用户名: 密码: 验证码:
填埋垃圾生物反应器反硝化性能及反硝化微生物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫生填埋技术是目前我国生活垃圾处理处置最主要的方法。但填埋过程中产生的大量成分复杂、性质多变的难降解渗滤液已成为制约我国生活垃圾填埋场可持续发展的主要因素之一。《生活垃圾填埋场污染控制标准》(GB16889-2008)的颁布,大幅度提高了渗滤液外排要求,尤其氨氮,规定其外排浓度≤25mgL-1。而采用现有的场外运行工艺处理含高浓度氨氮渗滤液,其处理成本高达30-45元/吨,为绝大多数填埋场所难以承受。因此,开发经济高效的渗滤液脱氮技术具有重要意义。而在渗滤液回灌基础上,结合垃圾堆体本身为厌氧环境的特性,开发出的生物反应器垃圾堆体渗滤液原位脱氮技术已成为目前的研究热点。本论文以从杭州市固体废弃物处理有限公司天子岭填埋场采集的不同填埋龄垃圾为试材,利用系列自制生活垃圾生物反应器模拟装置,通过回灌硝酸盐溶液和含硝酸盐渗滤液,探明了不同填埋龄垃圾在碳源不足及碳源充足情况下的反硝化性能特征,确定了反硝化作用所需最适C/N;并以nirS为分子标记建立基因文库的方法阐明了生物反应器内反硝化微生物种群多样性变化规律,从一定程度上揭示了反硝化微生物学脱氮机理。研究结果为生物反应器垃圾堆体渗滤液原位脱氮技术的进一步研发提供了重要理论依据,并为同类研究提供了可借鉴的研究方法。具体研究结果如下:
     从杭州市固体废弃物处理有限公司天子岭填埋场采集了1-12年填埋龄垃圾,通过对其基本理化性质的分析发现:①不同填埋龄垃圾中以类似腐殖质的混合物为主,其次为塑料类;混合类物质含量随垃圾填埋龄的增加而上升。②由于填埋场含水率低,pH、TN(总氮)、BDM(生物可降解物)、HE(腐殖质可提取物)等指标在垃圾填埋4年后基本趋于稳定,垃圾进入降解缓慢期。这表明填埋场的传统操作模式不利于垃圾稳定化,开发以渗滤液回灌为特征的生物反应器填埋技术具有现实意义。
     将从天子岭填埋场采集的1-12年填埋龄垃圾装填于系列自制生活垃圾生物反应器模拟装置中(相应的命名为R1、R2……R12),回灌硝酸盐溶液,考察间歇回灌模式下不同填埋龄垃圾反硝化性能,结果发现:①当垃圾堆体自身降解的有机物量充足时,1-12年垃圾的反硝化性能均较强,且差异不大;所有反应器在最初的1小时内硝酸盐去除率最高,达70-92%。②当垃圾堆体自身降解的有机物量不足时,不同填埋龄垃圾生物反应器反硝化性能出现差异。Rl、R6的硝酸盐还原速率显著高于R11,其速率分别为6.80 mg NO3--N kg-TSwaste-1 h-1.3.00 mgNO3--N kg-TSwaste-1 h-1和1.10 mg NO3--N kg-TSwaste-1 h-1。③不同反应器间的反硝化终产物也存在差异。R1、R6的反硝化终产物以N2为主,其最终浓度分别为82.5%和80.2%;而在R11中则以N2O为主,累积浓度高达19.3%。推断得垃圾的低C/N易导致反硝化终产物以N20为主。因此,综合考虑反硝化速率和反硝化终产物,当碳源不足时,填埋龄短的垃圾更适合作为反硝化介质用于渗滤液脱氮。
     根据上述试验结果,选择R6为试验对象,以采自天子岭填埋场的新鲜渗滤液为回灌液,通过调节不同C/N,考察有机物浓度对生物反应器反硝化性能的影响,探讨反硝化最适C/N。结果表明:R6硝酸盐还原速率随着回灌入垃圾堆体中渗滤液COD浓度的提高而提高。当C/N为3.11和5.03时,反应器内反硝化作用不显著,硝酸盐还原速率仅为1.14 mg NO3--N kg-TSwaste-1 h-1和1.24 mgNO3--N kg-TSwaste-1 h-1;但当C/N调节为9.08和13.08时,反应器内硝酸盐还原迅速,其速率分别高达6.33 mg NO3--N kg-TSwaste-1 h-1和11.40 mg NO3--N kg-TSwaste-1 h-1。综合分析得当COD/NO3-N达到6.0(g/g)时,可保证反应器内反硝化过程的快速、稳定进行,即最适C/N为6.0。因此,C/N可作为渗滤液硝酸盐完全反硝化作用的一个特征性参数。
     在此基础上,选择R4、R8和R12为试验对象,根据最适C/N调节回灌入垃圾堆体的渗滤液有机物含量,考察了不同填埋龄垃圾在自身降解产生的有机物量不足时的反硝化特征。结果发现:R4、R8、R12均表现出较强的反硝化性能,且差异不大,每个反应器均可在70h左右将500 mgL-1的硝酸盐还原完全。这表明在回灌渗滤液C/N适宜的条件下,所有垃圾堆体均可作为厌氧系统进行反硝化作用。
     以nirS基因为分子标记,采用“PCR-克隆-测序”并建立基因文库的方法,探讨了填埋垃圾生物反应器内反硝化微生物多样性特征。结果发现:①在R6的nirS基因文库中,检测到的微生物主要归属于变形菌门(Proteobacteria)的β-变形菌纲(Betaproteobacteria);但当C/N为5.03-9.08时,种群结构较接近,而低C/N(3.11)和高C/N(13.08)时种群结构存在显著性差异。Thiobacillus denitrificans和Azoarcus tolulyticus始终是反应器内优势反硝化菌,但随着回灌渗滤液中C/N的提高,Thiobacillus denitrificans和Azoarcus tolulyticus呈现一定的演替规律:Thiobacillus denitrificans的克隆丰富度变化情况为77.22%、15.38%、17.39%和72.46%;而Azoarcus tolulyticus的克隆丰富度变化情况则刚好相反,分别为10.13%、75%、59.42%和7.25%。②R4、R8和R12的nirS基因文库中,最相似序列均可归属于两大类:变形菌门(Proteobacteria)细菌和未培养微生物,但各反应器间的群落结构仍存在一定差异。R4内的反硝化种群以Thiobacillus denitrificans、Azoarcus tolulyticus和GenBank为AY078277.1的未培养微生物为王;R8 nirS文库中以Azoarcus tolulyticus为主;而R12的优势种群则为Azoarcus tolulyticus和GenBank为AY078277.1的未培养微生物。综合以上试验结果表明,填埋垃圾生物反应器内,反硝化菌种群结构相对单一,多样性偏低,但Thiobacillus denitrificans和Azoarcus tolulyticus是垃圾堆体中生长较稳定的种群,猜测在渗滤液反硝化脱氮中发挥着重要作用。
     根据实验室研究结果,在杭州市固体废弃物处理有限公司开展了填埋垃圾生物反应器反硝化性能中试研究,结果表明硝化渗滤液经生物反应器处理后,出水水质稳定,硝酸盐、亚硝酸盐可被基本去除完。结合实验室研究结果进一步表明开发生物反应器垃圾堆体渗滤液原位脱氮技术具有现实可行性。
Landfilling is one of the most important methods for refuse disposal in China. However, leachate produced from the landfill is rich in various contaminants, especially ammonia and if not managed well can pose serious threat to the environment. Recently, the Chinese government published a new standard for pollution control of municipal solid waste landfills, which prescribes that the emission concentration of ammonia in leachate must be lower than 25 mg L"1. At present, ammonia removal is mostly practiced ex situ. However, this treatment approach requires large spatial and financial investment, which restricts its utilization. Therefore, development of an in situ nitrogen removal technique would be an attractive alternative. This technique involves ex situ nitrification of leachate which is coupled with the use of the landfill as a bioreactor for denitrification. In this thesis, refuse at different landfill ages were sampled from Hangzhou Tianziling Landfill. The denitrification capacities of bioreactors filled with refuse at different landfill ages were studied. nirS gene libraries were constructed with a PCR-based clone approach in order to study the structure and diversity of the denitrifying bacteria. The information derived from this research will help other researchers carry out further studies. Some principle results of this thesis are summaried as follows.
     The mixtures which had similar performance with soil comprised the highest proportion in the refuse of different landfill ages, followed by plastics. Refuse in the landfill became relatively stable but not fully aged after being placed for four years primarily due to low water content. Therefore, in order to accelerate refuse decomposition, a reasonable approach is to develop bioreactor landfills characterized by leachate recirculation.
     In this study, nitrate solution was injected intermittently. Refuse at different landfill ages all had a considerably high denitrification capacity when the refuse body itself could provide enough organic carbon for denitrification. And the nitrate reduction rates could reach up to 70-92% in the first hour. However, when the refuse contained low organic matter, refuse at different landfill ages possessed different denitrification capacity. R1, R6 reduced nitrate much more quickly than R11, and the nitrate reduction rates were 6.80 mg NO3--N kg-TSwaste-1 h'1、3.00 mg NO3--N kg-TSwaste-1 h-1 and 1.10 mg NO3--N kg-TSwaste-1 h-1, respectively. Moreover, the final products in R1 and R6 were N2 and the concentrations were 82.5% and 80.2%, respectively. On the contrary, N2O accumulated in R11 and the final concentration reached up to 19.3%. These results suggested that organic matter played an important role in nitrate reduction and partly-degraded refuse was more suitable to use as denitrification medium.
     The effects of different ratios of chemical oxygen demand (COD) and nitrate concentrations in the injected leachate on the denitrification capacity of refuse were evaluated. It was found that nitrate reduction rate increased with the increasing COD concentration in the injected leachate. Nitrate reduction rates in tests 1 to 4 was 1.14 mg NO3--N kg-TSwaste-1 h-1,1.24 mg N03--N kg-TSwaste-1 h-1,6.33 mg NO3--N h-1 and 11.40 mg NO3--N kg-TSwaste-1 h-1, respectively. And for rapid denitrification, COD/NO3--N ratio in the initial leachate should be adjusted to higher than 6.0.
     According to the optimum ratio of COD/NO3--N, R4, R8 and R12 were used to investigate the denitrification capacity when the refuse could not provide enough organic matter. And the results showed that refuse at different landfill ages possessed a high denitrification capacity when the injection contained enough organic matter. Moreover, their nitrate reduction rates were almost the same.
     The analysis of nirS clone libraries indicated that the denitrifying bacteria fell into Proteobacteria (Betaproteobacteria) in R6. When the COD/NO3--N ratio was between 5.03-9.08, the diversities of denitrifying bacteria were almost the same. But the structures of denitrifying bacteria were quite different when the ratios of COD/NO3--N were 3.11 and 13.08. Moreover, Thiobacillus denitrificans and Azoarcus tolulyticus were dominant species in this reactor. But the clone abundance of Thiobacillus denitrificans was contrary to that of Azoarcus tolulyticus. The clone abundance of Thiobacillus denitrificans was 77.22%、15.38%、17.39% and 72.46%, and that of Azoarcus tolulyticus was 10.13%、75%、59.42%和7.25%. On the contrary, the denitrifying bacteria in R4, R8 and R12 fell into two lineages: Proteobacteria and Uncultured bacterium. The structures and diversities of the denitrifying bacteria in these reactors were different. The dominant species in R4 were Thiobacillus denitrificans、Azoarcus tolulyticus and the uncultured bacterium named AY078277.1. In R8, only Azoarcus tolulyticus were dominant species and in R12, Azoarcus tolulyticus and the uncultured bacterium named AY078277.1 predominated.
     In general, the diversities of denitrifying bacteria in bioreactor landfill were relatively low. Although the community structures were different, Thiobacillus denitrificans and Azoarcus tolulyticus could be found in all the reactors. This indicated that Thiobacillus denitrificans and Azoarcus tolulyticus grew stablely in refuse and they might play important roles in nitrogen removal.
     Based on the lab researches, pilot scale study was conducted in Hangzhou Tianziling Landfill. And the results showed that the bioreactor had good effect on nitrate reduction and developing a new way for nitrogen removal with the use of the landfill as a bioreactor for denitrification had certain feasibility.
引文
[1]Alefounder P.R., Greenfield A.J., John E.G., et al. Selection and organization of denitrifying electron-transfer pathways in Paracoccus denitrificans. Biochimica et Biophysica Acta-Bioenergetics,1983,724(1):20-39.
    [2]Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews,1995,59:143-169.
    [3]Arciero D.M., Balny C., Hooper A.B. Spectroscopic and rapid kinetic studies of reduction of cytochrome c554 by hydroxylamine oxidoreductase from Nitrosomonas europaea. Biochemistry-US,1991,30:11466-11472.
    [4]Attal A., Akunna J. Anaerobic degradation of municipal wastes in landfill. Environmental Science and Technology,1992,25(7):243-253.
    [5]Aziz H.A., Alias S., Adlan M.N., et al. Colour removal from landfill leachate by coagulation and flocculation process. Bioresource Technology,2007,98:218-220.
    [6]Barlaz M. A. Long-term nitrogen management in bioreactor landfills, Website (http://www4.ncsu.edu:8030/-barlaz/text-only/xabstrts/nitrogen. html).
    [7]Barlaz M.A., Ham R.K., Schaefer D.M. Methane production from municipal refuse:a review of enhancement techniques and microbial dynamics. Critical Reviews in Environment Control, 1990,19(6):557-584.
    [8]Bell L.C., Richardson D. J., Ferguson S.J. Periplasmic and membrane-bound respiratory nitrate reductases in Thiophaera pantotropha. FEBS letters,1990,265:85-87.
    [9]Bell L.C., Ferguson S. J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. European Journal of Biochemistry,1991,273: 423-427.
    [10]Berge N.D., Reinhart D.R., Dietz J.D., et al. The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate. Water Research,2007, 41(9):1907-1914.
    [11]Betlach M.R., Tiedje J.M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Applied Environmental Microbiology,1981,42: 1074-1084.
    [12]Bickers P.O., van Oostrom A.J. Availability for denitrification of organic carbon in meat-processing waste streams. Bioresource Technology,2000,73:53-58.
    [13]Bilgili M.S., Demir A., Ozkaya B., Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal Hazardous Materials,2007,143:177-183.
    [14]Bogner J.E. Controlled study of landfill biodegradation rates using modified BMP assays. Waste Management and Research,1990,8:329-352.
    [15]Braker G., Fesefeldt A., WitzeK P. Development of PCR primer systerms for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Environmental Microbiology,1998,64(10):3769-3775.
    [16]Braker G, Zhou J., Wu L., et al. Nitrite reductase genes(nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communiities. Applied Environmental Microbiology,2000,66(5):2096-2104.
    [17]Brenda B.R., Philip P.C. Testing anaerobic biodegradability of polymers in laboratory-scale simulated landfills. Environmental Science and Technology,1998,32 (6):821-827.
    [18]Broda E. Two kinds lithotrophs missing in nature. Z Allg Mickrobiol,1997,17:491-493.
    [19]Burland S.M., Edwards E.A. Anaerobic benzene biodegradation linked to nitrate reduction. Applied Environmental Microbiology,1999,65:529-533.
    [20]Burton S.A.Q., Watson-Craik I.A., Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling. Waste Management and Research,1998,16:41-53.
    [21]Burton S.A.Q., Watson-Craik I.A. Accelerated landfill refuse decomposition by recirculation of nitrified leachate, in:T.H. Christenssen, et al. (Eds),7th International Waste Management and Landfill Symposium, Environmental Sanitary Engineering Centre, Cagliari, Italy,1999, pp. 119-126.
    [22]Carvalho M.F. Municipal solid waste mechanical behavior, Thesis submitted to the Universidade de Sao Paulo in partial fulfillment of the requirements for the degree of Doctor in Geotechnics, Sao Carlos, Brazil,1999.
    [23]Castro-Gonzalez M., Braker G., Fatas L, et al. Communities of nirS-type denitrifiers in the water column of the oxygen mininmm zone in the eastern south pacific. Journal of Environmental Microbiology,2005,7(9):1298-1306.
    [24]Cheneby D., Phflippot L.16S rRNA analysisfor characterization of denitrifying bacteria isolated from three agacultural soils. FEMS Microbiology Ecology,2000,34:121-128.
    [25]Chang, J.E. Treatment of landfill leachate with an upflow anaerobic reactor combining a sludge bed and a filter. Water Science and Technology,1989,21:133-143.
    [26]Chen, P.H. Assessment of leachate from sanitary landfills:impact of age, rainfall and treatment. Environment International,1996,22:225-237.
    [27]Chu L.M., Cheung K.C., Wong M.H. Variations in the chemical properties of landfill leachate. Environmental Management,1994,18:105-112.
    [28]Doi Y., Takaya N., Takizawa. Novel denitrifying bacterium ochrobactrum anthropi YD50.2 tolerates high levels of reactive nitrogen oxides. Applied and Environmental Microbiology,2009, 75(16):5186-5194.
    [29]Dong J., Zhao Y.S., Henry R.K., Hong M. Impacts of aeration and active sludge addition on leachate recirculation bioreactor. Journal of Hazardous Materials,2007,147:240-248.
    [30]Enwall K., Philippot L., Hallin S. Activity and composition of the denitrifying bacterial community respond diferently to long term feltilization. Environmental Microbiology,2005, 71(12):8335-8343.
    [31]Erses A.S., Onay T.T., Yenigun O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresourcce Technology,2008,99:5418-5426.
    [32]Frey A.S, Robert K.H. Affect of lignin on the anaerobic decomposition of cellulose as determined through the use of biochemical methane potential method. Enironmental Science and Technology,1995,29(9):2305-2310.
    [33]George B.K, Eric S. Effect of temperature and moisture on the anaerobic digestion of refuse. Jounral of Chemical Technology& Biotechnology,1989,44:31-41.
    [34]Giannis A., Makripodis G., Simantiraki F., et al. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor, Waste Management,2008,28: 1346-1354.
    [35]Gomez M.A., Hontoria E., Gonzalez L.J. Influence of carbon source on nitrate removalof contaminated groundwater in a denitrifying submerged filter. Journal of Hazardous Materials, 2000,80:69-80.
    [36]Hartz K.E., Ham R.K. Moisture level and movement effects on methane production rates in landfill samples. Waste Management and Research,1983,1:139-145.
    [37]Henry S., Baudoin E,. Juan C., et al. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. Journal of Microbiological Methods,2004,59:327-335.
    [38]He P.J., Shao L.M., Guo H.D., et al. Nitrogen removal from recycled landfill leachate by ex situ nitrification and in situ denitrification process. Waste Management,2006,26:838-845.
    [39]He R., Shen D.S., Wang J.Q., et al. Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation. Process Biochemistry,2005,40:3660-3666.
    [40]He R., Shen D.S. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste. Journal of Hazardous Materials,2006,136:784-790.
    [41]He R., Liu X.W., Zhang Z.J., Shen D.S. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal. Bioresource Technology,2007,98:2526-2532.
    [42]Heyer K.U., Hupe K., Ritzkowski M., Stegmann R. Pollutant release and pollutant reduction-impact of the aeration of landfills. Waste Management,2005,25:353-359.
    [43]Hong Z., Hanaki K., Matsuo T. Greenhouse gas-N2O production during denitrification in wastewater treatment. Water Science and Technology,1993,28:203-207.
    [44]Hwang S., Hanaki K. Effects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide production. Bioresource Technology,2000,71: 159-165.
    [45]Johannes C.M.S., Peter M.V.B., Jaap V., et al. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a fresh-water sediment. FEMS Microbiology Ecology, 2002,42:375-385.
    [46]Jokela J.P.Y., Kettunen R.H., Sormunen K.M., et al. Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofihers and laboratory scale in situ denitrification. Water Research,2002,36(16):4079-4087.
    [47]Kim D.J., Miyahara T., Noike T. Effect of C/N ratio on the bioregeneration of biological activate carbon. Water Science and Technology,1997,36 (12):239-249.
    [48]Kinman R.N., Nutini D.L., Walsh J.J., et al. Gas enhancement techniques in landfill simulators, Waste Management and Research,1987,5:13.
    [49]Klangduen P., Jurg K. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology,1999,39(6):61-68.
    [50]Korner H., Frunzke K., Dohler K., Zumft W.G. Immunochemical patterns of distribution of nitrous oxide reductase and nitrite reductase (cytochrome cd1) among denitrifying pseudomonads. Archives of Microbiology,1987,148(1):20-24.
    [51]Kumon Y., Sasaki Y., Kato I., et al. Codenitrification and denitrification are dual metabolic pathways through which dinitrogen envolvs from nitrite in Streptomyces antibioticus. The Journal of Bacteriology,2002,184:2963-2968.
    [52]Lawson T.A. Leaehate recirculation:a landfill management tool? Proceedings of the institute of waste management,1997,3:9-13.
    [53]Leckie J.O., Pacey J.G., Halvadakis C. Landfill management with moisture control. Journal of the Environmental Engineering Division, ASCE,1979,105(2):337-355.
    [54]Lensi R., Beaupied H., Moiroud A. Denitriying activity in the Actinorhizae. Acta Oecol,1990, 11:391-398.
    [55]Leuschner A.P. Enhancement of degradation:laboratory scale experiments, sanitary landfilling:process, technology and environmental impact:Academic Press,1989.
    [56]Liu J.Y., Xu D.M., Zhao Y.C., et al. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang municipal landfill. Environmental Management,2004, 34(3):441-448.
    [57]Liu X., Tiquia S.M., Holguin G., et al. Molecular diversity of denitrifying genes in continental sediments within the oxygen deficient zone of the pacific coast of Mexico. Applied and Environmental Microbiology,2003,69(6):3549-3560.
    [58]Lngo S., Olav S., Markus S. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews,2003,27(4):481-492.
    [59]Long Y., Hu L.F., Shen D.S. Nitrogen transformation in the hybrid bioreactor landfill. Bioresource Technology,2009,100:2527-2533.
    [60]Long Y., Guo Q.W., Fang C.R., et al. In situ nitrogen removal in phase-separate bioreactor landfill. Bioresource Technology,2008,99:5352-5361.
    [61]Mehta R., Barlaz M.A., Yazdani R., et al. Refuse decompositon in the presence and absence of leachate recirculation. Journal of Environmental Engineering,2002,128:228-236.
    [62]Merve T.O, Kevin G.R. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge. Water Research,2006,40:665-674.
    [63]Mohamed I., El-Mahrouki L., Watson-Craik I.A. The effects of nitrate and itrate-supplemented leachate addition on methanogenesis from Municipal Solid Waste. Jounral of Chemical Technology & Biotechnology,2004,79:842-850.
    [64]Moir J.W.B, Baratta D., Richardson D.J., et al. The purification of a cdl-type nitrite reductase from and the absence of a copper-type nitrite reductase from the aerobic denitrifier Thiosphaera pantotropha:the role of pseudoazurin as an electron donor. European Journal of Biochemistry,1993,212:377-385.
    [65]Morris J.W.F., Vasuki N.C., Baker J.A. Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation. Waste management,2003,23(7):653-666.
    [66]Mostafa A.W., Walied Z., Neeraj G. Effect of leachate recirculation on municipal solid waste biodegradation. Journal of Canada Water Quality Research,1999,34:267-280.
    [67]Mounier E., Nallet S., Chbneby D., et al. Influence of maize mucilage on the diversity and activity of the denitrifying community. Environmental Microbialogy,2004,6(3):301-312.
    [68]Onay.TT., Pohland F.G. In situ nitrogen management in controlled bioreactor landfills. Water Research,1998,32(5):1383-1392.
    [69]Onay T.T., Pohland F.G. Nitrogen and sulfate attenuation in simulated landfill bioreactor. Water Science and Technology,2001,4(23):367-372.
    [70]Owens J.M., Chynoweth D.P. Biochemical methane potential of municipal solid waste components. Environmental Science and Technology,1993,27(2):114.
    [71]Pacey J.G. Landfill gas enhancement management. Seminar Publication:Landfill bioreactor design and operation.1995:175-183.
    [72]Pacey J., Augenstein D., Morck R., et al.,1999. The Bioreactor Landfill. MSW Management Magazine,1999,9(5):53-60.
    [73]Palma J.H. Geotechnical behavior of municipal solid waste landfills. PhD Thesis-Universidad de Cantabria-Santander, Spain,1995:286-396.
    [74]Philippot L., Mirleau P., Mazurier S. Characterization and transcriptional analysis of Pseudomonas Luorescens denitrifying clusters containing the nar, nir, nor and nos genes. Biochimica et Biophysica Acta,2001,1517:436-440.
    [75]Philippot L. Denitrifying gene in bacterial and Archaeal genomes. Biochimica et Biophysica Acta,2002,1577:355-376.
    [76]Philippot L., Hallin S. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Current opinion in microbiology,2005,8: 234-239.
    [77]Pohland F.G. Sanitary landfill stabilization with leachate recycle and residual treatment, Report EPA-600/2-75-043, US EPA, Cincinnati, OH,1975.
    [78]Pohland F.G. Landfill bioreactors:fundamentals and practice. In proceedings of special seminar on international trends in water environment management, Tokyo, Japan,1986.
    [79]Pohland F.G.,Yousfi B. Design and operation of landfills for optimum stabilization and biogas. Water Science and Technology,1992,25(7):327-339.
    [80]Pohland F.G., Kim J.C. Microbially mediated attenuation potential of landfill bioreactor systems. Water Science and Technology,2000,41(3):247-254.
    [81]Price G.A., Barlaz M.A., Hater G.R. Nitrogen management in bioreactor landfills. Waste Management,2003,23(7):675-688.
    [82]Prieme A., Braker G., Tiedje J.M. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Applied and Environmental Microbiology,2002, 68(4):1893-1900.
    [83]Qiu X.Y., Hurt R.A., Wu L.Y., et al. Dectection and quantification of copper-denitrifying bacteria by quantitative competitive PCR. Journal of Microbiological Methods,2004,59: 199-210.
    [84]Reinhart D.R., Al-Yousfi B.A. The impact of leachate recirculation on municipal Solid waste landfill operating characteristics. Waste Management and Research,1996,14(2):337-346.
    [85]Reinhart D., Townsend T. Landfill bioreactor design and operation, CRC Press,1998.
    [86]Reinhart D.R., Mccreanor P.T., Townsend T. The bioreactor landfill:its status and future, Waste Management and Research,2002,20:172-186.
    [87]Ritzkowski M., Heyer K.U., Stegmanni R. Fundamental processes and implications during in situ aeration of old landfills. Waste Management,2006,26(4):356-372.
    [88]Robertson L.A., Kuenen J.G. Aerobic denitrification:a controversy revived. Archives of Microbiology,1984,139(5):351-354.
    [89]Robertson L.A., Kuenen J.G. Combined heterotrophic nitrification and aerobic denitrificatin in Thiosphaera pantotropha.and other bacteria. Antonie van Leeuwenhoek,1990,57:139-152.
    [90]Robertson L.A., Niel E.D. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology,1988,54(11): 2812-2818.
    [91]Ronner U., Sorensson F. Denitrification rates in the low-oxygen waters of the stratified baltic proper. Applied and Environmental Microbiology,1985,50(4):801-806.
    [92]Roy R., Conrad R. Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiology Ecology,1999,28:49-61.
    [93]Saleh-Lakha S., Kelly E., Shannon S.L., et al. Effect of nitrate and acetylene on nirS, cnorB, and nosZ expression and denitrification activity in Pseudomonas mandelii. Applied and Environmental Microbiology,2009,75(15):5082-5087.
    [94]San I., Onay T.T. Impact of various leachate recirculation regimes on municipal solid waste degradation. Journal of Hazardous Materials,2001,87:259-271.
    [95]Scala D.J., Kerkhoft J. Horizontal heterogeneity of denitrfying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology,2000,66(5):1980-1986.
    [96]Shao L.M., He P.J., Li G.J. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration. Waste Management,2008,28:1000-1007.
    [97]Shoun H., Tanimoto T. Denitritlcation by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. The Journal of Biological Chemistry, 1991,266:11078-11082.
    [98]Song B., Ward B.B. Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiology Ecology,2003,43:349-357.
    [99]Touthamer A.H. Metabolic pathways in Paracoccus denitrification and closely related bacteria in relation to the phylogeny of prokaryotes. Antonie van Leeuwenhoek,1992,61(1): 11-33.
    [100]Thauer R.K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews,1977,41:100-180.
    [101]Throback I.N., Enwall K., Jarvis A., et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology,2004,49(3):401-417.
    [102]Tiedje J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York,1988.
    [103]Towsend T.G., Miller W.L., Lee I.I. Acceleration of landfill stabilization using leaehate recycle. Journal of Environmental Engineering,1996,122(4):263-268.
    [104]Valencia R., Vanzerdon W., Woelders H., et al. The effect of hydraulic conditions on waste stabilization in bioreactor landfill simulators. Bioresource Technology,2009,100(5):1754-1761.
    [105]Vigneron V., Bouchez T., Bureau C., et al. Leachate pretreatment strategies before recirculation in landfill bioreactors, Water Science and Technology,2005,52:289-297.
    [106]Vigneron V, Ponthieu M., Barina G., et al. Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Management,2006,27:778-791.
    [107]Wiliam E.E, William S.O. Biodegradability of municipal solid waste components in laboratory-scale landfills. Environmental Science and Technology,1997,31(3):911-917.
    [108]World B. Guidance note on recuperation of landfill gas from municipal solid waste landfills lars mikkel johannessen. The International Bank for Reconstruction and Development. The World Bank.
    [109]Wu W.X., Hao Y.J., Ding Y., Chen Y.X. Denitrification capacity in response to increasing nitrate load and decreasing organic carbon content in injected leachate of a simulated reactor. Process Biochemistry,2009,44(4):486-489.
    [110]Yazdani R., Augensein D., Pacey J.U.S. EPA Project XT:Yolo county's aceelerated anaerobic and aerobic composting project. Proceedings of California integrated waste management board symposium on landfill gas assessment and management. LA, CA, USA,2000.
    [111]Ye R.W., Avrill B.A., Tiedje J.M. Denitrification:production and consumption of nitric oxide. Applied and Environmental Microbiology,1994,60(4):1053-1058.
    [112]Yoshie S., Noda N., Tsuneda S., et al. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of waste water treatment systems. Applied and Environmental Microbiology, 2004,70(5):3152-3157.
    [113]You S.J. Identification of denitrfying bacteria diversity in an activated sludge system by using nitrite reductase genes. Biotechnology Letters,2005,27(19):1477-1482.
    [114]Yuen S.T.S. Bioreactor landfills promoted by leachate recirculation:A full-scale study, Thesis submitted to the University of Melbourne in total fulfillment of the requirements for the degree of Doctor of Philosophy, Melbourne, Australia,1999.
    [115]Zbigniew L. Temperature dependency of biological denitrification with organic materials addition. Water Research,1982,16:19-22.
    [116]Zhao Y., Liu J., Huang R., Gu G. Long-term monitoring and prediction for leachate concentrations in Shanghai Refuse Landfill. Water, Air, and Soil Pollution,2000,122:281-297.
    [117]Zhao Y.C., Song L.Y., Huang R.H., et al. Recycling of aged refuse from a closed landfill. Waste Management and Research,2007,25:130-138.
    [118]Zhao Y.C., Chen Z.G., Shi Q.W., Huang R.H. Monitoring and long-term prediction of refuse compositions and settlement in large-scale landfill. Waste Managent and Research,2001, 219(2):160-168.
    [119]Zumft W.G. The denitrifying prokaryotes. In A.Balows HG. Truper M. Dworkin W. Harder and KH Schleifer (ed.), The prokaryotes. Springer-Verlag, New York,1992:554-582.
    [120]Buchanan R.E., Gibbens N.E.伯杰细菌鉴定手册(第八版).北京,科学出版社,1984,634-638.
    [121]鲍士旦.土壤农化分析.北京,中国农业出版社,2000.
    [122]边炳鑫.生活垃圾填埋场中矿化垃圾的综合利用技术(博士学位论文).同济大学,2004.
    [123]蔡楷龙.垃圾露天堆放区渗滤液中原核生物的系统发育多样性(硕士学位论文).中山大学,2006.
    [124]陈红歌,胡元森,贾新成,吴坤.垃圾填埋场细菌种群空间分布及组成多样性研究.环 境科学学报,2005,25(6):809-815.
    [125]董春松,樊耀波,李刚,吴琳琳.我国垃圾渗滤液的特点和处理技术探讨.中国给水排水,2005,21(12):27-31.
    [126]范家明,周少奇.广州大田山垃圾填埋场渗滤液污染现状的调查.环境卫生工程,2001,9(4):160-162.
    [127]国家环保总局编.水与废水监测分析方法(第四版),中国环境科学出版社,2002.
    [128]李国刚,曹杰山,汪志国.我国城市生活垃圾处理处置的现状与问题.环境保护,2002,4:35-38.
    [129]李国建,徐迪民,于晓华.垃圾填埋场渗滤水回灌技术的研究.同济大学学报,1997,25(2):195-199.
    [130]李青松,金春姬,乔志香,向勇,崔良.垃圾填埋场渗滤液的产生及处理现状.青岛大学学报,2003,18(4):80-83.
    [131]李雄.填埋场不同填埋龄城市生活垃圾开采、变化规律及资源化利用研究(博士学位论文).同济大学,2006.
    [132]李颖,郭爱军.垃圾渗滤液处理技术及工程实例.中国环境科学出版社,2008.
    [133]联邦德国环境保护局编.生活垃圾特性分析指南.北京,中国环境科学出版社,1990.
    [134]梁丽华,左剑恶.现代非培养技术在反硝化微生物种群结构和功能研究中的应用.环境科学学报,2008,28(4):599-605.
    [135]刘富强,唐薇,聂永丰.城市生活垃圾填埋的产气过程实验室模拟.中国沼气,2001,19(1):22-26.
    [136]龙焰,沈东升,劳慧敏.生活垃圾填埋场渗滤液原位脱氮研究进展.科技通报,2006,22(3):426-429.
    [137]卢成洪,徐迪民.回灌法处理城市垃圾填埋场渗滤液.上海环境科学,1997,16(1):38-40.
    [138]陆洪宇,吕炳南,陈志强.改进型BIOSTYR处理景观水研究.中国给水排水,2005, 21(8):88-90.
    [139]罗泽娇,赵俊英,靳孟贵.武汉市某垃圾填埋场重金属对环境污染的研究.地质科技情报,2003,22(3):87-90.
    [140]马放,王弘宇,周丹丹.好氧反硝化生物脱氮机理分析及研究进展.工业用水与废水,2005,36(2):11-14
    [141]欧阳峰,李启彬,刘丹.生物反应器填埋场渗滤液回灌影响特性研究.环境科学研究2003,16(5):52-54.
    [142]王宝贞,王琳.城市固体废物渗滤液处理与处置.化学工业出版社,2005.
    [143]王洪涛,殷勇.渗滤液回灌条件下生化反应器填埋场水分运移数值模拟.环境科学,2003,24(2):66-72.
    [144]王罗春.城市生活垃圾填埋场稳定化进程研究(博士学位论文)同济大学,1999.
    [145]王罗春,李华,赵由才.垃圾填埋场渗滤液回灌及其影响.城市环境与城市生态,1999,12(1):44-46.
    [146]王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究.环境污染治理技术与设备,2001,2(4):15-17.
    [147]奚旦立,孙裕生等编.环境监测.北京,高等教育出版社,1995.
    [148]徐迪民,李国建,于晓华等.垃圾渗滤液水填埋场回灌的影响因素.同济大学学报,1995,23(4):372-375.
    [149]杨玉江,赵由才.填埋垃圾腐殖质组成在填埋场稳定度表征中的应用.环境污染与防治,29(2):108-114.
    [150]于晓华,何品晶,邵立明等.填埋层空气状况对渗滤液中氮成分变化的影响.同济大学学报,2004,32(6):741-743.
    [151]张淑娟,覃朝峰,王志刚等.广州李坑生活垃圾填埋场周围植被现状调查与影响分析.环境污染与防治,2003,25(3):145-146,160.
    [152]张祥丹,王家民.城市垃圾渗滤液处理工艺介绍.给水排水,2000,26(10):9-14.
    [153]郑兰香,鞠兴华.温度和C/N对生物膜反硝化速率的影响.工业安全与环保.2006,32(10):13-15.
    [154]郑平,冯孝善.废物生物处理.高等教育出版社,2005.
    [155]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.科学出版社,2004.
    [156]朱爽.垃圾堆填区渗滤液中真细菌遗传多样性及分子系统学研究(博士学位论文).中山大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700