuge strategy? Cahiers Agricultures,2007,16,171-176.
    Dawe D. The 2nd Green Revolution. Rice Today,2000,1,30.
    Donegan KK, Palm CJ. Fieland VJ. Changes in levels, species and DNA finger-prints of soil microorganisms assoeiated with cotton expressing the Bacillus thuringiensis var. Kurstaki endotoxin. Applied Soil Ecology.1995,2,111-124.
    Feitelson J, Payne J, Kim L. Bacillus thuringiensis:Insects and Beyond. Nature Biotechnology, 1992,10,271-275.
    Firn RD, Jones CG. Secondary metabolism and the risks of GMOs. Nature,1999,400:13-14.
    Fujimoto H, Itoh K, Yamamoto M. Insect reistant rice generated by introduction of a modified endotoxin gene from Bacillus thuringensis. Nature Biotechnology,1993,11(10),1151-1155.
    Gao YL, Hu Y, Fu Q, Zhang J, Oppert B, Lai FX, Peng YF, Zhang ZT. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis. Journal of Invertebrate Pathology,2010,105,11-15.
    Ge LQ, Wu JC, Zhao KF, Chen Y, Yang GQ. Induction of Nlvg and suppression of Nljhe gene expression in Nilaparvata lugens(stal) (Hemiptera:Delphacidae) adults females and males exposed to two insecticides. Pesticide Biochemistry and Physiology,2010,98(2),269-278.
    Giovannetti M, Sbrana C, Turrini A. The impact of genetically modified crops on soil microbial communities. Rivista di Biologia/Biology Forum,2005,98,393-417.
    Gould F, Anderson A, Reynolds A. Selection and genetic analysis of a Heliothis virescens (Lepidoptera:Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. Journal of Economic Entomology,1995,88,1545-1559.
    Haile FJ, Peterson RK, Higley LG. Gas-exchange response of alfalfa and soybean treated with insecticides. Journal of Economic Entomology,1999,92(4),954-959.
    Hanm Y, Xum XL, Ma WH, Yuan BQ, Wang H, Liu FZ, Wang MQ, Wu G, Hua HX. The influence of transgenic crylAb/crylAc, crylC and cry2A rice on non-target planthoppers and their main predators under field conditions. Agricultural Sciences in China,2011,10(11), 1739-1747.
    Herdit RW. Research priorities for rice biotechnology. In:Khush G S, Toenniessen G H eds, Rice Biotechnology. Willingford:CAB International,1991,19-54.
    Hilbeck A, Banmgartner M, Feild PM. Effeets of transgenic Bacillus thuringiensis cornfed prey on mortality and development time of Immature Chrysoperia cornea (NeuroPtera: ChrysoPidae).Environmental Entomology,1998,27,480-487.
    Hofte H, Seurinck J, A V an Houtven. Nucleotide sequence of a gene encoding an insecticidal protein of Bacillus thuringiensis var. tenebrions toxic against coleoptera. Nucleic Acids Research,1987,15,7183.
    Hu JH, Wu JC, Yin JL, Gu HN. Physiology of insecticide-induced stimulation of reproduction in the rice brown planthopper (Nilaparvata lugens(Stal)):dynamics of protein in fat body and ovary. International Journal of Pest Management,2010,56(1),23-30.
    Huang JC, Hu RF, Rozelles S, Pray C. Insectresistant GM rice in farmers, feilds:assessing productivity and health effects in China. Science,2005,38,688-690.
    Huang JC, Roezlle S, Pray C, Wang Q. Nature biotechnologynology in China Science,2002, 295,674-677.
    Huckaba RM, Cable HD, Vand JW. Joint effects of acifluorfen applications and soybean thrips (Sericothrips variabilis)feeding on soybean (Glycine max). Weed Science.1988,36,667-670.
    O'Callaghan M, Glare TR, Burgess EPJ, Malone LA. Effects of plants genetically modified for insect resistance on non-target organisms. Annual-Review of Entomology,2005,50, 271-292.
    Jones VP, Youngman RR, Parrella MP. Effect of selected acaricides on photosynthesis rates of lemon and oranges leves in California. Journal of Economic Entomology.1983,76, 1178-1180.
    Knowles BH. Mechanism of action of Baeillus thuringiensis insectieidal a-endotoxin. Advances Insect Physiology,1994,24,275-308.
    Koeizl MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dowson J, Desai N, Hill M, Kdawell S, Evola SV. Field porfermence of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nature Biotechnology,1993,11, 194-200.
    Lapre LF, Sances FV, Toscano NC. The effect of acaricides on the physiology, growth, and yield of strawberries. Journal of Economic Entomology,1982,75,616-619.
    Li GP, Wu KM, Gould F, Wang JK, Miao J, Gao XW, Guo YY. Increasing tolerance to CrylAc cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China. Ecological Entomology,2007,32,366-375.
    Lu BR, Snow AA. Gene flow from genetically modified rice and its environmental consequences. Journal of Biology Science,2005,55,669-678.
    Lu BR, Song ZP, Chen JK. Can transgenic rice cause ecological risks through transgene escape? Progress in Natural Science,13,17-24.
    Lu YH, Wu KM, Jiang YY, Xia B, Feng HQ, Wyckhuys KAG, Guo YY. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science,2010, 328,1151-1154.
    Mcgaughey WH, Gould F, Gelernter W. Bt resistance management. Nature Biotechnology,1998, 16,144-146.
    Mellors WK, Allegro A, Hsu AN. Effects of carbofuran and water stress on growth of soybean plants and two spotted spider mite (Acari:Tetrany-chidae) population under greenhouse conditions. Environmental Entomology,2006,13(2),561-567.
    Mercer KL, Andow DA, Wyse DL, Shaw RG. Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecology Letters,2007,10,383-393.
    Messeguer J. Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture, 2004,73,201-212
    Nagata T, Hayakawa T. Activity of aconitic acids and oxalic acid on brown planthopper, Nilaparvata lugens(Stal) and green rice leafhopper, Nephotettix cincticeps (Uhler). Japanese Journal of Applied Entomology and Zoology,1998,42,115-121.
    Noteborn HPJM, Lommen A, Vander Jagt RC. Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. Journal of Biotechnology, 2000,77,103-114.
    Oliveira AR, Castro TR, Capalbo DMF, Delalibera I. Toxicological evaluation of genetically modified cotton (Bollgard(?)) and Dipel(?) WP on the non-target soil mite Scheloribates praeincisus (Acari:Oribatida). Experimental and Applied Acarology,2007,41,191-201.
    Palm CJ, Schaller DL, Donegan KK, Seidler RJ. Perestence in soil of transgenic plants produced Bacillus thuringiensis var. kurstaki delta-endotoxin. Canadian Journal of Microbiology, 1996,42,1258-1262.
    Philip HD, Belinda C, Eliana MGF. Potential for the environmental impact of transgenic crops. Nature Biotechnology,2002,20(6),567-574.
    Poppy G. GM crops:environmental risks and non-target effects. Trends in Plant Science.2000, 5,4-6.
    Qaim M, Zilberman D. Yield effects of genetically modified crops in developing countries. Science,2003,299(5608),900-902.
    Qiu, ZH, Wu JC, Dong B, Li DH, Gu HN. Two-way effect of pesticides on zeatin riboside content in both rice leaves and roots. Crop Protection,2004,23,1131-1136.
    Sachs GP. Field evaluation and potential ecological impact of transgenic cottons in Australia. Biocontrol Science and Technology,1994,4,535-548.
    Savary S. Willoecquet L, Elazegui FS, Castilla NP, Teng PS. Rice pest constraints in tropical Aisa:quantification of yields losses due to rice pests in a rarge of production siutations. Plant Disease.2000,84,357-369.
    Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn. Nature.1999, 402-408.
    Saxena D, Stotzky G Insecticidal toxin from Bacillus thuringiensis is relesaed from roots of transgenic Bt corn in Vitro and in Situ. Fems Microbiology Ecology,2000,33,35-39.
    Schuler TH, Poppy GM, Kerry BR, Denholm I. Potential side effects of Insect-resistant transgenic plants on arthropod natural enemies. Trends in Biotechnol,1999,17,210-216.
    Snow AA, Palma PM. Commercialization of transgenic plants:Potential Ecologieal Risks. Journal of Biological Sciences,1997,47(2),86-96.
    Sogawa C, Quattrocchio F. Anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell,2000,12, 1619-1631.
    Tabashnik BE, Cushing NL, Finson N. Field development of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidae). Journal of Economic Entomology,1990, 83(5),1671-1676.
    Timmons AM, Charters YM, Crawford JW, Burn D, Scott SE, Dubbels SJ, Wilson NJ, Robertson A, O'Brien ET, Squire G, Wilkinson MJ. Risks from transgenic Crop. Nature,1996, 380-487.
    Tu JM, Zhang GA, Data K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK. Field performance of transgenic elite commercial hybrid rice expressing Bacillus Thuringiensis6-eadotoxin. Nature Biotechnology,2000,18,1101-1104.
    Mark V, Arlette R, Herman H, Stefan J, Marc de Beuckeleer, Caroline D, Marc Z, Marc VM, Jan L. Transgenic Plants Protected from insect attack. Nature,1987,327,33-37.
    VanRie J, Jansens S, Hofte H, Degheele D, Van Mallaert H. Recepters on the brushborder membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Applied and Environmental Microbiology,1990,56,1378-1385.
    Wang AH, Wu JC, Yu YS, Liu JL, Yue JF, Wang MY. Selective insectecide-Induced stimulation on fecundity and biochemical changes in tryporza incertulas(doptera:Pyralidae) Economic Entomology,2005,98(4),1144-1149.
    Wang YM, Zhang GA, Du JP, Lium B, Wangm MC. Influence of transgenic hybrid rice expressing a fused gene derived from crylAb and crylAc on primary insect pests and rice yield. Crop Protection,2010,29,128-133.
    Wood B, Payne J. Influence of single applications of insecticides on net Photosynesis of Pecan. Hort Science.1984,19,265-266.
    Wu JC, Xu JX, Yuan SZ. Pesticide-induced susceptibility of rice to brown planthoppe Nilaparvata lugens. Entomologia Experimentalis et Applicata,2001,100,119-126.
    Wu JC, Qiu HM, Yang GQ, Liu JL, Liu GJ, Wilkins RM. Effective duration of pesticide-induced susceptibility of rice to brown planthopper(Nilaparvata lugens Stal, Homoptera: Delphacidae), and physiological and biochemical changes in rice plants-following pesticide application. International Journal of Pest Managementement,2004,50(1),55-62.
    Wu JC, Xu JX, Yuan SZ, Liu JL, Jiang YH, Xu JF. Pesticide-induced susceptibility of rice to brown planthopper Nilaparvata lugens. Entomologia Experimentalis et Applicata,2001, 100,119-126.
    Wu KM, Guo YY, Lv N. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis inseticidal protein in China. Journal of Economic Entomology,2002,95,826-831.
    Wu KM. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. Journal of Invertebrate Pathology,2007,95,220-223.
    Wu WX, Ye QF, Min H, Duan XJ, Jin WM.Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biology and Biochemistry,2003,36,289-295.
    Xue Y. Booklet of experiments of plant physiology. Science and Technology Press of Shang hai, Shanghai, P.R. China, pp.1985,32-33.
    Ye GY, Yao HW, Shu QY, Cheng X, Hu C, Xia YW, Gao MW, Altosaar I. High levels of stable resistance in transgenic rice with a crylAb gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenee) under field conditions. Crop Protection, 2003,22,171-178.
    Ye GY, Shu QY, Yao HW, Cui HR, Cheng XY, Hu C, Xia YW, Gao MW, Altosaar I. Field evaluation of resistance of transgenic rice containing a synthetic crylAb Gene from Bacillus thuringiensis Berliner to two stem borers. Journal of Economic Entomology,2001,94(1), 271-276.
    Yu YS, Xue S, Wu JC, Wang F, Yang GQ. Changes in levels of juvenile hormone and molting hormone in larvae and adult females of Chilo suppressalis (Lepidoptera:Pyralidae) after imidacloprid applications to rice. Journal of Economic Entomology,2007,100(4),1188-1193.
    Zeng FS, Zhan YG, Yang CP. Effects of temperature stress on transgene expression and DNA methylation pattern. Bioinformatics and Biomedical Engineering(iCBBE),2010,4,1-4.
    Zhang L, Huang E, Lin J, Gelbic I, Zhang Q, Guan Y, Huang T, Guan X. A Novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata. Research in Microbiology,2010,165,133-141.
    Zhao JZ, collins HL, Tang JD. Development and characterization of Diamondback moth resistance to transgenic broccoli expressing high levels of CrylC. Applied and Environmental Microbiology,2000,66(9),3784-3789.
    Zhao KF, Shi ZP, Wu JC. Insecticide-induced enhancement of flight capacity of the brown planthopper, Nilaparvata lugens(Homptera:Delphacidae). Crop Protection,2011,30,476-482.
    Zhou X, Cheng JA, Lou YG Effects of transgenic crylAb rice on Population development of the white-backed planthopper, Sogatella furcifera (Horvath) (Homoptera:Delphacidae). Acta Entomologica Sinica,2006,49(5),786-791.
    Zhu Z. Research and development of highly insect-resistant transgenic rice. Bulletin of Chinese Academy of Sciences,2001,5,336-357.
    Clive J.2012年全球生物技术/转基因作物商业化发展态势ISAAA,2012,44.
    陈红旗,陈宗祥,倪深.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性.中国水稻科学,2008,22(1),23-27.
    陈建明,俞晓平,程家安,吕仲贤,郑许松,徐红星.水稻新品种(系)对褐飞虱抗性的筛选和评价.中国水稻科学,2005,(19),573-576.
    陈茂,叶恭银,魏洪渭,胡萃,舒庆尧.水稻对非靶标害虫褐飞虱取食与产卵行为影响的评价.中国农业科学,2004,37(2),222-226.
    陈松.Bt毒蛋白ELISA检测方法及抗虫棉Bt毒蛋白表达量的时空分布.硕士论文,南京:南京农业大学,1999.
    陈晓娟,何树林,程开禄,任光俊.转Bt基因抗虫水稻对稻田生物群落的影响.四川农业大学学报,2003,21(2),185-186.
    程焉平.转抗虫基因作物的安全性及其对策.吉林农业大学学报,2002,24(5),49-52.
    崔金杰,雏瑜,王春义,李树红,李春花.转双价基因棉对棉田主要寄生性天敌生长发育的影响.棉花学报,2005,17(1),37-41.
    崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响.棉花学报,1999,11(2),84-91.
    崔金杰,夏敬源.麦套夏播转Bt基因棉R93-6对昆虫群落的影响.昆虫学报,2000,43(1),43-51.
    崔金杰,夏敬源.麦套夏播转Bt基因棉田主要害虫及其天敌的发生规律 棉花学报,1998,10(5),255-262.
    崔金杰,夏敬源.转Bt基因棉对天敌种群动态的影响.棉花学报,1999,11(2),84-91.
    戴承铺,殷向东,徐熙.小菜蛾对苏云金杆菌制剂的抗药性及其对策.生物防治通报,1994,10(2),62-66.
    董亮,万方浩,张桂芬.转Bt基因抗虫棉对中华草岭发育及繁殖的影响研究.中国生态农业学报,2003,11(3),16-18.
    董其强,何钟佩,翟学军.转Bt基因棉新棉33B叶片氮素代谢特征及其化学调控潜力.棉花学报.2000,12(3),113-117.
    樊龙江,周雪平,胡秉民,石春海,吴建国.转基因植物的基因漂流风险.应用生态学报,2001,12(4),630-632.
    傅强,王锋,李冬虎,姚青,赖凤香,张志涛.转基因抗虫水稻MSA和MSB对非靶标害虫褐飞虱和白背飞虱的影响.昆虫学报,2003,46(6),697-704.
    顾艳.农药对水稻抗虫物质及籽粒生长的影响.硕士论文,江苏:扬州大学,2008.
    胡标林,余守武,万勇.功能性水稻的研究与开发进展.江西农学报,2005,17(3),74-78.
    郭建英,万方浩,韩召军.转基因植物的生态安全性风险.中国生态农业学报,2008,16(2),515-522.
    姜大刚,姚涓,陈伟庭,潘志文.转基因水稻外源基因向稗草的漂移研究.安徽农业科学,2011,39(12),6963-6964,6990.
    姜永厚,傅强,程家安,祝增荣,蒋明星,叶恭银,张志涛.转Bt基因水稻表达的毒蛋白CrylAb在害虫及其捕食者体内的积累动态.昆虫学报,2004,47(4),454-460.
    李金军,徐美玲,富昊伟.Bt转基因水稻在回交一代的抗虫性表现.浙江农业科学,2000,6,267-268.
    李文东,叶恭银,吴孔明,王小奇,郭予元.转抗虫基因棉花和玉米花粉对家蚕生长发育影响的评价.中国农业科学,2002,35(11),1543-1549.
    李永春,张宪银,薛庆中.农杆菌介导法获得大量转双价抗虫基因水稻植株.农业生物技术学报,2002,10(1),60-63.
    刘传光,林青山,江奕君.转基因植物的生物安全问题探讨阴.中国生态农业学报,2003,11(3),175-177.
    刘井兰,王美凤,徐建祥,吴进才.农药对水稻体内游离氨基酸含量及抗虫性的影响.扬州大学学报(农业与生命科学版),2005,26(3),74-78.
    刘井兰,于建飞,印建莉,吴进才.化学农药对植物生理生化影响的研究进展.农药,2006,45(8),511-514.
    刘新展,赵明富,何月秋.以丽江新团黑谷为遗传背景的抗稻瘟病基因累加系的选育及其抗性鉴定.作物学报,2007,33(1),20-24.
    刘雨芳,苏军,尤民生,汪琼,胡斯琴,刘文海,赵士熙,王锋.转基因抗虫水稻对水稻害虫群落的影响.昆虫学报,2005,48(4),544-553.
    刘志诚,叶恭银,傅强,张志涛,胡萃.转crylAb基因水稻对拟水狼蛛捕食作用间接影响的评价.中国水稻科学,2003,17(2),175-178.
    刘志诚,叶恭银,胡萃,Datta SK. Bt水稻对主要非靶标害虫和蜘蛛优势种群动态的影响.植物保护学报,2002,29,138-144.
    罗时石,王泽港,冯绪猛,徐俊峰,丁海东,吴进才.农药对水稻叶片光合产物输出速率影响的失踪动力学研究.中国农业科学,2002,35(9),1085-1089.
    吕仲贤,俞晓平,陶林勇.水稻新品种(系)对褐飞虱抗性的评价.中国农业科学,2002,35(2),225-229.
    庞雄飞,侯仁环等.稻褐虱自然种群生命表的组建方法.华南农业大学学报,1992,13(1),1-5.
    浦惠明,戚存扣,张洁夫,傅寿仲.转基因抗除草剂油菜对近缘作物的基因漂移.生态学报,2005a,25(3),581-588.
    浦惠明,戚存扣,张洁夫,傅寿仲.转基因抗除草剂油菜对十字花科杂草的基因漂移.生态学报,2005b,25(4),910-916.
    钱迎倩,魏伟,桑卫国.转基因作物对生物多样性的影响.生态学报,2001,21(3),337-343.
    钱迎倩,魏伟,田彦.转基因作物在生产中的应用及某些潜在问题.用与环境生物学报,1999,5(4),427-433.
    钱迎倩,魏伟.再论生物安全.广西植物,2003,10(2),126-125.
    钱迎倩.转基因作物的利弊分析.生物技术通报,1999,5,7-11.
    盛承发,王红托,高留德,宣维健.我国水稻螟虫大发生现状、损失估计及防治对策.植物保护,2003,29(1),37-39.
    束春娥,孙洪武,孙以文.转基因棉Bt毒性表达的时空动态及对棉铃虫生存、繁殖的影响棉花学报,1998,10(3),131-135.
    舒庆尧,叶恭银,崔海瑞.转基因水稻“克螟稻”选育.浙江农业大学学报,1998,24(6),579-580.
    孙建中,杜正文.二化螟与水稻被害株的空间、数量、时间结构及其动态.昆虫学报,1992,35(2),187-194.
    谭红,叶恭银,沈君辉,彭于发,胡萃.转crylAb基因抗虫籼稻对非靶标害虫白背飞虱发育与繁殖的影响.植物保护学报,2006,33(3),251-256.
    唐丽,谭炎宁,韩小霞.抗虫转基因水稻研究进展及发展趋势.杂交水稻,2011,26(1),1-6.
    田岩,张永军,赵奎君.转基因植物对蜂类昆虫安全性.植物保护,2006,32(5),8-12.
    王保民,李召虎,李斌.转Bt抗虫棉各器官毒蛋白的含量与表达.农业生物技术学报.2002,10(3),215-219.
    王洪兴,陈欣,唐建军.转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响.生态学报,2004,24,89-94.
    王建武,骆世明,冯远娇,Nakatsu C.转Bt基因作物Bt毒素在土城中的环境去向及其生态效应.生态学报.2003,23(4),797-804.
    王延锋,郎志宏,赵奎军,黄大防.转基因作物的生态安全性问题及其对策.生物技术通报,2010,(7),1-6.
    王荫长,范加勤,田学志,高保宗,范岳荣.溴氰菊酯和甲胺磷引起稻飞虱再猖獗问题的研究.昆虫知识,1994,31(5),257-262.
    王忠华,叶庆富,舒庆尧,崔海瑞,夏英武,周美园.转基因植物根系分泌物对土壤徽生态的影响.应用生态学报,2002,13(3),373-375.
    王忠华.转Bt基因水稻对土壤微生态系统的潜在影响.应用生态学报,2005,16(12),2469-2472.
    卫剑文,许新萍,陈金婷.应用Bt和SBTi基因提高水稻抗虫性的研究.生物工程学报,2000,16(5),603-608.
    魏伟,钱迎倩,马克平.转基因作物与其野生亲缘种间的基因流.植物学报,1999,41(4),343-348.
    吴进才,刘井兰,沈迎春,徐建祥,姜永厚,徐素霞.农药对不同水稻品种SOD活性的影响.中国农业科学,2002,35(4),451-456.
    吴进才,许俊峰,冯绪猛,刘井兰,邱慧敏,罗时石.稻田常用农药对水稻3个品种生理生化的影响.中国农业科学,36(5),536-541.
    吴孔明,刘芹轩.杀虫剂诱使棉蚜再猖獗研究.生态学报,12(4),341-347.
    夏志辉,李晓兵,陈彩艳.无选择标记和载体骨干序列的Xa21转基因水稻的获得.生物工程学报,2006,22(2),3-218.
    项友斌,梁竹青,高明尉.农杆菌介导的苏云金杆菌抗虫基因cryIA(b)和cryIA(c)在水稻中的遗传转化及蛋白表达.生物工程学,1999,15(4),494-500.
    谢道听,范云六,倪丕冲.苏云金芽孢杆菌杀虫基因导入中国栽培品种中花11号获得转基因植株.中国科学(B辑),1991(8),830-834.
    邢朝柱,靖深容,崔学芬,郭立平,王海林,袁有禄.转Bt基因棉杀虫蛋白含量时空分布及对对棉铃虫产生抗性的影响.棉花学报,2001,13(1),11-15.
    徐海根,王健民,强胜.《生物多样性公约》热点研究:外来物种入侵生物安全遗传资源.北京:科学出版社,2004,10.
    许新萍,胡明,卫剑文.用基因枪法转化水稻获得转基因植株.中山大学学报,1997,36(6),5-29.
    许新萍,卫剑文,范云六.基因枪法转化籼稻胚性愈伤组织获得可育的转基因植株.遗传学报,1999,26(3),219-227.
    严成其,王光清,葛扣麟.外源DNA通过花粉管通道法导入水稻的研究.中国农业科学,1997,30(1),4.
    杨虹,李家新,郭三雄.苏云金芽孢杆菌6-内毒素基因导入水稻原生质体后获得转基因植株.中国农业科学,1989,22(6),1-5.
    杨万勤,宋光馒,韩玉萍.土坡生态学的理论体系及其研究领域.生态学杂志,2000,19(4),53-56.
    张桂芬,万方浩,郭建英,侯茂林.Bt毒蛋白在转Bt基因棉中的表达及其在害虫-天敌间的转移.昆虫学报,2004,47(3),334-340.
    张竞秋,张丽,哈斯阿古拉.转基因作物及其生物安全性.北方园艺,2004(4),80-81.
    张永军,孙毅,袁海滨,吴孔明,彭于发,郭予元.转Bt-crylAb玉米花粉对异色瓢虫生长发育及体内三种代谢酶活性的影响.昆虫学报,2005,48(6),898-902.
    张永军,吴孔明,彭于发.转基因植物的生态风险.生态学报,2002,11(11),1951-1959.
    赵凯,朱宏,赵星海,李鹏,唐雪明.转基因植物环境安全性研究进展.生物学通报,2009,44(4),8-11.
    赵颖,黄凤宽,童晓立.水稻品种中抗褐飞虱抗原次生物质的分析.应用生态学报,2004,15(1),2161-2164.
    张继民,钟成义,骆春华.草酸的分光光度法测定.安徽机电学院学报(自然科学版),1997,12(4),31-35.
    周冬生,吴振廷,王学林,郑厚今,夏静.生长前期转Bt基因棉对棉铃虫(Helicoverpa armigera Hubner)的抗性研究.棉花学报,2001,13(3),174-176.
    周桂生,周福才,谢义明,封超年,杨益众.温度胁迫对转Bt基因抗虫棉毒蛋白的表达和棉铃虫死亡率的影响.棉花学报,2009,21(4),302-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700