转基因毛白杨生理生化特性及多基因表达载体构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以4个转rolB-pttGA20ox双价基因毛白杨株系和1个对照株系PT-16为材料,探讨了rolB-pttGA20ox双价基因对毛白杨生根生理、光合特性、抗逆性以及生长的影响。为进一步提高毛白杨的抗虫性和耐盐碱能力,采用一套基于Cre/loxP重组系统的植物多基因表达载体系统将苏云杆菌毒蛋白基因(BtCrylAc)、甜菜碱醛脱氢酶基因(BADH)、GA20氧化酶基因(pttGA20ox)和rolB基因构建于同一植物表达载体pYL1305上,转化烟草,验证了多基因的表达和功能。主要研究结果如下:
     1、转rolB-pttGA20ox双价基因毛白杨试管苗生根过程中内源IAA、GA3、ZR和ABA含量变化与对照差异明显,各项生根指标均高于对照。转基因株系不同程度地增大了对光的生态适应范围,其净光合速率与地径显著相关,与苗高相关不显著。盆栽期,各株系间苗高存在极显著差异,RG-1、RG-2和RG-3显著的高于RG-4和对照PT-16,地径差异不显著;移入大田后,各株系间苗高差异不显著,而地径出现显著差异,RG-4的平均苗高最高,达到了231.25cm,转基因株系中RG-4的平均地径最大,为13.91mm。对各株系的SOD活性和MDA含量测定表明,转基因株系RG-4对逆境的抵抗力最强,但与对照PT-16差异不显著。
     rolB-pttGA20ox双价基因的表达可能改变了毛白杨相关的生理代谢途径,同时,转基因株系在光合特性、生长、抗逆性等方面的差异明显,这也为选择优良的转基因株系提供了材料。
     2、采用PCR方法,扩增Bt基因,替换植物表达载体pYL1305中的gus基因,得到pYL1305-Bt。扩增CaMV35S-BADH-nos表达盒,并插入到pYL1305-Bt的多克隆位点,得到载体pYL 1305-Bt-BADH。将CaMV35S-GA20ox-nos表达盒、GH3-rolB-nos表达盒分别克隆到供给载体pYL-d1、pYL-d2上,经两轮重组得到多基因单载体pYL1305-Bt-BADH-GA20ox-rolB,并将其转化根癌农杆菌菌株EHA105。
     3、采用农杆菌介导的叶盘法将多基因转化烟草,对获得的抗性芽在含25mg/LHyg的培养基中进一步选择后进行分子检测,PCR检测和Southern杂交检测证明多基因已插入到烟草基因组中。进一步的RT-PCR检测证明,外源基因均得到表达,多基因表现为串联在一起插入到同一位点,其中转基因株系T2中各基因的表达量最高。
     4、转多基因烟草植株根部、茎部和叶片中IAA的含量均高于对照,分别是是对照的1.90倍、1.92倍和1.17倍;转化植株各部位的GA3含量均高于对照,转化植株中茎部GA3含量最高,叶片最低;转化植株的根、茎部ABA含量略低于对照,叶片中ABA含量高于对照;转化植株各部位的IAA/ABA比值均高于对照,其中根部的IAA/ABA值最高,是对照的1.82倍。
     5、转多基因烟草耐盐性试验表明,当NaCl为300mM时,对照生长受到抑制,叶片膨大黄化,不能生根,转基因植株生长正常,叶片保持绿色,并能正常生根。转基因烟草经不同浓度的NaCl长时间胁迫,其SOD活性高于对照,MDA含量变化幅度较小,而对照MDA含量随盐浓度升高而大幅降低。
     6、转基因烟草植株的茎、叶中均检测到了Bt毒蛋白,T2株系Bt毒蛋白含量最高,叶片中达到了585.53 ng/g.FW,茎中为573.66 ng/g.FW,而对照中没有检测到Bt毒蛋白。抗虫试验结果表明,饲喂一周后,转基因烟草对2龄舞毒蛾的校正死亡率为78.05%,对3龄斜纹夜蛾的死亡率为30.00%,并明显抑制了存活幼虫的生长发育。
     7、移栽后的转基因烟草植株高生长更加明显,节间伸长,表现出了pttGA20ox基因表达的性状特征,转基因植株地径也显著增大、叶片大而深绿、植株健壮,移栽4 W后转化植株平均苗高为19.28cm,地径为5.34mm,分别是对照的1.61倍和1.37倍。
     多基因在烟草中均能正常表达,没有出现基因沉默等现象,说明在构建多基因表达载体时,使用一定数目的同源序列的启动子和终止子是可行的,但随着基因的增多应该考虑更换不同启动子或在基因两端添加核基质结合区(MAR)序列以避免转基因沉默。多基因单载体的构建和各基因的正常表达为进一步的毛白杨等林木改良奠定了重要基础。
To reveal the effect of introduced rolB-pttGA20ox double genes on the root physiology, photosynthetic characteristics, stress resistance and growth of transgenic Chinese white poplar (Populus tomentosa Carr.), four Chinese white poplar lines with the indroduction of rolB-pttGA20ox double genes and a control strain PT-16 were invesgitated. To further improve the insect resistance and salt tolerance of Chinese white poplar, Bacillus thuringiensis toxin gene (BtCryIAc), betaine aldehyde dehydrogenase gene (BADH), GA20 oxidase gene (pttGA20ox) and the rolB gene were constructed in one plant expression vector pYL1305 through a set of multi-genes expression vectors based on Cre/loxP recombination system. Furthermore, the multi-gene vector was transformed into tobacco by agrobacterium mediated procedure. The main results of the research are as follows:
     1) The difference of endogenous IAA, GA3, ZR and the ABA content changes between transgenic Chinese white poplar with rolB-pttGA20ox and the control was significant during the rooting process, and transgenic Chinese white poplar had better rooting ability as shown in the indexes investigated. In the transgenic lines, the the range of ecological adaptation of light was increased in different degrees. The net photosynthetic rate was significantly correlated with the basal stems, but was of no significant correlation with the height. The height of potted transgenic lines varied greatly and the height of RG-1, RG-2, and RG-3 was significantly higher than that of RG-4 and the control PT-16. Whereas the stem difference was not significant during the potted period. After the lines being moved to farmland, the result was just opposite, with RG-4 being the highest, which reached 231.25cm with the average stem of 13.91mm. The SOD activity and MDA content in different lines indicated that RG-4 has the strongest resistance to adversity, however, the difference was not significant when compared with PT-16.
     The introduction of rolB-pttGA20ox double genes may have changed the physiological metabolic pathways of Chinese white poplar. Meanwhile the transgenic lines were significantly different in photosynthetic characteristics, growth, stress resistance, etc., which laid a foundation for the selection of high-quality transgenic plants.
     2) pYL1305-Bt was constructed by replacing the gus gene of pYL1305 vector with the Bt gene obtained through PCR. The CaMV35S-BADH-nos expression cassette was amplfied and inserted into pYL 1305-Bt, resulted in the vector pYL 1305-Bt-BADH. The CaMV35S-GA20ox-nos and GH3-rolB-nos expression cassettes were insered into the supplying vector pYL-d1, pYL-d2, respectively; then the multi-gene vector was obtained by two rounds of reconstruction, which was transformed into EHA105.
     3) The multi-gene vector was transformed into tobacco through Agrobacterium-mediated leaf disc transformation. The resistant plantlets got were screened by the culture on the medium with 25mg/L of Hyg. PCR analysis and Southern-blot detection to the resistance plantlets selected by antibiotics indicated that the genes had inserted into tobacco genome. Further RT-PCR test showed that all the target genes were transcribed in the transgenic plants, and that the expression of genes in line T2 was the highest. It was also showed that multigene is truly inserted tandemly.
     4) The IAA levels in the roots, the stems and the leaves of transgenic tobacco plants were 1.90 fold,1.92 fold, and 1.17 fold as high as those of the control, respectively. The GA3 content of transformed plants in all parts was higher than those in the control plants, and that in the stems was the highest while that in the leaves was the lowest. ABA contents in the roots and the stems of transformed plants were slightly lower than those in the control ones, whereas in the leaves, they were higher in the transgenic plants than those in the control plants. IAA/ABA ratios of all parts in transformed plants were higher than those in the control ones, with that in roots being the highest, which was 1.82 times as large as that of the control plants.
     5) Under 300mM NaCl.treatment, the gowth of control plants was restrained. The leaves turned yellow and it could not take roots. Whereas the growth of transgenic plants was normal with green leaves and the roots in good conditions. The SOD activity of transgenic plants was higher than that of the control plants when stressed by different concentration of NaCl for long duration, but MDA content changed slightly. While the MDA content of control plants decreased sharply with the increasing concentration of NaCl.
     6) The Bt toxic protein was detected in both stems and leaves of the transgenic plants, with that of T2 plants being the highest, of which the Bt toxic protein in the leaves and stems were 585.53 ng/g.FW and 573.66 ng/g.FW respectively. While in the control plants, no Bt toxic protein was detected. A one-week feeding experiments showed that the corrected death rate of 2-year-old tussock moth was 78.05%, and the death rate of 3-year-old tobacco cutworm was 30%, which restrained the growth of larvae obviously.
     7) The transgenic tobacco plants grew obviously after being transplanted. The stems were longer, which showed the characteristic of the pttGA20ox genes expression. The basal stem was also bigger, and the leaves were dark green and the plants were strong. After 4 weeks, the average height was 19.28cm, which was 1.61 times as high as that of the control plants; while the basal stem was 5.34mm, which was 1.37 times as big as that of the control plants.
     In this study, the multiple genes could be expressed normaly in tobacco without resulting in gene silence, which showed that the construction of vector which has a certain number of homologous promoter and terminator was feasible. But with the increasing of the number of the genes introduced, the replacing of different promoters and the employment of MAR should be considered to avoid gene silence. The successful construction of single multi-gene vector and the normal expression of the genes will lay an important foundation for further improvements of Chinese white poplar and other trees.
引文
1.陈英,戴咏梅,黄敏仁,等.双价抗病基因植物表达载体构建及在烟草中表达的初步研究[J].林业科学,2005,41(5):82-85.
    2.陈颖,韩一凡,李铃,等.苏云金杆菌杀虫晶体蛋白荃因转化美洲黑杨的研究[J].林业科学,1995,31(2):97-103.
    3.陈雪梅,高红兵,王沙生.三种杨树扦插生根期间内源激素水平的比较研究[J].林业科学,1994,30(1):1-7.
    4.崔海瑞,王忠华,舒庆尧.转Bt基因水稻克螟稻杂交转育后代农艺性状的研究[J].中国水稻科学,2001,15(2):101-106.
    5.邓伟,吕立堂,罗克明.棉花GA 20-氧化酶基因转毛白杨的研究[J].西北植学报,2008,28(6):1095-1100.
    6.段俊,梁承邺,张明永,等.水稻结实期间叶片衰老与膜脂过氧化的关系[J].中国水稻科学,1997,11(3):190-192.
    7.符军,符毓秦,刘玉媛,等.田间条件下毛白杨株系光合和蒸腾特性研究[J].陕西林业科技,1995,3:1-6.
    8.高萍,贝纳新,李浩戈.抗虫转基因杨树的培育及其抗虫性初步研究[J].林业科技,2008,33(5):25-27.
    9.高书颖,郭蔼光.根癌农杆菌介导法获得烟草转人骨形成蛋白-3成熟肽基因植株[J].西北植物学报,2001,21(6):1128-1133.
    10.郭岩,张莉,肖岗,等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究[J].中国科学(C缉),1997,27.
    11.江香梅,黄敏仁,王明庥.植物甜菜碱合成途径及基因工程研究进展[J].中国生物工程杂志,2002,22(4):49-55.
    12.金万梅,潘青华,尹淑萍,等.外源基因在转基因植物中的遗传稳定性及其转育研究进展[J].分子植物育种,2005,3(6):864-868.
    13.李葱葱,刘娜,康岭生.转基因抗虫玉米Bt蛋白表达量的研究[J].玉米科学,2006,14(3):40-41.
    14.李永华,尚玉萍,杨芳绒.小麦甜菜碱醛脱氢酶基因在烟草中的转化及表达[J].河南农业大学学报,2007,41(1):12-14.
    15.李伟,李慧,陈晓阳.转rolB/pttGA20ox双价基因提高银白杨生根能力及生长速度的研究[J].北京林业大学学报,2009,31(2):92-95.
    16.李伟.转双价基因促进植物生根及顶端优势的研究[D].北京林业大学,2004.
    17.李伟,陈晓阳,丁霞.高等植物GA20-氧化酶研究进展[J].生命科学,2003,15(1):42-45.
    18.李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].林业科学, 2000,36(2):93-96.
    19.李衍素,高俊杰,陈民生,等.高温胁迫对豇豆幼苗叶片膜伤害与保护性物质的影响[J].山东农业大学学报(自然科学版),2007,38(3):378-382.
    20.李莹,张利民.植物甜菜碱及甜菜碱合成酶研究进展[J].杂粮作物,2006,26(3):191-193.
    21.梁机.转rolB基因改良毛白杨生根能力研究[D].北京林业大学,2004.
    22.梁峥,马德钦,汤岚,等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报,1997,13(3):236-240.
    23.刘凤华,郭岩,古冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性的研究[J].遗传学报,1997,24(1): 54-58.
    24.刘关君,李绪尧,由香玲,等.长白落叶松插穗内源激素变化与不定根产生的关系[J].东北林业大学学报,2000,28(1):19-20.
    25.刘洁,李润植.作物矮化基因与GA信号转导途径[J].中国农学通报,2005,21(1):37-40.
    26.刘文奇,陈旭君,徐晓辉,等.ERF类转录因子OPBP1基因的超表达提高烟草的耐盐能力[J].植物生理与分子生物学报,2002,28:473-478.
    27.刘兴菊.Ri质粒转化三倍体毛白杨及外源基因表达的研究[D].河北农业大学,2005.
    28.刘雅荣,刘奉觉,王爽,等.四种杨树苗木的生长与光合作用特性的研究[J].林业科学,1983,19(3):269-275.
    29.陆云华,马立新,张新.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].江西农业学报,2006,18(4):62-65.
    30.骆爱玲,刘家尧,马德钦,等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,(18):1953-1956.
    31.马炳田,朱祯,李平,等.水稻遗传转化选择系统优化初探[J].西南农业学报,2003,16(1):28-31.
    32.蒙海涛,韩清芳,贾志宽,等.水培紫花苜蓿的茎段生根过程中内源激素含量变化[J].植物生理学通讯,2008,44(3):498-500.
    33.裴保华,王世绩.毛白杨根原基的研究[J].河北农学报,1982,7(1):33.
    34.裴保华,王世绩.提高毛白杨插条成活率的研究[J].中国林业科学,1977,2:37-42.
    35.卜学贤,林忠平,陈维伦.农杆菌对毛白杨的转化及完整植株的获得[J].植物学报,1991(3):206-213.
    36.齐康学,贾小明,张廷桢,等.石蜡处理插穗提高毛白杨扦插成活与生长的研究[J].西北林学院学报,2001,16(3):23-25.
    37.邱立明,王艳,王瑜,等.利用烟草高效转化功能基因体系的建立[J].新疆大学学报(自然科学版),2008,25(1):23-27.
    38.阮晓蕾,李华平.经修饰的烟草几丁质酶基因的克隆及多基因香蕉转化载体构建[J].华南农业大学学报,2008,29(1):23-27.
    39.沈义国,杜保兴,张劲松.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J].生物工程学报.2001,17(1):1-5.
    40.孙耀中,东方阳,陈受宜.盐胁迫下转甜菜碱醛脱氢酶基因水稻幼苗耐盐生理的研究[J].华北农学报,2004,19(3):38-42.
    41.田颖川,李太元,莽克强,等.抗虫转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    42.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    43.王建革.基因枪转多基因杨树的获得[D].中国林业科学研究院,2006.
    44.王节之,郝晓芬,郑向阳,等.谷子潮霉素抗性浓度的筛选与研究[J].华北农学报,1999,14(4):60-62.
    45.王亮,苏乔,安利佳.甜菜碱醛脱氢酶基因转化速生杨107的研究[J].安徽农业科学,2007,35(4):1000-1001.
    46.王亮,苏乔,安利佳.利用Cre/loxP重组系统构建甜菜碱合成酶多基因表达载体[J].高技术通讯,2007,17(7):749-754.
    47.王学聘,韩一凡,戴莲韵,等.抗虫转墓因欧美杨的培育[J].林业科学,1997,33(1):69-74.
    48.汪本勤,陈曦,向成斌.SOD活性增高的拟南芥晚花突变体具有增强的非生物胁迫耐受性[J].植物学通报,2007,24(5):572-580.
    49.吴月亮,蔡明,蒋细旺.植物甜菜碱合成相关酶及其基因工程研究进展[J].安徽农业科学,2007,35(18):5348-5349.
    50.奚亚军,龚文彬,高海战,等.潮霉素在大麦遗传转化中的应用研究[J].西北植物学报,2008,28(2):237-243.
    51.肖关丽,杨清辉,李富生.甘蔗维培苗继代培养中内源激素与绿苗生根率关系研究[J].云南农业大学学报,2001,16(4):271-273.
    52.熊瑾.转rolB基因毛白杨植株性状变异的研究[D].北京:北京林业大学,2006.
    53.熊瑾,陈晓阳,梁机,等.毛白杨转rolB基因植株生根能力的研究[J].北京林业大学学报,2005,27(5):54-58.
    54.辛蓓.rolB-pttGA20ox双价基因转化毛白杨及遗传稳定性研究[D].北京:北京林业大学,2009.
    55.徐继忠,陈四维.桃硬枝插条的内源激素(ABA, IAA)含量变化对生根的影响[J].园艺学报,1989,16(4):275-278.
    56.严远鑫,安成才,栗力,等.水稻20-氧化酶基因(rga5)正、反义转化对水稻生物学性状的影响[J].科学通报,2003,48(4):358-363.
    57.杨敏生,李志兰,王颖,等.双抗虫基因对三倍体毛白杨的转化和抗虫性表达[J].林业科学,2006,42(9):61-67.
    58.衣艳君,刘家尧,骆爱玲,等.转BADH基因烟草的光系统Ⅱ和呼吸酶活性变化[J].植物学报,1999,41(9):993-996.
    59.于雪飞,白卉,王洪星.4种内源激素在中美山杨组培生根过程中的变化[J].林业科技,2009,34(2): 5-7.
    60.岳建雄,张慧军,张炼辉.以对潮霉素抗性为筛选标记的棉花遗传转化[J].棉花学报,2002,14(4): 195-199.
    61.张艳敏,丁占生,温之雨.逆境下转BADH基因小麦甜菜碱醛脱氢酶活性表达与甜菜碱积累[J].华北农学报,2003,18(院庆专辑):36-39.
    62.张志毅,沈应柏,林惠斌,等.毛白杨及其杂种株系苗期生长与光合性能的比较研究[J].北京林业大学学报,1992,14(增刊2):35-39.
    63.赵可夫,范海,宋杰,等.中国盐生植物的种类、类型、植被及其经济潜势[M]/刘小京,刘孟雨.盐生植物利用与区域农业可持续发展.北京:气象出版社,2002,11:1-9.
    64.赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993:132-163.
    65.曾韶西,王以柔,刘鸿先.低温下黄瓜幼苗子叶硫氢基(SH)含量变化与膜脂过氧化[J].植物学报,1991,33(1):50-54.
    66.郑均宝,王峰,刘群录.毛白杨转基因植株的研究[J].林业科学,1995,2:181-184.
    67.郑钧宝,裴保华,耿桂荣.毛白杨扦插生根的研究[J].东北林业大学学报,1988,16(6):34-40.
    68.周冰彬.赤霉素合成酶基因沉默诱导植物矮化的研究[D].北京:北京林业大学,2006.
    69.周达锋,卜学贤,陈维伦,等.发根农杆菌Ri质粒的分子生物学及其应用前景[J].植物学通报,1993,10(2):24-34.
    70.周涵韬,林庆同,潘文,等.红树植物耐盐基因转化烟草及耐盐品系的培育[J].科学通讯,2004, 49(2):168-171.
    71.朱新生,朱玉贤.抗虫植物基因工程研究进展[J].植物学报,1997,39(3):282-288.
    72.朱万泽,王金锡,薛建辉.台湾桤木引种的光合生理特性研究[J].西北植物学报,2004,24(11):2012-2019.
    73.朱之悌.毛白杨遗传改良[M].中国林业出版社,2006.
    74.邹莉,文艺,张匀华,等.大豆子叶节对潮霉素敏感性研究[J].大豆科学,2008,27(2):267-269.
    75.邹维华,赵强,崔德才,等.反义磷脂酶Dy (Anti-PLDy)基因与几丁质酶基因转化美洲黑杨G2[J].林业科学,2006,42(1):37-42.
    76.赵一宇.河北杨插条内源激素的季节性消长与生根的关系[J].林业科学,1987,23(2):208-213.
    77.郑钧宝,刘玉军,裴保华,等.木本植物茎插穗生根与内源激素的关系[M]/王沙生,王世绩,裴保华.杨树栽培生理研究.北京:北京农业大学出版社, 1991:360-367.
    78. Aida H S, Radhia G B, AmiraBidani. OverexPression of △1-Pyrroline-5-carboxylate synthetase increases proline produetion and eonfers salt tolerance in transgenic potato plants[J].Plant Scienc e, 2005,169(4):746-752.
    79. Altman D W. Quantitative trait variation in phenotypically no rmal regenerants of cotton [J]. In Vitro Cell D ev B iol,1991,27:132-138.
    80. Blank R G, Ely S, Tailor R H,et al. Bacteriai genes.Intemational Paten tAPPlieation,1989.PCT/ GB90/00706.
    81. Blemelt S,Tschiersch H, Sonnewald U. Impact of altered GA-metabolism on biomass accumulation, lignin biosynthesis and photosynthesis in transgenic tobacco plants[J]. Plant Physiol,2004, 135:254-265.
    82. BP10030(Pyrus communis) was significantly increased by introduction of the rolB, gene[J]. Plant Science,2003,165:829-835.
    83. Brouquisse R, Weigel P, Rhodes D, et al. Evidence for a ferredoxin-dependent choline monooxy-genasefom Spinach choroplast stroma[J]. Plant Physiol,1989,90:322-329.
    84. Burnet M, Lafontaine P J, Hanson A D. Assay, purification and partial characterization of choline monooxygenase from spinach[J]. Plant Physiol,1995,108:581-588,
    85. Burnet M, et al. Partial purification of choline monooxyge-nase[J]. Plant Physiol,1994,105 (Suppl.):145.
    86. Capone I, Cardarell M, Trovato M, et al. Upstream non-coding region whick confers polar expre-ssion to Ri plasmid root inducing gene rolB[J]. Mol Gen Genet,1989,216:239-244.
    87. Carrera E, Jackson S D, Prat S. Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato[J].Plant Physiol.,1999,119:765-774.
    88. Ceulemans R, Impens U, Steenackers V. Variations in photosyn-thetic, anatomical, and enzymatic leaf traits and correlations with growth in recently selected Populus hybrids[J]. Can J Bot,1987,17:273-283.
    89. Ceulemans R, Impens I. Net CO2 exchange rate and shoot growth of young poplar (Populus) clones[J]. J Exp Bot,1983,34:866-870.
    90. Chen L L, et al. Expression & inheritance of:multiple transgenes in rice plants[J]:Nat.Referen ce:Biotechnol.1998,16:1060-1064.
    91. Coles J P, Phillips A L, Crocker S J. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibbberellin 20-oxidase genes[J]. Plant'J,1999, 17:547-556.
    92. Confalonieri M, Belenghi B, Balestrazzi A, et al. Transformation of elite white poplar(Populus alba L.) Villafranca and evaluation of herbicide resistance[J]. Plant Cell Rep,2000,19:978-982.
    93. Croker S J, Hedden P, Lenton J R, Stoddart J L. Comparison of gibberellion in normal and slender barley seedings[J]. Plant Physiol,1990,94:194-200.
    94. Dehio C, Grossmann K, Schell J, et al. Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA[J]. Plant Mol Biol,1993,23: 1199-1210.
    95. Davis P J. Plant hormones:physiology,biochemistry and molecular biology[M]. Dordrecht, The Netherlands:Kluwer Academic Publishers,1995:13-38.
    96. Eriksson M E, Moritz T. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (P. tremula L.×P. tremuloides Michx.) [J]. Planta,2002,214:920-930.
    97. Eriksson M E, Israelsson M, Olsson O. Increased gibberellion biosynthesis in transgenic trees pr-omotes growth, biomass production and xylem fiber length[J]. Nat Biotechnol,2000,18:784-788.
    98. Estruch J J, Schell J, Spena A. The protein enconded by the rolB plant oncogene hydrolyses indole glucoside[J]. EMBO J,1991,10(1):3125-3128.
    99. Filippini F, Rossi V, Marin O, et al. A plant oncogene as a phosphatase[J]. Nature,1996,379: 499-500.
    100. Filippin F, Lo Schiavo F, Terzi M, et al. The plant oncogene rolB alters binding of auxin in plant cell membrance. Plant Cell Physiol.,1994,35:767-771.
    101. Fujii N, Yokoyama R and Uchimiya H. Analysis of the rolC promoter region involved in somatic embryogenesis related activation in carrot cell cultures[J]. Plant Physiol,1994,104:1151-1157.
    102. Fujisawa M, Takita E, Harada H, et al. Pathway engineering of Brassica napus seeds using multi-ple key enzyme genes involved in ketocarotenoid formation[J]. J Exp Bot,2009,60:1319-1332.
    103. Gelvin SB.Crown gall disease and hairy root disease:A sledgehammer and a tackhammer [J]. Plant Physiol,1990,92:281-285.
    104. Goderis I J. A set of modular plant transformation vectors allowing flexible insertion of up to six expression units [J]. Plant Mol Biol.2002,50:17-27.
    105. Guivarch A,et al. The pleiotropic effects induced by the rolC gene in transgenic plants are caused by expression restricted to protophloem and companion cells [J]. Transgenic Res,1996,5:3-11.
    106. Guivarch A.Tissue-specific expression of the rolA gene mediates morphological changes in transgenic tobacco [J]. Plant Mol. Bio,1996,30:125-134.
    107. Hadi M Z, McMullen M D, Finer J J.Transformation of 12 different plasmids into soybeanv iap article bombardment[J]. Plant Cell Rep.1996,15,500-505
    108. Hamilton C M, Fr ary A, Lewis G, et al.Stable transfer of intact high molecular weight DNA into plant chromosomes [J]. Proc Natl Acad Sci USA,1996,93:9975-9979.
    109. Hansen G, Vaubert D, Clerot D, Tempe J, et al. Anewopen reading frame,encoding a.putative regulatory protein in Agrobacterium rhizogenes T-DNA.C RAcad Sci, SerⅢ,1994,317(1):49-53.
    110. Hayashi H, Alia.Transformation of Arabidopsis thaliana with the codA gene for choline oxidase accumulation of gly cinebetaine and enhanced tolerance to salt and cold stress[J]. Plant Journal, 1997,12(1):133-142.
    111. Hitz B. Economec aspects oftransgenic crops which produce novel products [J]. Plant Bio,1999,2:135-138.
    112. Hofte H. Whiteley H R. Insectieidal crystal Proteins of Bacillus tyhuringiensis [J]. Microbiol Rev, 1989,53:242-255.
    113. Hsieh T H, Lee J T, Charng Y Y, Chan MT. Tomato plants ectopically expressingArabidopsis CBT1 show enhanced resistance to water deficit stress [J]. Plant Physiology,2002a,130:618-626.
    114. Huang S, Raman A S, Ream J E, et al. Overespression of gibberellins 20-oxidase confers a gibberellins-overproduction phenotype in Arabidopsis [J]. Plant Physiol,1998,118:773-781.
    115. Isebrands J G, Ceulemans R, Wiard B. Genetics variation in photosynthetic traits among Populus clones in relation to yield [J]. Plant Physiol Biochem,1988,26 (4):427-437.
    116. Kang H G, Jum S H, Kim J, et al.Cloning and molecular analysis of a gibberellion 20-oxidase gene expressed specifically in developing seeds of watermelon[J]. PlantPhysiol,1999,121:373-382.
    117. Kiyakawa S, Kobayashi K, Kikuchi Y, et al. Root inducing region of mikimopine type Ri plasmid pRi1724 [J]. Plant Physiol,1994,104:801-802.
    118. Kurioka Y, Suzuki Y, Kamada H, et al. Promotion of flowering and morphological alterations in Atropa belladonna transformed with a CaMV 35S-rolC chimeric gene of the Ri plasmid [J]. Plant Cell Rep,1992,12:1-6.
    119. Lapierre C, Pollet B, et al.Str uctural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial craft pulping[J].Plant Physiol,1999,119:153-163.
    120. Li X G, Chen S B, Lu Z X, et al. Impact of copy number on transgenic expression in tobacco [J]. Atca Botanica Sinica,2002,44 (1):120-123.
    121. Lin L, Liu L G, Xu X P, et al. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system [J]. Proc Natl Acad Sci, USA,2003,100 (10):5962-5967.
    122. Liu,Y G. Complementation of plant mutants with large DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning [J]. Proc Natl Acad Sci, USA, 1999,96:6535-6540.
    123. Luo G H, Wang A G, Guo J Y. Effects of some exogenous factors on superoxide dismutase activity in soybean seedlings[J]. Acta Phytophysiologica Sinic,1990,16(3):239-244.
    124. Magrelli A. Splicing of the rolA transcript of Agrobacterium rhizogenes in Arabidopsis[J]. Science, 1994,266:1986-1988.
    125. Maldiney R, Pelese F, Pilate G. et al. Endogenous levels of abscisic acid, indole-3-acetic acid, zeatin and zeatin-riboside during the course of adventitious root formation in cuttings of Craigella and Craigella lateral suppressor tomatoes [J]. Pysiol Plant,1986,68:426-430.
    126. Martin D N, Proebsting W M, Parks T D et al. Feedback regulation of gibberellion biosynthesis and gene expression in Pisum sativum L. Planta,1996,200:159-166.
    127. McCormac A C, Elliott M C, Chen D F. pBECKS2000:a novel plasmid series for the facile creation of complex binary vectors,which incorporates"clean-gene"facilities [J]. Mol Gen Genet, 1999,261:226-235.
    128.McCown BH, McCaba DE, Russd D R, et al. Stable Transformation of Populusan dincorporation of pest resistance by electric discharge particle acceleration [J]. Plant cell Rep,1991,9:590-595.
    129. McNeil S D, Nuccio M L, Hanson AD. Betaine and related osmoprotectants.Targets for metabolic engineering of stress resistance [J]. J Plant Physiology,1999,120:945~94.
    130. Micheal T. The plant oncogene rolA, B and C from Agrobacterium rhizogenes:effects on morphology, development and hormone metabolism[J]. Methods Mol Biol,1995,44:207-222.
    131.Nilsson O.Getting to the root:the role of the Agrobacterium rhizogens rol genes in the formation of hairy roots[J]. Physiol.Plant.,1997,100:463-473.
    132. Nuccio M L, Russsell B L, Nolte K D, Rathiasabapathi B, Gage D A, Hanson AD.The endogen-ous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monoxygenase[J]. Plant J,1998,16:487-498.
    133. Perlak F J, Deaton R W, Armstrong T A,.et al. Insect resistant cotton plants[J]. Bio technology 1990,8:939-943.
    134. Phillips A L, Ward D A, Uknes S, et al.Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis [J]. Plant Physiol,1995,108:1049-1057.
    135. Proebsting W M, Hedden P, Lewis M J,et al.Gibberellion concentration and transport in genetic lines of pea:effects of grafting[J]. Plant Physiol,1992,100:1354-1360.
    136. Reid J B, Howell S. Hormone mutants and plant development [M]//PJ Daviesed. Plant Hormones, The Netherlands,1995:448-485.
    137. Rathinasabathi B, McCue K F, Gago D A, et al. Metabolic engineering of glycine betaine synthesis: plant betaine aldehydedehydrogenase lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance [J]. Plants,1994,193:155-162.
    138. Rathinasabapathi B, Burnet K, Russel B L, et al. Choline monoxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants:prosthetie-group characerization and cDNA cloning[J]. Proc Natl Acad Sci.USA,1997,94:3454-3458.
    139. Schmulling T, Fladung M, Grossman K, et al. Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA [J]. Plant J.1993,3:371-382.
    140. Schmulling T, Schell J, Spena A. Promoters of the rolA, B, and C genes of Agrobacterium Rhizogenes are differentially regulated in transgenic plants [J]. Plant Cell,1989,1:665-670.
    141. Shaista N, Gemma F, Georgina S et al. When more is better:multigene engineering in plants[J]. Trends in Plant Science,2009,15(1):48-56
    142. Shi Y L, Luo Q X.Effects of CaCl2 on contents of CaM and MDA and permeability of plasma membrane of cucumber seedling under NaC1 stress [J]. Plant Physiology Communication, 1995,31(5):347-349.
    143. Shin R, Park JM, AnJM, PaekK H. Entopic expression of TSil in transgenic hot pepper Plants enhances host resistance to viral, bacterial,and oomycete Pathogens[J]. Molecule Plant Mierobe Interact,2002,15(10):983-989.
    144. Sinker V, Pythoud F, White F F, et al. RolA locus of the Ri plasmid directs developmental abnormalities in transgenic plants [J]. Genes Dev,1988,2:688-697.
    145. Slightom J L, Durand Tardif M, Jouanin L, et al. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid [J]. Biol Chem,1986,261:108-121.
    146. Spena A, Esteuch J J, Prinsen E, et al. Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth[J]. Theor Appl Genet,1992,84:520-527.
    147. Sugay S.Deletion analysis of the 5'-upstream region of the Agrobacterium rhizogenes Ri plasmid rolC gene required for tissue specific expression [J]. Plant Physiol,1992,99:464-467.
    ] 48. Sun L Y, Monneuse M O, Martin Tanguy J,T epfer D, Changes in flowering and the accumulation of polyamines and hydroxycinnamic acidpolyamine conjugates in tobacco plants transformed by therolA locus from the Ri TL-DNA of Agrobacterium rhizogenes[J]. Plant Sci,1991,80:145-156.
    149. Tailor R H, Tippect J, Gibb G, Tailor R H. Indentification and characterization of an novel Bacllus thuringiensisδ-endotoxin entomocidal to coleopteran and lepidopteran larvae [J]. Mol. Mierobiol,1992,6(9):1211-1217.
    150. Vansuyt G, Vilaine F, Tefer M, Rossignol M. rolA modulates the sensitivity to auxin of the proton translocation catalyzed by the plasma membrane H+-ATPase in transformed tobacco[J]. FEBS letter, 1992,298:89-92.
    151. Waldron C, Murphy E B, Roberts J L, et al. Resistance to hygromycin B [J]. Plant Molecular Biology,1985,5:103-108.
    152. Wang J G. Multiple transgenes poplar plants obtained by biolistic bombardment [D]. Chinese Academy of Forestry,2006.
    153. Wang H H, Kang J, Zeng F H, Jiang M Y. Effect of nickel at high concentrations on growth and activities of enzymes of rice seedlings[J]. Acta Agronomica Sinica,2001,27(6):953-957.
    154. Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine-aldehyde dehydrogenase,an enzyme implicated in adaptation tosalinity and drought[J]. Proc Natl Acad Sci USA,1990,87: 2745-2749.
    155. White F F, Taylor B H, Huffman G A, et al, Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes[J]. J Bacterio,1985.164:33-44.
    156. White F F, Nester E W. Hair root:Plasmid encodes virulence traits in Agrobacte riumrhizo-genes[J]. J Bacteriod,1980.141:1134-1141.
    157. Yaxley J R, Ross J J, Sherriff L J, et al.Gibberellin biosynthesis mutations and root development in pea[J]. Plant Physiol,2001,125:627-633.
    .158. Zhang S, Warkentin D, Sun B, et al. Variation in the inheritance of expression among subclones fo runselected (u idA)and selected (bar) transgenes in maize (Zea m ay sL.) [J]. Theor Appl Genet, 1996,92:752-761.
    159. Zhu L H, Holefors A, Ahlman A, et al. Transformation of the apple rootstock M.9/29 with rolB gene and its influence on rooting and growth[J]. Plant Sci,2001,160:433-439.
    160. Zhu L H, Li X Y, Ahlman A, et al. The rooting ability of the dwarfing pear rootstock BP10030(Pyrus communis) was significantly increased by introduction of the rolB gene [J]. Plant Sci,2003,165:829-835.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700