超声对麦冬多糖结构、溶液行为及生物活性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用热水提取法与超声提取法提取麦冬多糖,并对热水提取的麦冬多糖进行超声处理。比较研究了超声提取与超声处理麦冬多糖对多糖一级结构的影响,并对热水提取与超声提取麦冬多糖的形貌特征、溶液构象及生物活性进行了比较研究,旨在揭示超声对麦冬多糖结构及活性的影响。主要研究内容结果如下:
     (1)研究超声提取功率对麦冬多糖结构及活性的影响,实验选用五种功率超声提取麦冬多糖,并利用季铵盐沉淀法对其进行分离,分别得到五种AP1和AP3多糖,然后利用高效液相色谱法和气相色谱法分别对分离得到多糖的分子量分布、单糖组成进行了分析研究。结果表明,随着超声功率的增大,不断有较大分子量的多糖被提取出来,但当超声功率进一步增大时,大分子量的多糖分子量减半,被降解成较小分子量的多糖。气相色谱研究表明,随着超声提取功率的不断增大,嵌入麦冬原材料中较稳定、用小功率很难被提取出来单糖组分,如鼠李糖、阿拉伯糖和木糖均都被提取出来。对得到的多糖的抗氧化活性研究结果表明,随着超声功率的增大,麦冬多糖的抗氧化活性呈现出先增大后减小的趋势,且超声功率为400W时其抗氧化活性最高。因此,后续实验中超声提取麦冬多糖的功率选用400W。
     (2)对热水提取的麦冬多糖WPOJ与超声提取的麦冬多糖UPOJ的结构及生物活性进行比较研究,结果发现:UPOJ的提取率明显高于WPOJ;利用红外光谱对两者的官能团进行检测发现,WPOJ中可以检测到β-葡萄吡喃糖,而UPOJ中未检测到,说明超声提取对麦冬多糖的结构产生了影响;两者的生物活性结果表明,UPOJ的体外抗氧化活性及抗糖尿病活性均高于WPOJ,而对K562细胞的抗肿瘤活性却相反。
     (3)两种多糖经DEAE-cellulose52色谱柱层析与Sephacryl S-300凝胶色谱柱层析纯化得到的WPOJ-DS与UPOJ-DS均为单一组分。利用化学分析法(包括高碘酸氧化、Smith降解、酸水解、甲基化分析等)及仪器分析法(包括气相、液相、紫外、红外、质谱、核磁共振等)对这两种组分的一级结构进行研究,结果显示,WPOJ-DS与UPOJ-DS的主链结构存在差异,WPOJ-DS的主链由1,6-α-D-Glcf,1,6-β-D-Glcp,1,3,6-α-D-Glcf和1,3-a-D-Araf组成,其摩尔比为5:1:3:2, UPOJ-DS的主链由1,6-α-D-Glcf,1,3,6-α-D-Glcf和1,3-α-D-Araf组成,其摩尔比为5:4:2,说明WPOJ-DS中1,6-β-D-Glcp在UPOJ-DS中变为1,3,6-α-D-Glcf; WPOJ-DS支链及链木端主要由1,6-α-D-Glcp,1,2-α-D-Fruf和1-a-D-Araf组成,其摩尔比为2:3:5,UPOJ-DS支链及链末端主要由1,6-α-D-Glcp,1,2-α-D-Fruf和1-α-D-Araf组成,其摩尔比为3:4:6,说明UPOJ-DS的侧链结构比WPOJ-DS丰富。因此,相对于热水提取法,利用超声提取法可以将麦冬中嵌入较深层次、支链较丰富的麦冬多糖提取出来。
     (4)对WPOJ-DS进行超声处理后记为WPOJ-DS-U,将WPOJ-DS-U与WPOJ-DS的一级结构进行比较研究,结果表明,超声处理后,麦冬多糖的分子量、单糖组成、摩尔比及连连接方式几乎没有变化,但是超声处理作用对热水提取的麦冬多糖的p构型产生了影响,使其转变为α构型,主要表现为→6)-β-D-Glcp(1→转变为→6)-a-D-Glcp(1→。通常β-D-Glc要比α-D-Glc稳定,但超声作用的巨大能量促使麦冬多糖结构处于亚稳定状态,提高了其生物活性。
     (5)对WPOJ-DS与UPOJ-DS的溶液行为与链构象进行比较研究。粒度分析结果表明,UPOJ-DS的有效直径相对于WPOJ-DS较小,且两者均在酸性条件下粒度较小,而在碱性条件下容易发生聚集。刚果红实验结果表明,UPOJ-DS具有单螺旋结构,而WPOJ-DS则不具有单螺旋结构。圆二色性结果表明,Ca2+与刚果红的加入,对WPOJ-DS的构象影响较小,而对UPOJ-DS影响较大;DMSO的加入对两种多糖的构象影响均较大,使两种多糖的不对称性明显增加;两者在酸碱性溶液中构象都会发生突变,但在碱性溶液中更加明显。X射线衍射结果显示,WPOJ-DS与UPOJ-DS均具有晶体结构,且UPOJ-DS的晶格常数略大于WPOJ-DS。通过测定TG-DTG与DSC曲线,对两种多糖的热稳定性进行研究,结果表明,两种多糖的热性质基本相似,但UPOJ-DS相对于WPOJ-DS热稳定性较强。
     对两种多糖的原子力显微镜及扫描电镜观察结果表明,超声提取的麦冬多糖UPOJ-DS相对于热水提取的麦冬多糖WPOJ-DS的分子聚集性明显减少,同时原子力显微镜下观察到了UPOJ-DS明显的螺旋结构,这与刚果红实验结果一致。云母片试样与粉末试样的扫描电镜结果均表明UPOJ-DS相对于WPOJ-DS分子聚集程度明显减少,说明超声的巨大能量使麦冬多糖的结构发生了变化,使得分子间作用力减小,分子交联程度减弱,进而导致麦冬多糖聚集体的形态发生变化。
     (6) WPOJ-DS与UPOJ-DS抗氧化活性结果表明,WPOJ-DS与UPOJ-DS对·OH、O2-·与DPPH·均有清除作用,且UPOJ-DS对这三者的清除效果都比WPOJ-DS要好,结合两种多糖的一级结构、形貌特征和溶液行为来分析,UPOJ-DS的分子的侧链结构比WPOJ-DS的侧链结构丰富;UPOJ-DS的原子力显微镜下可以观测到螺旋结构,且分子分布较为分散,因此推测UPOJ-DS的较强的体外抗氧化活性与其分子的结构、形貌、溶液行为是密切相关的。
In this paper, polysaccharides were extracted from ophiopogon japonicus by hot water and ultrasound. The polysaccharides extracted by hot water were subjected to ultrasonic treatment. The effect on primary structure of the polysaccharides extracted by hot water and subjected to ultrasonic treatment was studied. Morphology, conformation and biological activity of the polysaccharides extracted by hot water and ultrasound were studied to reveal the effect of ultrasound on the structure and activity of ophiopogon japonicus polysaccharides. The main research contents and results are as follows:
     (1) The effect of ultrasonic power on the structure and activity of ophiopogon japonicus polysaccharides was studied. We selected five kinds of ultrasonic power to extract polysaccharides from ophiopogon japonicus root. The polysaccharides of API and AP3were obtained applying quaternary ammonium salt to isolate the five kinds of polysaccharides, respectively. Then molecular weight distribution and monosaccharide composition of API and AP3were detected by high performance liquid chromatography and gas chromatography, respectively. The results showed that larger molecular weight polysaccharides were obtained with the increasing of ultrasonic power, but degradation phenomenon that large molecular weight cut in half and degraded to small molecular weight emerged with the further increasing of ultrasonic power. Gas chromatography studies showed that, monosaccharide components, such as rhamnose, arabinose and xylose, which were steadily embedded in ophiopogon japonicus raw material and difficult to extract using small power obtained with the increase of the ultrasonic power. Study on antioxidant activity showed that antioxidant activity of the polysaccharides increased to the maximum and then decreased with the increasing ultrasonic power. The antioxidant activity was strongest when the ultrasonic power was400W. Therefore, the ultrasonic power of400W was selected in follow-up experiments.
     (2) Structure and biological activity of polysaccharides WPOJ extracted by hot water and UPOJ extracted by ultrasound were studied. The results showed that the extraction rate of UPOJ was significantly higher than that of WPOJ. The functional groups of WPOJ and UPOJ were detected with IR spectrum. The result showed (3-glucopyranose was detected in WPO but not in UPOJ, indicating that the structure of ophiopogon japonicus polysaccharides was affected with ultrasound. The result of bioactivity showed the antioxidant activity and antidiabetic activity in vitro of UPOJ were higher than that of WPOJ. But the antitumor activity on K562cells of UPOJ was lower than that of WPOJ.
     (3) The homogeneity of WPOJ-DS and UPOJ-DS were purified by a combination of DEAE-52anion-exchange column chromatography and repeated Sephacryl S-300HR gel chromatography from WPOJ and UPOJ. The primary structure of WPOJ-DS and UPOJ-DS were studied by chemical analysis (including periodate oxidation, Smith degradation, hydrolysis with acid and methylation analysis) and instrumental analysis (including GC, HPLC, UV, IR, MS and NMR). The results showed that the backbone of WPOJ-DS was different with UPOJ-DS. The backbone of WPOJ-DS was1,6-α-D-glucopyranose,1,6-β-D-glucopyranose,1,3,6-α-D-glucofuranose and1,3-α-D-arabinofuranose in the molar ratio of5:1:3:2, while the backbone of UPOJ-DS was1,6-α-D-glucopyranose,1,3,6-α-D-glucofuranose and1,3-a-D-arabinofuranose in the molar ratio of5:4:2, indicating1,6-β-D-glucopyranose in WPOJ-DS was instead of1,3,6-α-D-glucofuranose in UPOJ-DS. The branched chains and the ends of the backbone of WPOJ-DS were mainly composed of1,6-α-D-glucopyranose,1,2-α-D-fructofuranose and1-α-D-arabinofuranose, in the molar ratio of2:3:5, while the branched chains and the ends of the backbone were mainly composed of1,6-α-D-glucopyranose,1,2-α-D-fructofuranose and1-α-D-arabinofuranose, in the molar ratio of3:4:6, demonstrating the branched chains of UPOJ-DS were richer than that of WPOJ-DS. Therefore, the polysaccharides including richer branched chains, embedded in ophiopogon japonicus could be extracted by ultrasound but not by hot water.
     (4) WPOJ-DS was treated by ultrasound and named as WPOJ-DS-U. The primary structures of WPOJ-DS-U and WPOJ-DS were studied comparatively. Analysis showed that the molecular weight, monosaccharide composition, molar ratio, and chain connections of WPOJ-DS-U were not in the least different with WPOJ-DS. β-configuration in WPOJ-DS was affected with ultrasound. β-configuration in WPOJ-DS had changed to α-configuration in WPOJ-DS-U. The main effect was→6)-β-D-Glcp(1→in WPOJ-DS had changed to→6)-a-D-Glcp(1→in WPOJ-DS-U. Generally, β-D-Glc is more stable than α-D-Glc. Therefore, the tremendous energy of ultrasound causes the structure of ophiopogon japonicus polysaccharide in a metastable state and the increasing of the biological activity.
     (5) The solution behavior and chain conformation of WPOJ-DS and UPOJ-DS were studied comparatively. The analysis result of particle size showed the effective diameter of UPOJ-DS was smaller than that of WPOJ-DS. Both of them had smaller effective diameter under acidic conditions and aggregation under alkaline conditions. The result of Congo red experiment showed UPOJ-DS had single spiral structure, while the WPOJ-DS had not. The result of circular dichroism showed it had larger effects on the conformation of UPOJ-DS but smaller effects on the conformation of WPOJ-DS when Ca2+and Congo red were joined in. It had larger effects on the conformation and increasing the asymmetry of both WPOJ-DS and UPOJ-DS when DMSO was joined in. The conformation of WPOJ-DS and UPOJ-DS changeed in acid and alkaline solution and the change was more obvious in alkaline solution. The result of X ray diffraction showed WPOJ-DS and UPOJ-DS had crystal structure, and the crystal lattice constant of UPOJ-DS was slightly larger than that of WPOJ-DS. TG-DTG and DSC curve and the thermal stability of the two kinds of polysaccharides were determined. Results indicated that thermal properties of the two kinds of polysaccharides were basically similar, but the UPOJ-DS relative to WPOJ-DS had a good thermal stability.
     The results of atomic force microscopy and scanning electron microscopy showed the molecules aggregation of UPOJ-DS significantly reduced relative to WPOJ-DS. The spiral structure was observed in UPOJ-DS by atomic force microscopy, which was consistent with the result of Congo red experiment. The results of SEM (includes mica samples and powder sample s) showed molecular aggregation behavior of UPOJ-DS significantly weakened relative to WPOJ-DS, indicating the tremendous energy of ultrasound had changed the structure of ophiopogon japonicus polysaccharide. The intermolecular force and molecular cross-linking degree in UPOJ-DS reduced, causing the change on the aggregates of the polysaccharide.
     (6) Antioxidant activity results of WPOJ-DS and UPOJ-DS showed that both of them had scavenging effects on·OH, O2-· and DPPH·. The scavenging effect of UPOJ-DS was better than that of UPOJ-DS. Combine the results of primary structure, morphology and solution behavior of the two kinds of polysaccharides that the branched chains of UPOJ-DS were richer than that of WPOJ-DS, UPOJ-DS had the spiral structure observed by atomic force microscopy, and the molecular distribution was more dispersed. Therefore, it was speculated that the higher antioxidant activity is closely related to the structure, morphology and solution behavior.
引文
[1]A. Z. Zong, H. Z. Cao, F. S. Wang. Anticancer polysaccharides from natural resources:A review of recent research [J]. Carbohydrate Polymers,2012,90(4): 1395-1410.
    [2]I. M. Skvortsov, V. V. Ignatov. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species:properties and the possible role in interaction with plant roots [J]. FEMS Microbiology Letters, 1998,165(2):223-229.
    [3]L. B. Talarico, C. A. Pujol, R. G. M. Zibetti, P. C. S. Faria, M. D. Noseda, M. E. R. Duarte, E.B. Damonte. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell [J]. Antiviral Research, 2005,66(2-3):103-110.
    [4]L. C. Faccin-Galhardi, K. A. Yamamoto, S. Ray, B. Ray, R. E. C. Linhares, C. Nozawa. The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus [J]. Journal of Ethnopharmacology,2012,142(1):86-90.
    [5]B. Z. Zhang, P. S. Yan, H. Chen, J. He. Optimization of production conditions for mushroom polysaccharides with high yield and antitumor activity [J]. Carbohydrate Polymers,2012,87(4):2569-2575.
    [6]Q. L. Huang, Y. Jin, L. N. Zhang, P. C. K. Cheung, J. F. Kennedy. Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter [J]. Carbohydrate Polymers,2007,70(3):324-333.
    [7]R. Z. Chen, F. L. Meng, Z. Q. Liu, R. P. Chen, M. Zhang. Antitumor activities of different fractions of polysaccharide purified from Ornithogalum caudatum Ait [J]. Carbohydrate Polymers,2010,80(3):845-851.
    [8]S. Zou, X. Zhang, W. B. Yao, Y. G. Niu, X. D. Gao. Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. [J]. Carbohydrate Polymers,2010,80(4):1161-1167.
    [9]S.P. Li, G.H. Zhang, Q. Zeng, Z.G. Huang, Y.T. Wang, T.T.X. Dong, K.W.K. Tsim. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia [J]. Phytomedicine,2006,13(6):428-433.
    [10]A. Togola, M. Inngjerdingen, D. Diallo, H. Barsett, B. Rolstad, T. E. Michaelsen, B. S. Paulsen. Polysaccharides with complement fixing and macrophage stimulation activity from Opilia celtidifolia, isolation and partial characterisation [J]. Journal of Ethnopharmacology,2008,115(3):423-431.
    [11]D. Diallo, B. S. Paulsen, T. H. A Liljeback, T. E. Michaelsen. The malian medicinal plant Trichilia emetica; studies on polysaccharides with complement fixing ability [J]. Journal of Ethnopharmacology,2003,84(2-3):279-287.
    [12]S. M. Kang, K. N. Kim, S. H. Lee, G. Ahn, S. H. Cha, A. D. Kim, X. D. Yang, M. C. Kang, Y. G. Jeon. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages [J]. Carbohydrate Polymers,2011,85(1):80-85.
    [13]C. J. Liu, J. Y. Lin. Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio [J]. Food and Chemical Toxicology,2012,50(9):3032-3039.
    [14]G. Paradossi, F. Cavalieri, L. Pizzoferrato, A. M. Liquori. A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva [J]. International Journal of Biological Macromolecules,1999,25, (4):309-315.
    [15]T. Song, A. Pranovich, B. Holmbom. Effects of pH control with phthalate buffers on hot-water extraction of hemicelluloses from spruce wood [J]. Bioresource Technology,2011,102(22):10518-10523.
    [16]R. M. Yu, Y. Yin, W. Yang, W. L. Ma, L. Yang, X. J. Chen, Z. Zhang, B. Ye, L. Song. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris [J]. C arbohydrate Polymers, 2009,75(1):166-171.
    [17]J. Zhang, S. Y. Jia, Y. Liu, S. H. Wu, J. Y. Ran. Optimization of enzyme-assisted extraction of the Lycium barbarum polysaccharides using response surface methodology [J]. Carbohydrate Polymers,2011,86(2):1089-1092.
    [18]X. L. Yin, Q. H. You, Z. H. Jiang. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology [J]. Carbohydrate Polymers,2011,86(3):1358-1364.
    [19]杨必成,杨义芳.超临界流体萃取中药及天然产物的样品制备和预处理方法研究进展[J].中草药,2010,41(8):1391-1394.
    [20]X. Z. ZHENG, F. P. YIN, C. H. LIU, X. W. XU. Effect of Process Parameters of Microwave Assisted Extraction (MAE) on Polysaccharides Yield from Pumpkin [J]. Journal of Northeast Agricultural University (English edition),2011,18(2): 79-86.
    [21]R. M. Rodriguez-Jasso, S. I. Mussatto, L. Pastrana, C. N. Aguilar, J. A. Teixeira. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed [J]. Carbohydrate Polymers,2011,86(3):1137-1144.
    [22]Z. Hromadkova, A. Ebringerova, P. Valachovic. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.) [J]. Ultrasonics Sonochemistry,2002,9(1):37-44.
    [23]J. Prakash Maran, V. Mekala, S. Manikandan. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata [J]. Carbohydrate Polymers,2013,92(2):2018-2026.
    [24]L. R. Wen, L. Z. Lin, L. J. You, B. Yang, G. X. Jiang, M. M. Zhao. Ultrasound-assited extraction and structural identification of polysaccharides from Isodon lophanthoides var. gerardianus (Bentham) H. Hara [J]. Carbohydrate Polymers,2011,85(3):541-547.
    [25]J. Domenech, A. Prieto, B. Gomez-Miranda, J. A. Leal, O. Ahrazem, J. Jimenez-Barbero, M. Bernabe. Structure of fungal polysaccharides isolated from the cell-wall of three strains of Verticillium fungicola [J]. Carbohydrate Polymers, 2002,50(2):209-212.
    [26]W. A. J. P. Wijesinghe, Y. Athukorala, Y. J. Jeon. Effect of anticoagulative sulfated polysaccharide purified from enzyme-assistant extract of a brown seaweed Ecklonia cava on Wistar rats [J]. Carbohydrate Polymers,2011,86(2):917-921.
    [27]D. A. Applegarth, G. G. S. Dutton. Column chromatography of polysaccharides in the presence of urea [J]. Journal of Chromatography A,1964,15:246.
    [28]C. C. Wang, S. C. Chang, B. S. Inbaraj, B. H. Chen. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity [J]. Food Chemistry,2010,120(1):184-192.
    [29]S. P. Nie, S. W. Cui, A. O. Phillips, M. Y. Xie, G. O. Phillips, S. Al-Assaf, X. L. Zhang. Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy [J]. Carbohydrate Polymers,2011,84(3):894-899.
    [30]J. S. Kim, B. L. Reuhs, F. Michon, R. E. Kaiser, R. G. Arumugham. Addition of glycerol for improved methylation linkage analysis of polysaccharides [J]. Carbohydrate Research,2006,341(8):1061-1064.
    [31]K. A. Kristiansen, A. Potthast, B. E. Christensen. Periodate oxidation of polysaccharides for modification of chemical and physical properties [J]. Carbohydrate Research,2010,345(10):1264-1271.
    [32]J. Kumirska, J. Szafranek, M. Czerwicka, M. Golebiowski, M. Paszkiewicz, H. Dziadziuszko, D. Kunikowska, P. Stepnowski. Smith degradation of the O-antigenic polysaccharide of Salmonella Dakar:structural studies of the products [J]. Carbohydrate Research,2008,343(6):1120-1125.
    [33]V. Gloaguen, J. M. Wieruszeski, G. Strecker, L. Hoffmann, H. Morvan. Identification by NMR spectroscopy of oligosaccharides obtained by acidolysis of the capsular polysaccharides of a thermal biomass [J]. International Journal of Biological Macromolecules,1995,17(6):387-393.
    [34]Z. Mitic, M. Cakic, G. M. Nikolic, R. Nikolic, G. S. Nikolic, R. Pavlovic, E. Santaniello. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-vis, ATR-FTIR, and EPR [J]. Carbohydrate Research,2011,346(3):434-441.
    [35]M. Kac□urakova, P. Capek, V. Sasinkova, N. Wellner, A. Ebringerova. FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers,2000,43(2):195-203.
    [36]J. Copikova, A. S. Barros, I. Smidova, M. Cerna, D. H. Teixeira, I. Delgadillo, A. Synytsya, M. A. Coimbra. Influence of hydration of food additive polysaccharides on FT-IR spectra distinction [J]. Carbohydrate Polymers,2006,63(3):355-359.
    [37]Q. Yang, S. W. Wang, Y. H. Xie, J. Y. Sun, J. B. Wang. HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression [J]. International Journal of Biological Macromolecules, 2010,46(2):167-172.
    [38]X. Lin, D. S. Xu, Y.Feng, L. Shen. Determination of Ophiopogon japonicus polysaccharide in plasma by HPLC with modified postcolumn fluorescence derivatization [J]. Analytical Biochemistry,2005,342,(2):179-185.
    [39]Z. Guadalupe, O. Martinez-Pinilla, A. Garrido, J. D. Carrillo, B. Ayestaran. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC) [J]. Food Chemistry,2012,131(1):367-374.
    [40]X. B. Peng, Q. Li, L. N. Ou, L. F. Jiang, K. Zeng. GC-MS, FT-IR analysis of black fungus polysaccharides and its inhibition against skin aging in mice [J]. International Journal of Biological Macromolecules,2010,47(2):304-307.
    [41]Omaira Gutierrez de G, Maritza Martinez, Lilian Sanabria, Gladys Leon de Pinto, J.Manuel Igartuburu. 1D-and 2D-NMR spectroscopy studies of the polysaccharide gum from Spondias purpurea var. lutea [J]. Food Hydrocolloids,2005,19(1): 37-43.
    [42]P, Cai, J, Moran, V, Pavliak, C. H. Deng, N. Khoury, O. Marcq, M. E. Ruppen. NMR structural analysis of the capsular polysaccharide from Streptococcus pneumoniae serotype 6C [J]. Carbohydrate Research,2012,351(1):98-107.
    [43]N. Volpi. Application of high-performance capillary electrophoresis to the purification process of Escherichia coli K4 polysaccharide [J]. Journal of Chromatography B,2004,811(2):253-256.
    [44]A. M. Shemsi, T. Ahmad, M. H. Rashid, K. S. Siddiqui. Automation of compartmental electrophoresis apparatus for the separation of non-covalently attached polysaccharides from proteins [J]. Enzyme and Microbial Technology, 1998,22(1):76-77.
    [45]R. Chandrasekaran. X-Ray Diffraction of Food Polysaccharides [J]. Advances in Food and Nutrition Research,1998,42:131-210.
    [46]D. Sawada, S. Kimura, Y. Nishiyama, P. Langan, M. Wada. The crystal structure of mono-ethylenediamine β-chitin from synchrotron X-ray fiber diffraction [J]. Carbohydrate Polymers,2013,92(2):1737-1742.
    [47]S. Pose, A. R. Kirby, J. A. Mercado, V. J. Morris, M. A. Quesada. Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM [J]. Carbohydrate Polymers,2012,88(3):882-890.
    [48]V. J. Morris, A. P. Gunning, A. R. Kirby, A. Round, K. Waldron, A. Ng. Atomic force microscopy of plant cell walls, plant cell wall polysaccharides and gels [J]. International Journal of Biological Macromolecules,1997,21(1-2):61-66.
    [49]M. Sletmoen, B. E. Christensen, B. T. Stokke. Probing macromolecular architectures of nanosized cyclic structures of (1→3)-β-d-glucans by AFM and SEC-MALLS [J]. Carbohydrate Research,2005,340(5):971-979.
    [50]A. Tanyi, V. Benjamin, A. J. Sadberry, V. M. Doctor. Fluorescence and circular dichroism studies during the interactions of sulfated polysaccharides with antithrombin Ⅲ [J]. Thrombosis Research,1995,77 (6):505-513.
    [51]A. Parra, E. S Stevens. The origin of circular dichroism in unsubstituted carbohydrate polymers [J]. Carbohydrate Polymers,2000,41(2):111-113.
    [52]T. Gaio, C. Ester, B. Alberto, D. Fessas. Xanthan and glucomannan mix tures: syner gistic interactions and g elation [J]. Biomacr omolecules,2002,3(3): 489-504.
    [53]J. Y. Qian, W. Chen, W. M. Zhang, H. Zhang. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation:A primary approach [J]. Carbohydrate Polymers,2009,78(3):620-625.
    [54]A. H. Martin, H. D. Goff, A. Smith, D. G. Dalgleish. Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM) [J]. Food Hydrocolloids,2006,20(6): 817-824.
    [55]L. L. Fan, S. D. Ding, L. Z. Ai, K. Q. Deng. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus [J]. Carbohydrate Polymers,2012,90(2):870-874.
    [56]J. H. Wang, J. P. Luo, X. Q. Zha, B. J. Feng. Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl [J]. Carbohydrate Polymers,2010,79(1):114-118.
    [57]T. H. Yang, M. Jia, S. Y. Zhou, F. Pan, Q. B. Mei. Antivirus and immune enhancement activities of sulfated polysaccharide from Angelica sinensis [J]. International Journal of Biological Macromolecules,2012,50(3):768-772.
    [58]R. Li, W. C. Chen, W. P. Wang, W. Y. Tian, X. G. Zhang. Extraction, characterization of Astragalus polysaccharides and its immune modulating activities in rats with gastric cancer [J]. Carbohydrate Polymers,2009,78(4): 738-742.
    [59]W. Zhu, L. C. Chiu, V. E. Ooi, et al. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patensagainst Herpes simplexvirus type 1 [J]. Phytomedicine,2006,13(9-10):695-701.
    [60]J. B. Lee, K. Hayashi, M. Maeda, et al. Antiherpetic activities of sulfated polysaccharides from green algae [J]. Planta Med,2004,70(9):813-817.
    [61]F. Pacciarini, S. Ghezzi. D. Pinna.Sulfated K5 Escherichia coli polysaccharide derivatives inhibit human immunodeficiency type-1(HIV-1) infection:canidate microbicides to prevent sexual HIV transmission [J]. NewMicrobiol,2004,27:5-9.
    [62]S. Q. Xie, W. Q. Liao, Z. R. Yao, Z. D. Wang. Related gene expressions in anti-keratinocyte aging induced by Ganoderma lucidum polysaccharides [J]. Journal of Medical Colleges of PLA,2008,23(3):167-175.
    [63]M. Ye, W. X. Chen, T. Qiu, R. Y. Yuan, Y. W. Ye, J. M. Cai. Structural characterisation and anti-ageing activity of extracellular polysaccharide from a strain of Lachnum sp. [J]. Food Chemistry,2012,132,(1):338-343.
    [64]J. Wang, S. S. Li, Y. Y. Fan, Y. Chen, D. Liu, H. R. Cheng, X. G. Gao, Y. F. Zhou. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer [J]. Journal of Ethnopharmacology,2010,130(2):421-423.
    [65]H. L. Zhang, J. Li, G. Li, D. M. Wang, L. P. Zhu, D. P. Yang. Structural characterization and anti-fatigue activity of polysaccharides from the roots of Morinda officinalis [J]. International Journal of Biological Macromolecules,2009, 44(3):257-261.
    [66]T. Kiho, A. Yamane, J. Hui, et al. Hypoglycemic activity of a polysaccharide from the cultural mycelium ofCordyceps sinensisand its effect on glucosemetabolism in mouse liver [J]. Biol Pharm Bull,1996,19:294-296.
    [67]T. G. Pillai, C. Krishnan K. Nair, K. K. Janardhanan. Polysaccharides isolated from Ganoderma lucidum occurring in Southern parts of India, protects radiation induced damages both in vitro and in vivo [J]. Environmental Toxicology and Pharmacology,2008,26(1):80-85.
    [68]Z. P. Huang, Y. N. Huang, X. B. Li, L. N. Zhang. Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides [J]. Carbohydrate Polymers,2009,78,(3):596-601.
    [69]Y. Yi, M. W. Zhang, S. T. Liao, R. F. Zhang, Y. Y. Deng, Z. C. Wei, B. Yang. Effects of alkali dissociation on the molecular conformation and immunomodulatory activity of longan pulp polysaccharide (LPI) [J]. Carbohydrate Polymers,2012,87(2):1311-1317.
    [70]L. Q. Yang, L. M. Zhang. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76(3):349-361.
    [71]杨海龙,吴天祥,章克昌.(1→3)-β-D葡聚糖构象的理论分析[J].无锡轻工大学学报,2002,21(5):487-491.
    [72]Y. Zhang, X. Xu, L. Zhang. Gel Formation and low-temperature intramolecular conformation transition of a triple-helical polysaccharide Lentinan in water [J]. Biopolymers,2008,89:852-861.
    [73]吕金顺.植物多糖的凹形结构与生物活性关系[J].天然产物研究与开发,2004,15(4):79-82.
    [74]国家药典委员会.中华人民共和国药典(一部),2005年版[S].北京:化学工业出版社,2005,20:122.
    [75]S. Lan, F. Yi, L. Shuang, C. J. Wang, X. W. Zheng. Chemical constituents from the fibrous root of Ophiopogon japonicus, and their effect on tube formation in human myocardial microvascular endothelial cells [J]. Fitoterapia,2013,85:57-63.
    [76]T. Zhang, L. P. Kang, H. S. Yu, Y.X. Liu, Y. Zhao, C. Q. Xiong, J. Zhang, P. Zou, X. B. Song, C. Liu, B. P. Ma Steroidal saponins from the tuber of Ophiopogon japonicus [J]. Steroids,2012,77(12):1298-1305.
    [77]N. Liu, X. B. Wen, J. H. Liu, M. Liang, H. J. Zeng, Y. Lin, et al. Determination of ruscogenin in crude Chinese medicines and biological samples by immunoassay [J]. Anal Bioanal Chem,2006,386:1727-1733.
    [78]J. P. Kou, Y. Sun, Y. W. Lin, Z. H. Cheng, W. Zheng, B. Y. Yu, et al. Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyrhachis lamellidens [J]. Biol Pharm Bull,2005,28:1234-1238.
    [79]J. Tao, H. Y. Wang, H. Zhou, S. N. Li. The saponin monomer of dwarf lilyturf tuber, DT-13, reduces L-type calcium currents during hypoxia in adult rat ventricular myocytes [J]. Life Sci,2005,77:3021-3030.
    [80]N. Li, J. Y. Zhang, K. W. Zeng, L. Zhang, Y. Y. Che, P. F. Tu. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus [J]. Fitoterapia,2012,83(6):1042-1045.
    [81]Y. F. ZHOU, J. QI, D. N. ZHU, B. Y. YU. Homoisoflavonoids from Ophiopogon japonicus and Its Oxygen Free Radicals (OFRs) Scavenging Effects [J]. Chinese Journal of Natural Medicines,2008,6(3):201-204.
    [82]S.1. Xiong, A. L. Li, N. Huang, F. Lu, D. B. Hou. Antioxidant and immunoregulatory activity of different polysaccharide fractions from tuber of Ophiopogon japonicus [J]. Carbohydrate Polymers,2011,86(3):1273-1280.
    [83]L. Y. Wang, Y. Wang, D. S. Xu, K. F. Ruan, Y. Feng, S. Wang. MDG-1, a polysaccharide from Ophiopogon japonicus exerts hypoglycemic effects through the PI3K/Akt pathway in a diabetic KKAy mouse model [J]. Journal of Ethnopharmacology,2012,143(1):347-354.
    [84]X. M Chen, J. Tang, W. Y. Xie, J. J. Wang, J. Jin, J. Ren, L. Q. Jin, J. X. Lu. Protective effect of the polysaccharide from Ophiopogon japonicus on streptozotocin-induced diabetic rats [J]. Carbohydrate Polymers,2013,94(1): 378-385.
    [85]J. Xu, Y. Wang, D. S. Xu, K. F. Ruan, Y. Feng, S. Wang. Hypoglycemic effects of MDG-1, a polysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type 2 diabetes mellitus [J]. International Journal of Biological Macromolecules,2011,49(4):657-662.
    [86]Y. Wang, T. T. Yan, J. Shen, H. Y. Guo, X. R. Xiang. Preventive effect of Ophiopogon japonicus polysaccharides on an autoallergic mouse model for Sjogren's syndrome by regulating the Thl/Th2 cytokine imbalance [J]. Journal of Ethnopharmacology,2007,114(2):246-253.
    [87]刘霞,张琼光,向阳,詹亚华,陈科力.大孔吸附树脂同步提取湖北麦冬总多糖和总皂苷[J].时珍国医国药,2009,20(5):1235-1236.
    [88]李路军,喻世涛,李宇,陈勇.超滤膜分离纯化山麦冬多糖的研究[J].湖北大学学报(自然科学版),2006,28(3):299-301.
    [89]徐德生,冯怡,林晓,邓海林,方积年,董群.麦冬多糖MDG-1的分离纯化和结构分析[J].药学学报,2005,40(7):636-639.
    [90]徐兢博,朱作林,金凤燮,鱼红闪.麦冬多糖的分离纯化及其组分的初步解析[J].大连工业大学学报,2010,29(6):418-420.
    [91]王昭晶,罗巅辉.麦冬水溶性多糖OPA的分离纯化及其抗氧化活性研究[J].现代中医药,2008,28(5):77-79.
    [92]X. M. Chen, J. Jin, J. Tang, Zhongfu Wang, Junjun Wang, Liqin Jin, Jianxin Lu. Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicus [J]. Carbohydrate Polymers,2011,83(2):749-754.
    [93]J. Xu, Y. Wang, D. S. Xu, K. F. Ruan, Y. Feng, S. Wang, Hypoglycemic effects of MDG-1, a polysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type 2 diabetes mellitus [J]. International Journal of Biological Macromolecules,49 (2011) 657-662.
    [94]韩凤梅刘春霞陈勇.山麦冬多糖对免疫低下小鼠的保护作用[J].中国医药学报,2004,19(6):347-348.
    [95]王硕,冯怡,徐德生,章漳,丁侃.麦冬多糖MDG-1对内皮细胞瘦素表达的影响[J].中国应用生理学杂,2009,25(2):160-232.
    [96]汤军,黄琦,徐智英,蔡宛如等.麦冬多糖的免疫活性研究[J].中国中医基础医学杂质,1998,4(9):44-46.
    [97]徐德生,冯怡,周跃华等.麦冬多糖中抗急性心肌缺血活性部位研究[J].中成药,2004,26(10):832-837
    [98]M. Toma, M. Vinatoru, L. Paniwnyk, et al. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction[J]. Ultrasonics sonochemistry,2001,8:137-142.
    [99]G. L. Cote, J. L. Willet. Thermomechanical depolymerization of dextran[J]. Carbohydrate Polymers,1999,39:119-126.
    [100]L. L. Fu, H. X. Chen, P. Dong, et al. Effects of ultrasonic treatment on the physicochemical properties and DPPH radical scavenging activity of polysaccharides from mushroom Inonotus obliquus[J]. Food Chemistry,2010, 75(4):322-327.
    [101]K. Brabec, V. Mornstein. Detection of ultrasonic cavitation based on low frequency analysis of acoustic signal [J]. Central European Journal of Biology, 2007,2(2):213-221.
    [102]C. Y. Lii, C. H. Chenb, A. I. Yeh, et al.Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound[J]. Food Hydrocolloids,1999, 13(6):477-481.
    [103]J. Li, J. Cai, L. H. Fan. Effect of sonolysis on kinetics and physicochemical properties of treated chitosan [J]. Journal of Applied Polymer Science,2008, 109(4):2417-2425.
    [104]向鸣,王晓君,王维香.超声波提取川芎多糖的工艺优选[J].中成药,2008,30(11):1621-1623.
    [105]B. Yang, Y.M.Jiang, M.M.Zhao, et al.Effects of ultrasonic extraction on the physical and chemical properties of polysaccharides from longan fruit pericarp [J]. Polymer Degradation and Stability,2008,93(1):268-272.
    [106]W. Yang, V. U. Ajapur, Krishnamurthy, et al. Expedited extraction of xylan from corncob by power ultrasound [J]. Int J Agric & Biol Eng,2009,2(4):76-83.
    [107]黄永春,马月飞,谢清若,等.超声波辅助提取茶多糖及其分子量变化的研[J].食品科学,2007 28(7):170-173.
    [108]N. Kardos, J. L. Luche. Sonochemistry of carbohydrate compounds [J]. Carbohydrate Research,2001,332(2):115-131.
    [109]J. Li, J. Cai, L. H. Fan. Effect of sonolysis on kinetics and physicochemical properties of treated chitosan [J]. Journal of Applied Polymer Science,2008, 109(4):2417-2425.
    [110]M. Vodenicarova, G. Drimalova, Z. Hromadkova, A. Malovikova, A. Ebringerova. Xyloglucan degradation using different radiation sources:A comparative study [J]. Ultrasonics Sonochemistry,2006,13(2):157-164.
    [111]N. Kardos, J. L. Luche. Sonochemistry of carbohydrate compounds [J]. Carbohydrate Research,2001,332(2):115-131.
    [112]M. Zhang, L. N. Zhang, P. C. K. Cheung, et al. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium [J]. Carbohydrate Polymers,2004,56(2):123-128.
    [113]A. Ebringerova, Z. Hromadkova. The immunologically active xylan from ultrasound-treated corn cobs:extractability, structure and properties [J]. Carbohydrate Polymers,1998,37(3):231-239.
    [114]A. Ebringerova, Z. Hromadkova. The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan [J]. Ultrasonics Sonochemistry,1997,4(4):305-309.
    [115]R. C. Sun, J. Tomkinson. Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw [J]. Carbohydrate Polymers,2002,50(3):263-271.
    [116]Z. Hromadkova, A. Ebringerova. Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls [J]. Ultrasonics Sonochemistry,2003,10(3):127-133.
    [117]Z. M. Wang, Y. C. Cheung, P. H. Leung, et al. Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus [J]. Bioresource Technology,2010,101(14):5517-5522.
    [118]李岱,张静,孙润广.超声波处理对柴胡多糖提取率、微观形貌特征及生物活 性的影响[J].生物加工过程,2009,7(2):29-34.
    [119]王博,孙润广,张静.超声波强化提取对茯苓水溶性多糖结构影响的研究[J].应用声学,2009,28(3):195-202.
    [120]H. Liu, J. G. Bao, Y. M. Du, et al.Effect of ultrasonic treatment on the biochemphysical properties of chitosan [J]. Carbohydrate Polymers,2006,64(4): 553-559.
    [121]翁梁,温鲁,杨芳,等.不同提取方法对蛹虫草多糖抗氧化性的影响[J].食品科技,2008,33(11):180-182.
    [122]B. Yang, M. M Zhao, Y. M. Jiang. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp [J]. Food Chemistry,2008,110(2):294-300.
    [123]S. H. Oh, J. Ahn, D. H. Kang, H. Y. Lee. The effect of ultrasonificated extracts of Spirulina maxima on the anticancer activity [J]. Marine Biotechnology,2011, 13(2):205-214.
    [124]X. L. Wei, M. A. Chen, J. B. Xiao. Composition and bioactivity of tea flower polysaccharides obtained by different methods [J]. Carbohydrate Polymers,2010, 79(2):418-422.
    [125]B. Yang, M. M. Zhao, Y. M. Jiang. Anti-glycated activity of polysaccharides of longan(Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave [J]. Food Chemistry,2009,114(2):629-633.
    [126]C. S. Zhou, H. L. Ma.Ultrasonic degradation of polysaccharide from a Red Algae (Porphyra yezoensis) [J]. J Agric Food Chem,2006,54(6):2223-2228.
    [127]J. Sandula, G. Kogan, M. Kacurakova, E. Machova. Microbial(1→3)-β-D-glucans, their preparation, physic-chemical characterization and immunomodulatory activity [J]. Carbohydrate Polymers,1999,38(3):247-253.
    [128]Y. T. Tian, Z. B. Xu, B. D. Zheng, Y. M. Lo. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil [J]. Ultrasonics Sonochemistry,2013,20(1):202-208.
    [129]H. F. Zhang, X. H. Yang, L. D. Zhao, Y. Wang. Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism [J]. Innovative Food Science & Emerging Technologies,2009,10(1):54-60.
    [130]W. Chen, W. P. Wang, H S. Zhang, Q. Huang. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology [J]. Carbohydrate Polymers,2012,87(1):614-619.
    [131]M. Corrales, S. Toepfl, P. Butz, D. Knorr, B. Tauscher. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields:A comparison [J]. Innovative Food Science & Emerging Technologies,2008,9(1):85-91.
    [132]W. Chen, W. P. Wang, H. S. Zhang, Q. Huang. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology [J]. Carbohydrate Polymers,2012, 87(1):614-619.
    [133]L. Gaete-Garreton, Y. Vargas-Hernandez, M. G. Cares-Pacheco, J. Sainz, J. Alarcon. Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina [J]. Ultrasonics,2011,51(5):581-585.
    [134]B. I. Yong-guang, D. L. Yang, X. J. Huang, L. I. Yu-min, M. X. Huang. Study on Ultrasonic-assisted Extraction of Polysaccharide of Atractylis Macroceohala Koidz of Experiment [J]. Energy Procedia,2012,17:1778-1785.
    [135]王小梅,薛慧君,孙润广.超声提取功率对麦冬多糖体外清除羟基自由基作用影响的研究[J].食品工业科技,2011,32(4):72-77.
    [136]R. Lu, T. Yoshida. Structure and molecular weight of Asian lacquer polysaccharides [J]. Carbohydrate Polymers,2003,54(4):419-424.
    [137]E. Malinowska, W. Krzyczkowski, G. Lapienis, F. Herold. Densitometric determination of carbohydrates:Application to purification and molecular weight determination of polysaccharide from Hericium erinaceum mushroom [J]. Food Research International,2010,43(4):988-995.
    [138]Y. L. Hua, B. Yang, J. Tang, Z. H. Ma, Q. Gao, M. M. Zhao. Structural analysis of water-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their in vivo antioxidant activities [J]. Carbohydrate Polymers,2012,87(1): 343-347.
    [139]J. W. Li, L. P. Fan, S. D. Ding. Isolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv. Jinsixiaozao [J]. Carbohydrate Polymers,2011,83:477-482.
    [140]X. Ding, J. Tang, M. Cao, et al. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake [J]. International Journal of Biological Macromolecules,2010,47 (2):271-275.
    [141]C. S. Zhou, X. J. Yu, Y. Z. Zhang, et al. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea [J]. Carbohydrate Polymers,2012,87:2046-2051.
    [142]L. Q. Sun, L. Wang, Y. Zhou. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum [J]. Carbohydrate Polymers,2012,87:1206-1210.
    [143]J. C. Liu, Y. X. Sun, C. L. Yu, L. Liu. Chemical structure of one low molecular weight and water-soluble polysaccharide (EFP-W1) from the roots of Euphorbia fischeriana [J]. Carbohydrate Polymers,2012,87,(2):1236-1240.
    [144]G. S. Joseph,G. K. Jayaprakasha,A. T. Selbi, et al.Antiaflatoxigenic and antioxidant activities of Garcinia extracts [J]. International Journal of Food Microbiology,2005,101:153-160.
    [145]T. Juntachote, E. Berghofer. Antioxidative properties and stability of ethanolic extracts of Holybasil and Galangal [J].Food Chemistry,2005,92:193-202.
    [146]Y. M. Kim, Y. K. Jeong, M. H. Wang, W. Y. Lee, H. I. Rhee. Inhibitory effect of pine extract on a-glucosidase activity and postprandial hyperglycemia [J]. Nutrition,2005,21:756-761.
    [147]Y. M. Kim, M. H. Wang, H. I. Rhee. A novel a-glucosidase inhibitor from pine bark [J]. Carbohydrate Research,2004,339:715-717.
    [148]C. G. Wang, J. Q. Yang, B Z. Liu, D T. Jin, C. Wang, L Zhong, D Zhu, Y. Wu. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo [J]. European Journal of Pharmacology,2010, 627(1-3):33-41.
    [149]齐浩,艾霞,孙润广,等.AFM观察稳恒磁场对细胞表面精细结构的影响[J].电子显微学报,2009,28(2):150-155.
    [150]韩铨.茶树花多糖的提取、纯化、结构鉴定及生物活性的研究[D].浙江:浙江大学,2011.
    [151]T. Xin, F. B. Zhang, Q. Y. Jiang, C. H. Chen, D. Y. Huang, Y. J. Li, W. X. Shen, Y. H. Jin. Extraction, purification and antitumor activity of a water-soluble polysaccharide from the roots of Polygala tenuifolia [J]. Carbohydrate Polymers, 2012,90(2):1127-1131.
    [152]L. Y. Zhao, Y. H. Dong, G. T. Chen, Q. H. Hu. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum [J]. Carbohydrate Polymers,2010,80(3):783-789.
    [153]S. Q. Huang, J. W. Li, Y. Q. Li, Z. Wang. Purification and structural characterization of a new water-soluble neutral polysaccharide GLP-F1-1 from Ganoderma lucidum [J]. International Journal of Biological Macromolecules,2011, 48(1):165-169.
    [154]X. K. Zhong, X. Jin, F. Y. Lai, Q. S. Lin, J. G. Jiang. Chemical analysis and antioxidant activities in vitro of polysaccharide extracted from Opuntia ficus indica Mill, cultivated in China [J]. Carbohydrate Polymers,2010,82(3):722-727.
    [155]Q. Yang, S. W. Wang, Y. H. Xie, J. Y. Sun, J. B. Wang, HPLC analysis of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes activity and Bax, Bcl-2 expression [J]. International Journal of Biological Macromolecules, 2010,46(2):167-172.
    [156]H. Yan, Y. P. Xie, S. G. Sun, X. D. Sun, F. X. Ren, Q. R. Shi, S. H. Wang, W. D. Zhang, X. M. Li, J. Zhang, Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides [J]. Carbohydrate Polymers,2010,82(3):636-640.
    [157]B. Yang, Y. M. Jiang, M. M. Zhao, F. Chen, R. Wang, Y. L. Chen, D. D. Zhang, Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp [J]. Food Chemistry,2009,115(2):609-614.
    [158]Y. L. Sun, S. W. Cui, J. Tang, X. H. Gu. Structural features of pectic polysaccharide from Angelica sinensis (Oliv.) Diels [J]. Carbohydrate Polymers, 2010,80(2):544-550.
    [159]D. H. Luo, B. S. Fang, Structural identification of ginseng polysaccharides and testing of their antioxidant activities [J]. Carbohydrate Polymers,2008,72(3): 376-381.
    [160]K. Kolodziejska, A. N Kondakova, K. Zych, S. N. Senchenkova, A. S. Shashkov, Y. A. Knirel, Z. Sidorczyk, Structure of the O-polysaccharide of a serologically separate strain of Proteus mirabilis, TG 332, from a new proposed Proteus serogroup O50 [J]. Carbohydrate Research 2003,338 (20):2105-2109.
    [161]T. Narui, K. Takahashi, M. Kobayashi, S. Shibata. Permethylation of polysaccharides by a modified Hakomori method [J]. Carbohydrate Research,1982, 103(2):293-295.
    [162]X. M. Wu, P. F. Tu, Isolation and characterization of α-(1→6)-glucans from Cistanche deserticola [J]. Journal of Asian Natural Products Research,2005,7(6): 823-828.
    [163]S. A. Barker, E. J. Bourne, M. Stacey, D.H. Whiffen, Infra-red spectra of carbohydrates. Part I. Some derivatives of D-glucopyranose [J]. Journal of the Chemical Society1954:171-176.
    [164]张惟杰.糖复合物生化研究技术(第二版)[M].浙江大学出版社,2003:142-144243 38-40 142-144.
    [165]P. K. Agrawal, NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides [J]. Phytochemistry,1992,31:3307-30.
    [166]Q. Han, Q Y. Yu, J. Shi, C. Y. Xiong, Z. J. Ling, P. M. He. Molecular characterization and hypoglycemic activity of a novel water-soluble polysaccharide from tea (Camellia sinensis) flower [J]. Carbohydrate Polymers,2011,86(2): 797-805.
    [167]Y. Zhang, M. Gu, K. P. Wang, Z. X. Chen, L. Q. Dai, J. Y. Liu, F. Zeng. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes [J]. Fitoterapia,2010,81(8):1163-1170.
    [168]L. S. Ma, H. X. Chen, Y. Zhang, N. Zhang, L. L. Fu. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus [J]. Carbohydrate Polymers,2012,89(2):371-378.
    [169]N. Lin, J. Huang, P. R. Chang, L. D. Feng, J. H. Yu. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres [J]. Colloids and Surfaces B:Biointerfaces,2011,85(2):270-279.
    [170]S. B. Bothara, S. Singh. Thermal studies on natural polysaccharide [J]. Asian Pacific Journal of Tropical Biomedicine,2012,2(2):S1031-S1035.
    [171]M. Foschiatti, M. Hearshaw, P. Cescutti, N. Ravenscroft, R. Rizzo. Conformational studies of the capsular polysaccharide produced by Neisseria meningitidis group A [J]. Carbohydrate Research,2009,344(7):940-943.
    [172]J. WU, X. DENG, Y. ZHANG, L. WANG, B. Q. TIAN, B. J. XIE. Application of Atomic Force Microscopy in the Study of Polysaccharide [J]. Agricultural Sciences in China,2009,8(12):1458-1465.
    [173]X. Ding, Y. L. Hou, W. R. Hou. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray [J]. Carbohydrate Polymers,2012,89(2):397-402.
    [174]X. Ding, S. Feng, M. Cao, M. T. Li, J. Tang, C. X. Guo, J. Zhang, Q. Sun, Z. R. Yang, J. Zhao. Structure characterization of polysaccharide isolated from the fruiting bodies of Tricholoma matsutake [J]. Carbohydrate Polymers,2010,81(4): 942-947.
    [175]A. N. Hassan, S. Awad. Application of Exopolysaccharide-Producing Cultures in Reduced-Fat Cheddar Cheese:Cryo-Scanning Electron Microscopy Observations [J]. Journal of Dairy Science,2005,88(12):4214-4220.
    [176]I. Prabasari, F. Pettolino, M. L. Liao, A. Bacic. Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls:Sequential extraction and chemical characterization [J]. Carbohydrate Polymers,2011,84(1):484-494.
    [177]A. N. Hassan, J. F. Frank, M. Elsoda. Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy [J]. International Dairy Journal,2003,13(9):755-762.
    [178]谢晨,高向东,王坚,刘冬,姚文兵.富锗金针菇多糖空间结构和与生物活性关系的研究[J].中国药科大学学报,2004,35(6):576-580.
    [179]D. K. Shen, S. Gu, A. V. Bridgwater. The thermal performance of the polysaccharides extracted from hardwood:Cellulose and hemicellulose [J]. Carbohydrate Polymers,2010,82(1):39-45.
    [180]M. S. Iqbal, S. Massey, J. Akbar, C. M. Ashraf, R. Masih. Thermal analysis of some natural polysaccharide materials by isoconversional method [J]. Food Chemistry,2013,In Press, Accepted Manuscript.
    [181]J. Kapusniak, W. Ciesielski, J. J. Koziol, P. Tomasik. Thermogravimetry and differential scanning calorimetry-based studies of the solid state reactions of starch polysaccharides with proteogenic amino acids [J]. Thermochimica Acta,2001, 372(1-2):119-128.
    [182]L. Yu, G. Christie. Measurement of starch thermal transitions using differential scanning calorimetry [J]. Carbohydrate Polymers,2001,46(2):179-184.
    [183]陈志宏,齐聪孺,杨松鹤等.器官衰老和自由基学说[J].承德医学院学报,2003,20(2):143-145.
    [184]张宗玉,童坦君.衰老的分子机理[J].中华老年医学杂志,1993,12(2):122.
    [185]Z. Y. Luo, Y. Tang, et al. Protecttive effect of anisodamine in cultured bovine pulmonary endothelial cell injury induced by oxygen free radicals [J].Arch Surg, 1992,127:1204-1208.
    [186]J. F. Yuan, Z. Q. Zhang, Z. C. Fan, J. X. Yang. Antioxidant effects and cytotoxicity of three purified polysaccharides from Ligusticum chuanxiong Hort [J]. Carbohydrate Polymers,2008,74(4):822-827.
    [187]A. B. Das, Peter Nagy, H. F. Abbott, C. C. Winterbourn, A. J. Kettle. Reactions of superoxide with the myoglobin tyrosyl radical [J]. Free Radical Biology and Medicine,2010,48(11):1540-1547.
    [188]T. Noipa, S. Srijaranai, T. Tuntulani, W. Ngeontae. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems [J]. Food Research International,2011,44(3):798-806.
    [189]A. L. Dawidowicz, D. Wianowska, M. Olszowy. On practical problems in estimation of antioxidant activity of compounds by DPPH. method (Problems in estimation of antioxidant activity) [J]. Food Chemistry,2012,131, (3):1037-1043.
    [190]B. Yang, M. M. Zhao, J. Shi, N. Yang, Y. M. Jiang. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp [J]. Food Chemistry,2008,106(2):685-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700