小鼠核移植胚胎中rDNA活性和核仁变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究供体细胞的rDNA状态对核移植(NT)胚胎内rDNA活性以及rRNA合成和加工的影响。方法通过建立了B6D2F1品系小鼠的胚胎干细胞(embryonic stem cells, ESCs)、颗粒细胞(cumulus cells, CCs)和胎儿成纤维细胞(mouse embryonic fibroblasts, MEFs)细胞株,检测了这三者在活性NORs数目、rDNA甲基化水平和核仁相关基因表达水平上的差异;之后以这三种细胞为供体细胞,用一步法核移植技术构建了相应的核移植(nuclear transfer, NT)胚胎,同时以单精注射(intracytoplasmic sperm injection, ICSI)胚胎作为对照,考察了4种胚胎在原核形成、核仁蛋白分布、活性NORs数目、rDNA甲基化水平以及核仁相关基因表达等方面的差异。结果1)小鼠ICSI胚胎和NT胚胎在精子注射/激活后5h(hours post activation, hpa)开始出现核仁前体(nucleolar precursorbodies, NPBs),NPBs数目逐渐减少,直至8hpa时趋于稳定并一直持续到原核融合(16-17hpa);2)干细胞核移植(embryonic stem cell nuclear transfer, ESNT)胚胎原核期仅有一个类原核,平均内含7.20个NPBs;颗粒细胞(cumulus cellnuclear transfer, CCNT)、成纤维细胞核移植(mouse embryonic fibroblast nucleartransfer, MEFNT)胚胎、ICSI胚胎和孤雌(parthenogenetic activation, PA)胚胎在原核期都形成2个原核/类原核,平均每个原核/类原核内分别含3.71、4.27、1.58和1.59个NPBs;3)晚2细胞期的ICSI、ESNT和CCNT胚胎在核仁周围开始出现网状结构。到4细胞期时,ICSI和ESNT胚胎的核仁呈现完全的网状结构,而CCNT胚胎核仁的网状结构仍只出现在周边区域;4)0.8μg/ml放线菌素D(actinomycin D,AD)处理颗粒细胞1h能使其失去rRNA转录和加工活性。以AD处理后的颗粒细胞作为供体构建的NT胚胎,其植入前发育能力和未处理组并无显著差异;5) ESCs有最多的活性核仁组织区(nucleolar organizingregions, NORs)数目(7.66)和最低的rDNA甲基化水平(6.76%),而且其UBF(upstream binding factor,上游结合因子)、 FBL(fibrillarin)和B23(nucleophosmin,核仁素)的表达水平显著高于CCs和MEFs;MEFs含最少的活性NORs数目(4.70)和最高的rDNA甲基化水平(22.57%);CCs的数据居于两者之间(6.45和13.59%);6)4细胞期时,ESNT胚胎含有与ICSI相当的活性NORs数(7.19vs.7.44),显著高于CCNT(6.68)和MEFNT胚胎(5.77)。MEFNT胚胎的rDNA甲基化水平显著高于其他3组胚胎(15.52%vs.9.39%/ICSIvs.6.36%/ESNT vs.9.67%/CCNT)。7) CCs和MEFs的核进入卵母细胞后,B23和UBF信号在20min后消失;而ESCs的核内B23/UBF信号在1h仍能检测到;8) MEFNT胚胎的植入前发育能力低于ICSI、ESNT和CCNT胚胎;桑葚胚期其FBL和18S rRNA的表达显著低于另外三组胚胎,UBF和47S rRNA的表达显著低于ICSI胚胎。结论本实验阐明了供体细胞本身和核移植胚胎内核仁蛋白的分布情况和变化;揭示了不同分化程度的供体细胞在rDNA的活性上存在一定差异,并且这种差异很大程度决定了不同核移植胚胎中的rDNA活性的差别,进而影响核移植胚胎植入前的发育能力。
Objective To study the impact of donor cell’s rDNA status on rDNA activity aswell as rRNA synthesis and processing of nuclear transfer (NT) embryos. MethodsWe firstly established mouse embryonic stem cells (ESCs), cumulus cells (CCs) andembryonic fibroblasts (MEFs) cell lines of B6D2F1strain and examined the activeNORs numbers, rDNA methylation levels and nucleoar related genes expression ofthese three cell lines. Then the three kinds of cells were used as donor cells toconstruct NT embryos with one-step NT technique while intracytoplasmic sperminjection (ICSI) embryos were used as control. We examined the pronuclei formation,nucleolar protein distribution, active NORs numbers, rDNA methylation levels andnucleolar related genes expressionof these embryos. Results1) Nucleolar precursorbodies (NPBs) started to form5h after sperm injection/activation in mouse ICSI andNT embryos. The number of NPBs reduced until8hpa.Then the NPBs number keptunchanging until pronuclei fused at16-17hpa.2) ESNT embryos only formed onepronucleus at pronuclear stage, whiching containing7.20NPBs in average. Cumuluscell nuclear trasnfer (CCNT) rmbryos, MEFs nuclear transfer (MEFNT) embryos,ICSI embryos and parthenogenetic activated (PA) embryos all formed two pronuclei/pseudo-pronuclei and the average NPBs numbers per pronuclei/pseudo-pronucleiwere3.71,4,27,1.58and1.59, respectively.3) The reticular structure started toappear around the nucleoli in ICSI, ESNT and CCNT embryos at late-2cell stage(27hpa). The nucleoli appeard as compeletely reticular structure in ICSI and ESNTembryos at4-cell stage, but nucleoli in CCNT embryos only showed partial reticularstructure at the same stage.4) The CCs lost rRNA synthesis and processing activities after treated with0.8μg/ml actinomycin D for1h. The NT embryos reconstructedfrom AD treated CCs had no significant difference with un-treated group inpreimplantation development competence.5) ESCs had the most active NORs number(7.66) and the lowest rDNA methylation level (6.76%) and its UBF (upstream bindingfactor), FBL (fibrillarin) and B23(nucleophosmin) expression levels weresignificantly higher than CCs and MEFs. MEFs had the least active NORs numbers(4.70) and the highest rDNA methylation levels (22.57%) while CCs had the middleof both (6.45and13.59%).6) At4-cell stage, ESNT embryos had almost the sameactive NORs numbers as ICSI embryos (7.19vs.7.44) and which was significantlyhigher than that in CCNT (6.68) and MEFNT embryos (5.77). MEFNT embryos hadthe highest rDNA methylation level than the other3groups (15.52%vs.9.39%/ICSIvs.6.36%/ESNT vs.9.67%/CCNT).7) The B23and UBF signals vanished in20minin the nuclei of CCs and MEFs after entering oocyte cytoplasm. But the B23/UBFsignals of ESCs nuclei can also be detected ever at1h after NT.8) Thepreimplantation developmental competence of MEFNT embryos was significantlylower than ICSI, ESNT and CCNT embryos. MEFNT embryos at morula stage hadsignificantly lower FBL and18S rRNA expression levels than the other3groups andtheir UBF and47S rRNA expression levels were significantly lower than ICSIembryos. Conclusion We demonstrated the distribution and changing of nucleolarprotein in donor cells and NT embryos at different preimplantation developnmentalstages. We found these donor cells owned different rDNA activities. And thisdiffenrence determined the different rDNA activities in NT embryos to a large extent,even affected the preimplantation developmental competence of NT embryos.
引文
1. Olson, M.O., Hingorani, K., and Szebeni, A. Conventional and nonconventionalroles of the nucleolus. Int. Rev. Cytol.2002;219:199-266.
    2. Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I.,and Mann, M. Nucleolar proteome dynamics. Nature.2005;433(7021):77-83.
    3. Hadjiolov, A. The nucleolus and ribosome biogenesis.1985. Springer Verlag
    4. Long, E.O., and Dawid, I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem.1980;49:727-764.
    5. Mosgoeller, W. Nucleolar Ultrastructure in Vertebrate.2004. Kluwer Academic
    6. Thiry, M., and Lafontaine, D.L. Birth of a nucleolus: the evolution of nucleolarcompartments. Trends Cell Biol.2005;15(4):194-199.
    7. Cmarko, D., Verschure, P.J., Rothblum, L.I., Hernandez-Verdun, D., Amalric, F.,van Driel, R., and Fakan, S. Ultrastructural analysis of nucleolar transcription incells microinjected with5-bromo-UTP. Histochem. Cell Biol.2000;113(3):181-187.
    8. Cheutin, T., O'Donohue, M.F., Beorchia, A., Vandelaer, M., Kaplan, H., Defever,B., Ploton, D., and Thiry, M. Three-dimensional organization of active rRNAgenes within the nucleolus. J. Cell Sci.2002;115(Pt16):3297-3307.
    9. Huang, S. Building an efficient factory: where is pre-rRNA synthesized in thenucleolus? J. Cell Biol.2002;157(5):739-741.
    10. Koberna, K., Malinsky, J., Pliss, A., Masata, M., Vecerova, J., Fialova, M.,Bednar, J., and Raska, I. Ribosomal genes in focus: new transcripts label thedense fibrillar components and form clusters indicative of "Christmas trees" insitu. J. Cell Biol.2002;157(5):743-748.
    11. Lafontaine, D.L., and Tollervey, D. The function and synthesis of ribosomes. NatRev Mol Cell Biol.2001;2(7):514-520.
    12. Fatica, A., and Tollervey, D. Making ribosomes. Curr. Opin. Cell Biol.2002;14(3):313-318.
    13. Grandi, P., Rybin, V., Bassler, J., Petfalski, E., Strauss, D., Marzioch, M., Schafer,T., Kuster, B., Tschochner, H., Tollervey, D., Gavin, A.C., and Hurt, E.90Spre-ribosomes include the35S pre-rRNA, the U3snoRNP, and40S subunitprocessing factors but predominantly lack60S synthesis factors. Mol. Cell.2002;10(1):105-115.
    14. Tschochner, H., and Hurt, E. Pre-ribosomes on the road from the nucleolus to thecytoplasm. Trends Cell Biol.2003;13(5):255-263.
    15. Fromont-Racine, M., Senger, B., Saveanu, C., and Fasiolo, F. Ribosome assemblyin eukaryotes. Gene.2003;313:17-42.
    16. Nazar, R.N. Ribosomal RNA processing and ribosome biogenesis in eukaryotes.Iubmb Life.2004;56(8):457-465.
    17. Stark, L.A., and Taliansky, M. Old and new faces of the nucleolus Workshop onthe Nucleolus and Disease. Embo Rep.2009;10(1):35-40.
    18. Scheer, U., and Rose, K.M. Localization of RNA polymerase I in interphase cellsand mitotic chromosomes by light and electron microscopicimmunocytochemistry. Proc Natl Acad Sci U S A.1984;81(5):1431-1435.
    19. Roussel, P., Andre, C., Comai, L., and Hernandez-Verdun, D. The rDNAtranscription machinery is assembled during mitosis in active NORs and absent ininactive NORs. J. Cell Biol.1996;133(2):235-246.
    20. Gebrane-Younes, J., Fomproix, N., and Hernandez-Verdun, D. When rDNAtranscription is arrested during mitosis, UBF is still associated withnon-condensed rDNA. J. Cell Sci.1997;110(Pt19):2429-2440.
    21. Zatsepina, O., Baly, C., Chebrout, M., and Debey, P. The step-wise assembly of afunctional nucleolus in preimplantation mouse embryos involves the cajal (coiled)body. Dev. Biol.2003;253(1):66-83.
    22. Gautier, T., Robert-Nicoud, M., Guilly, M.N., and Hernandez-Verdun, D.Relocation of nucleolar proteins around chromosomes at mitosis. A study byconfocal laser scanning microscopy. J. Cell Sci.1992;102(Pt4):729-737.
    23. Azum-Gelade, M.C., Noaillac-Depeyre, J., Caizergues-Ferrer, M., and Gas, N.Cell cycle redistribution of U3snRNA and fibrillarin. Presence in the cytoplasmicnucleolus remnant and in the prenucleolar bodies at telophase. J. Cell Sci.1994;107(Pt2):463-475.
    24. Dundr, M., Meier, U.T., Lewis, N., Rekosh, D., Hammarskjold, M.L., and Olson,M.O. A class of nonribosomal nucleolar components is located in chromosomeperiphery and in nucleolus-derived foci during anaphase and telophase.Chromosoma.1997;105(7-8):407-417.
    25. Dundr, M., Misteli, T., and Olson, M.O. The dynamics of postmitotic reassemblyof the nucleolus. J. Cell Biol.2000;150(3):433-446.
    26. Hernandez-Verdun, D., Roussel, P., and Gebrane-Younes, J. Emerging conceptsof nucleolar assembly. J. Cell Sci.2002;115(Pt11):2265-2270.
    27. Maddox-Hyttel, P., Bjerregaard, B., and Laurincik, J. Meiosis and embryotechnology: renaissance of the nucleolus. Reprod Fertil Dev.2005;17(1-2):3-14.
    28. Fair, T., Hulshof, S.C., Hyttel, P., Greve, T., and Boland, M. Nucleusultrastructure and transcriptional activity of bovine oocytes in preantral and earlyantral follicles. Mol. Reprod. Dev.1997;46(2):208-215.
    29. Fair, T., Hyttel, P., Lonergan, P., and Boland, M.P. Immunolocalization ofnucleolar proteins during bovine oocyte growth, meiotic maturation, andfertilization. Biol. Reprod.2001;64(5):1516-1525.
    30. Motlik, J., Crozet, N., and Fulka, J. Meiotic competence in vitro of pig oocytesisolated from early antral follicles. J Reprod Fertil.1984;72(2):323-328.
    31. Fair, T., Hyttel, P., Greve, T., and Boland, M. Nucleus structure andtranscriptional activity in relation to oocyte diameter in cattle. Mol. Reprod.Dev.1996;43(4):503-512.
    32. Bjerregaard, B., Wrenzycki, C., Philimonenko, V.V., Hozak, P., Laurincik, J.,Niemann, H., Motlik, J., and Maddox-Hyttel, P. Regulation of ribosomal RNAsynthesis during the final phases of porcine oocyte growth. Biol. Reprod.2004;70(4):925-935.
    33. Baran, V., Pavlok, A., Bjerregaard, B., Wrenzycki, C., Hermann, D.,Philimonenko, V.V., Lapathitis, G., Hozak, P., Niemann, H., and Motlik, J.Immunolocalization of upstream binding factor and pocket protein p130duringfinal stages of bovine oocyte growth. Biol. Reprod.2004;70(4):877-886.
    34. Hyttel, P., Xu, K.P., Smith, S., Callesen, H., and Greve, T. Ultrastructure of thefinal nuclear maturation of bovine oocytes in vitro. Anat Embryol (Berl).1987;176(1):35-40.
    35. Assey, R.J., Hyttel, P., Greve, T., and Purwantara, B. Oocyte morphology indominant and subordinate follicles. Mol. Reprod. Dev.1994;37(3):335-344.
    36. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., andReik, W. Conservation of methylation reprogramming in mammaliandevelopment: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci US A.2001;98(24):13734-13738.
    37. Hyttel, P., Laurincik, J., Rosenkranz, C., Rath, D., Niemann, H., Ochs, R.L., andSchellander, K. Nucleolar proteins and ultrastructure in preimplantation porcineembryos developed in vivo. Biol. Reprod.2000;63(6):1848-1856.
    38. Flechon, J.E., and Kopecny, V. The nature of the 'nucleolus precursor body' inearly preimplantation embryos: a review of fine-structure cytochemical,immunocytochemical and autoradiographic data related to nucleolar function.Zygote.1998;6(2):183-191.
    39. Laurincik, J., Thomsen, P.D., Hay-Schmidt, A., Avery, B., Greve, T., Ochs, R.L.,and Hyttel, P. Nucleolar proteins and nuclear ultrastructure in preimplantationbovine embryos produced in vitro. Biol. Reprod.2000;62(4):1024-1032.
    40. Laurincik, J., Schmoll, F., Mahabir, E., Schneider, H., Stojkovic, M.,Zakhartchenko, V., Prelle, K., Hendrixen, P.J., Voss, P.L., Moeszlacher, G.G.,Avery, B., Dieleman, S.J., Besenfelder, U., Muller, M., Ochs, R.L., Wolf, E.,Schellander, K., and Maddox-Hyttel, P. Nucleolar proteins and ultrastructure inbovine in vivo developed, in vitro produced, and parthenogenetic cleavage-stageembryos. Mol. Reprod. Dev.2003;65(1):73-85.
    41. King, W.A., Niar, A., Chartrain, I., Betteridge, K.J., and Guay, P. Nucleolusorganizer regions and nucleoli in preattachment bovine embryos. J Reprod Fertil.1988;82(1):87-95.
    42. Camous, S., Kopecny, V., and Flechon, J.E. Autoradiographic detection of theearliest stage of [3H]-uridine incorporation into the cow embryo. Biol. Cell.1986;58(3):195-200.
    43. Chartrain, I., Niar, A., King, W.A., Picard, L., and St-Pierre, H. Development ofthe nucleolus in early goat embryos. Gamete Res.1987;18(3):201-213.
    44. Farstad, W., Hyttel, P., Grondahl, C., Mondain-Monval, M., and Smith, A.J.Fertilization and early embryonic development in the blue fox (Alopex lagopus).Mol. Reprod. Dev.1993;36(3):331-337.
    45. Tesarik, J., Kopecny, V., Plachot, M., and Mandelbaum, J. High-resolutionautoradiographic localization of DNA-containing sites and RNA synthesis indeveloping nucleoli of human preimplantation embryos: a new concept ofembryonic nucleologenesis. Development.1987;101(4):777-791.
    46. Hyttel, P., Laurincik, J., Rosenkranz, C., Rath, D., Niemann, H., Ochs, R.L., andSchellander, K. Nucleolar proteins and ultrastructure in preimplantation porcineembryos developed in vivo. Biol. Reprod.2000;63(6):1848-1856.
    47. Geuskens, M., and Alexandre, H. Ultrastructural and autoradiographic studies ofnucleolar development and rDNA transcription in preimplantation mouseembryos. Cell Differ.1984;14(2):125-134.
    48. Maddox-Hyttel, P., Svarcova, O., and Laurincik, J. Ribosomal RNA andnucleolar proteins from the oocyte are to some degree used for embryonicnucleolar formation in cattle and pig. Theriogenology.2007;68Suppl1:S63-S70.
    49. Svarcova, O., Maddox-Hyttel, P., and Niemann, H.(2007) Nucleolardevelopment requires transcriptional activity during porcine embryonic genomeactivation.
    50. Bjerregaard, B., Wrenzycki, C., Strejcek, F., Laurincik, J., Holm, P., Ochs, R.L.,Rosenkranz, C., Callesen, H., Rath, D., Niemann, H., and Maddox-Hyttel, P.Expression of nucleolar-related proteins in porcine preimplantation embryosproduced in vivo and in vitro. Biol. Reprod.2004;70(4):867-876.
    51. Niemann, H., and Wrenzycki, C. Alterations of expression of developmentallyimportant genes in preimplantation bovine embryos by in vitro culture conditions:implications for subsequent development. Theriogenology.2000;53(1):21-34.
    52. Daniels, R., Hall, V., and Trounson, A.O. Analysis of gene transcription in bovinenuclear transfer embryos reconstructed with granulosa cell nuclei. Biol. Reprod.2000;63(4):1034-1040.
    53. Daniels, R., Hall, V.J., French, A.J., Korfiatis, N.A., and Trounson, A.O.Comparison of gene transcription in cloned bovine embryos produced by differentnuclear transfer techniques. Mol. Reprod. Dev.2001;60(3):281-288.
    54. Wrenzycki, C., Wells, D., Herrmann, D., Miller, A., Oliver, J., Tervit, R., andNiemann, H. Nuclear transfer protocol affects messenger RNA expressionpatterns in cloned bovine blastocysts. Biol. Reprod.2001;65(1):309-317.
    55. Laurincik, J., Bjerregaard, B., Strejcek, F., Rath, D., Niemann, H., Rosenkranz, C.,Ochs, R.L., and Maddox-Hyttel, P. Nucleolar ultrastructure and protein allocationin in vitro produced porcine embryos. Mol. Reprod. Dev.2004;68(3):327-334.
    56. Kanka, J., Fulka, J.J., Fulka, J., and Petr, J. Nuclear transplantation in bovineembryo: fine structural and autoradiographic studies. Mol. Reprod. Dev.1991;29(2):110-116.
    57. Kanka, J., Smith, S.D., Soloy, E., Holm, P., and Callesen, H. Nucleolarultrastructure in bovine nuclear transfer embryos. Mol. Reprod. Dev.1999;52(3):253-263.
    58. King, W.A., Shepherd, D.L., Plante, L., Lavoir, M.C., Looney, C.R., and Barnes,F.L. Nucleolar and mitochondrial morphology in bovine embryos reconstructedby nuclear transfer. Mol. Reprod. Dev.1996;44(4):499-506.
    59. Lavoir, M.C., Kelk, D., Rumph, N., Barnes, F., Betteridge, K.J., and King, W.A.Transcription and translation in bovine nuclear transfer embryos. Biol. Reprod.1997;57(1):204-213.
    60. Hyttel, P., Laurincik, J., Zakhartchenko, V., Stojkovic, M., Wolf, E., Muller, M.,Ochs, R.L., and Brem, G. Nucleolar protein allocation and ultrastructure in bovineembryos produced by nuclear transfer from embryonic cells. Cloning.2001;3(2):69-82.
    61. Laurincik, J., Thomsen, P.D., Hay-Schmidt, A., Avery, B., Greve, T., Ochs, R.L.,and Hyttel, P. Nucleolar proteins and nuclear ultrastructure in preimplantationbovine embryos produced in vitro. Biol. Reprod.2000;62(4):1024-1032.
    62. Ouhibi, N., Fulka, J.J., Kanka, J., and Moor, R.M. Nuclear transplantation ofectodermal cells in pig oocytes: ultrastructure and radiography. Mol. Reprod. Dev.1996;44(4):533-539.
    63. Kanka, J., Hozak, P., Heyman, Y., Chesne, P., Degrolard, J., Renard, J.P., andFlechon, J.E. Transcriptional activity and nucleolar ultrastructure of embryonicrabbit nuclei after transplantation to enucleated oocytes. Mol. Reprod. Dev.1996;43(2):135-144.
    64. Kanka, J., Smith, S.D., Soloy, E., Holm, P., and Callesen, H. Nucleolarultrastructure in bovine nuclear transfer embryos. Mol. Reprod. Dev.1999;52(3):253-263.
    65. Baran, V., Vignon, X., LeBourhis, D., Renard, J.P., and Flechon, J.E. Nucleolarchanges in bovine nucleotransferred embryos. Biol. Reprod.2002;66(2):534-543.
    66. Hyttel, P., Viuff, D., Fair, T., Laurincik, J., Thomsen, P.D., Callesen, H., Vos,P.L., Hendriksen, P.J., Dieleman, S.J., Schellander, K., Besenfelder, U., andGreve, T. Ribosomal RNA gene expression and chromosome aberrations inbovine oocytes and preimplantation embryos. Reproduction.2001;122(1):21-30.
    67. Laurincik, J., Zakhartchenko, V., Stojkovic, M., Brem, G., Wolf, E., Muller, M.,Ochs, R.L., and Maddox-Hyttel, P. Nucleolar protein allocation and ultrastructurein bovine embryos produced by nuclear transfer from granulosa cells. Mol.Reprod. Dev.2002;61(4):477-487.
    68. Svarcova, O., Dinnyes, A., Polgar, Z., Bodo, S., Adorjan, M., Meng, Q., andMaddox-Hyttel, P. Nucleolar re-activation is delayed in mouse embryos clonedfrom two different cell lines. Mol. Reprod. Dev.2009;76(2):132-141.
    69. Schlesinger, S., Selig, S., Bergman, Y., and Cedar, H. Allelic inactivation ofrDNA loci. Genes Dev.2009;23(20):2437-2447.
    70. Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D.J., Dash, C.,Bazett-Jones, D.P., Le Grice, S., McKay, R.D., Buetow, K.H., Gingeras, T.R.,Misteli, T., and Meshorer, E. Global transcription in pluripotent embryonic stemcells. Cell Stem Cell.2008;2(5):437-447.
    71. King, W.A., Niar, A., Chartrain, I., Betteridge, K.J., and Guay, P. Nucleolusorganizer regions and nucleoli in preattachment bovine embryos. J Reprod Fertil.1988;82(1):87-95.
    72. Kopecny, V., Flechon, J.E., Camous, S., and Fulka, J.J. Nucleologenesis and theonset of transcription in the eight-cell bovine embryo: fine-structuralautoradiographic study. Mol. Reprod. Dev.1989;1(2):79-90.
    73. Conner, D.A. Mouse embryo fibroblast (MEF) feeder cell preparation. CurrProtoc Mol Biol.2001; Chapter23:22-23.
    74. Bryja, V., Bonilla, S., and Arenas, E. Derivation of mouse embryonic stemcells.2006;1(4):2082-2087.
    75. Tesarik, J., Rienzi, L., Ubaldi, F., Mendoza, C., and Greco, E. Use of a modifiedintracytoplasmic sperm injection technique to overcome sperm-borne andoocyte-borne oocyte activation failures. Fertil. Steril.2002;78(3):619-624.
    76. Hu, L.L., Shen, X.H., Zheng, Z., Wang, Z.D., Liu, Z.H., Jin, L.H., and Lei, L.Cytochalasin B treatment of mouse oocytes during intracytoplasmic sperminjection (ICSI) increases embryo survival without impairment of development.Zygote.2011:1-9.
    77. Gao, S., McGarry, M., Latham, K.E., and Wilmut, I. Cloning of mice by nucleartransfer. Cloning Stem Cells.2003;5(4):287-294.
    78. Wakayama, T., Rodriguez, I., Perry, A.C., Yanagimachi, R., and Mombaerts, P.Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A.1999;96(26):14984-14989.
    79. Zhou, Q., Renard, J.P., Le Friec, G., Brochard, V., Beaujean, N., Cherifi, Y.,Fraichard, A., and Cozzi, J. Generation of fertile cloned rats by regulating oocyteactivation. Science.2003;302(5648):1179.
    80. Henegariu, O., Heerema, N.A., Lowe, W.L., Bray-Ward, P., Ward, D.C., andVance, G.H. Improvements in cytogenetic slide preparation: controlledchromosome spreading, chemical aging and gradual denaturing. Cytometry.2001;43(2):101-109.
    81. Suzuki, T., Minami, N., Kono, T., and Imai, H. Comparison of the RNApolymerase I-, II-and III-dependent transcript levels between nuclear transfer andin vitro fertilized embryos at the blastocyst stage. J Reprod Dev.2007;53(3):663-671.
    82. Schlesinger, S., Selig, S., Bergman, Y., and Cedar, H. Allelic inactivation ofrDNA loci. Genes Dev.2009;23(20):2437-2447.
    83. Zhou, Q., Yang, S.H., Ding, C.H., He, X.C., Xie, Y.H., Hildebrandt, T.B.,Mitalipov, S.M., Tang, X.H., Wolf, D.P., and Ji, W.Z. A comparative approach tosomatic cell nuclear transfer in the rhesus monkey. Hum. Reprod.2006;21(10):2564-2571.
    84. Simonsson, S., and Gurdon, J. DNA demethylation is necessary for the epigeneticreprogramming of somatic cell nuclei. Nat. Cell Biol.2004;6(10):984-990.
    85. Tsunoda, Y., and Kato, Y.[Nuclear transfer and reprogramming mechanism].Nihon Rinsho.2003;61(3):406-410.
    86. Eckardt, S., and McLaughlin, K.J. Interpretation of reprogramming to predict thesuccess of somatic cell cloning. Anim. Reprod. Sci.2004;82-83:97-108.
    87. Kopecny, V., Flechon, J.E., Camous, S., and Fulka, J.J. Nucleologenesis and theonset of transcription in the eight-cell bovine embryo: fine-structuralautoradiographic study. Mol. Reprod. Dev.1989;1(2):79-90.
    88. Dev, V.G., Tantravahi, R., Miller, D.A., and Miller, O.J. Nucleolus organizers inMus musculus subspecies and in the RAG mouse cell line. Genetics.1977;86(2Pt.1):389-398.
    89. Kurihara, Y., Suh, D.S., Suzuki, H., and Moriwaki, K. Chromosomal locations ofAg-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm.Genome.1994;5(4):225-228.
    90. Korobova, F.V., Romanova, L.G., Noniashvili, E.M., Dyban, A.P., and Zatsepina,O.V.[Localization of chromosomal nucleus organizing regions in one-cell mouseembryos and oocytes by fluorescence in situ hybridization]. Ontogenez.2004;35(5):336-345.
    91. Mamaeva, S.E., and Tsvileneva, N.N. A study of chromosome content of Friendvirus-induced mouse erythroleukemia cells (clone M2) via karyotypereconstruction. Cancer Genet Cytogenet.1985;16(3):199-205.
    92. Jean, P., Hartung, M., Mirre, C., and Stahl, A. Association of centromericheterochromatin with the nucleolus in mouse Sertoli cells. Anat Rec.1983;205(4):375-380.
    93. Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D.J., Dash, C.,Bazett-Jones, D.P., Le Grice, S., McKay, R.D., Buetow, K.H., Gingeras, T.R.,Misteli, T., and Meshorer, E. Global transcription in pluripotent embryonic stemcells. Cell Stem Cell.2008;2(5):437-447.
    94. Conconi, A., Widmer, R.M., Koller, T., and Sogo, J.M. Two different chromatinstructures coexist in ribosomal RNA genes throughout the cell cycle. Cell.1989;57(5):753-761.
    95. Santoro, R., and Grummt, I. Molecular mechanisms mediatingmethylation-dependent silencing of ribosomal gene transcription. Mol. Cell.2001;8(3):719-725.
    96. Leung, A.K., Gerlich, D., Miller, G., Lyon, C., Lam, Y.W., Lleres, D., Daigle, N.,Zomerdijk, J., Ellenberg, J., and Lamond, A.I. Quantitative kinetic analysis ofnucleolar breakdown and reassembly during mitosis in live human cells. J. CellBiol.2004;166(6):787-800.
    97. Weisenberger, D., and Scheer, U. A possible mechanism for the inhibition ofribosomal RNA gene transcription during mitosis. J. Cell Biol.1995;129(3):561-575.
    98. Dyban, A.P., Severova, E.L., Zatsepina, O.V., and Chentsov, Y.S. Thesilver-stained NOR and argentophilic nuclear proteins in early mouseembryogenesis: a cytological study. Cell Differ Dev.1990;29(3):165-179.
    99. Roussel, P., Andre, C., Masson, C., Geraud, G., and Hernandez-Verdun, D.Localization of the RNA polymerase I transcription factor hUBF during the cellcycle. J. Cell Sci.1993;104(Pt2):327-337.
    100. Geuskens, M., and Alexandre, H. Ultrastructural and autoradiographicstudies of nucleolar development and rDNA transcription in preimplantationmouse embryos. Cell Differ.1984;14(2):125-134.
    101. Boisvert, F.M., van Koningsbruggen, S., Navascues, J., and Lamond, A.I.The multifunctional nucleolus. Nat Rev Mol Cell Biol.2007;8(7):574-585.
    102. Kato, Y., and Tsunoda, Y. Role of the donor nuclei in cloning efficiency: canthe ooplasm reprogram any nucleus? Int. J. Dev. Biol.2010;54(11-12):1623-1629.
    103. Schneider, D.A., Michel, A., Sikes, M.L., Vu, L., Dodd, J.A., Salgia, S.,Osheim, Y.N., Beyer, A.L., and Nomura, M. Transcription elongation by RNApolymerase I is linked to efficient rRNA processing and ribosome assembly. Mol.Cell.2007;26(2):217-229.
    104. Suzuki, T., Minami, N., Kono, T., and Imai, H. Comparison of the RNApolymerase I-, II-and III-dependent transcript levels between nuclear transfer andin vitro fertilized embryos at the blastocyst stage. J Reprod Dev.2007;53(3):663-671.
    105. Kishigami, S., Bui, H.T., Wakayama, S., Tokunaga, K., Van Thuan, N.,Hikichi, T., Mizutani, E., Ohta, H., Suetsugu, R., Sata, T., and Wakayama, T.Successful mouse cloning of an outbred strain by trichostatin A treatment aftersomatic nuclear transfer. J Reprod Dev.2007;53(1):165-170.
    106. Su, G.H., Sohn, T.A., Ryu, B., and Kern, S.E. A novel histone deacetylaseinhibitor identified by high-throughput transcriptional screening of a compoundlibrary. Cancer Res.2000;60(12):3137-3142.
    107. Zhao, J., Ross, J.W., Hao, Y., Spate, L.D., Walters, E.M., Samuel, M.S.,Rieke, A., Murphy, C.N., and Prather, R.S. Significant improvement in cloningefficiency of an inbred miniature pig by histone deacetylase inhibitor treatmentafter somatic cell nuclear transfer. Biol. Reprod.2009;81(3):525-530.
    108. Ono, T., Li, C., Mizutani, E., Terashita, Y., Yamagata, K., and Wakayama, T.Inhibition of class IIb histone deacetylase significantly improves cloningefficiency in mice. Biol. Reprod.2010;83(6):929-937.
    109. Bui, H.T., Seo, H.J., Park, M.R., Park, J.Y., Thuan, N.V., Wakayama, T., andKim, J.H. Histone deacetylase inhibition improves activation of ribosomal RNAgenes and embryonic nucleolar reprogramming in cloned mouse embryos. Biol.Reprod.2011;85(5):1048-1056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700