抗菌肽LL-37在LTA诱导的巨噬细胞炎症中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:抗菌肽在机体防御中起重要作用。目前已经发现包括cathelicidin多种抗菌肽。Cathelicidin是由保守的N末端及可变的C末端组成,蛋白酶切割前体形成。LL-37是人体内唯一的cathelicidin。LL-37由37个氨基酸组成,呈螺旋状,有亲水和疏水部分,具有广谱抗菌活性。LL-37的防御作用包括调节炎症反应,趋化免疫细胞至损伤或感染部位,结合并中和LPS,促进再上皮化及损伤修复。本研究通过建立LTA诱导的巨噬细胞炎症模型,分析炎症时LL-37的变化,探讨LL-37在LTA诱导巨噬细胞炎症中的作用及机制。
     方法:LTA(2ug/ml)刺激巨噬细胞系RAW264.7和C57BL/6小鼠原代腹腔巨噬细胞,建立炎症的细胞模型。以ELISA及实时定量PCR方法测定炎症因子的表达,以免疫荧光检测LL-37的细胞定位,联合Western blot方法检测LL-37在炎症时的变化,以Western blot检测LL-37对LTA诱导的炎症的作用机制。
     结果:
     1.LL-37细胞定位
     以免疫荧光证实LL-37是否存在于巨噬细胞中及在巨噬细胞中的分布。结果显示LL-37主要分布在细胞质中。
     2.LTA诱导巨噬细胞炎症反应
     以不同浓度来源于金黄色葡萄球菌的LTA刺激RAW264.7及原代小鼠腹腔巨噬细胞,通过ELISA检测培养基中TNF-a的水平,确定LTA是否可以诱导巨噬细胞炎症反应及LTA的最佳浓度。在RAW264.7细胞系中,当LTA浓度从0至2ug/mL时,TNF-α浓度由4.56±0.89升高到7.49±1.80ng/L,在小鼠原代腹腔巨噬细胞中,则由5.18±0.91升至11.22±0.88ng/L。但当LTA浓度为5-20ug/mL时能够引起急性细胞坏死,从而导致TNF-α表达降低。结果提示0至2ug/mL的LTA可以诱导巨噬细胞炎症反应,但过高浓度的LTA导致细胞损伤和死亡
     3.LL-37在LTA诱导的RAW264.7炎症中的表达
     以免疫荧光及Western blot方法检测在LTA诱导的RAW264.7细胞炎症中LL-37的表达情况。将化学合成的LL-37加入到RAW264.7细胞培养基中以免疫荧光及Western blot检测检测LL-37的摄取效率。本实验分4组:对照组,LL-37干预组,LTA干预组及LTA与LL-37同时干预组。LTA干预组LL-37表达比对照组增加1.33±0.13倍,有统计学意义(p<0.05)。LTA与LL-37同时干预组LL-37表达比对照组增加1.93±0.18倍,有统计学意义(p<0.05)。LTA与LL-37同时干预组中,LL-37的表达较LTA干预组明显升高,有统计学意义(p<0.05),但与LL-37干预组无明显差异(p>0.05)。由此提示LTA可以诱导LL-37的表达,LL-37可以透膜进入RAW264.7细胞。
     4.LL-37可以减弱由LTA诱导的巨噬细胞炎症反应
     通过ELISA方法检测是否LL-37可以减弱由LTA诱导的RAW264.7细胞及原代小鼠腹腔巨噬细胞的炎症反应。首先以2ug/mL的LTA诱导RAW264.7细胞及小鼠原代腹腔巨噬细胞产生炎症。随后以0-40ug/mL的LL-37干预。结果显示:在RAW264.7细胞中,1-15ug/mL的LL-37以浓度依赖的方式降低TNF-α的表达,TNF-α浓度由基础值6.46±0.36ng/L降低至4.63±0.81ng/L, LL-37的最适浓度为15ug/mL;而在小鼠原代腹腔巨噬细胞中,1-10ug/mL的LL-37以浓度依赖的方式降低TNF-α的表达,TNF-α浓度由基础值10.52±0.92ng/L降低至6.69±0.64ng/L, LL-37的最适浓度为10ug/mL。结果所示,若LL-37浓度超过最适浓度,则可导致细胞损伤,增加TNF-α释放。因此适当浓度的LL-37可以减弱LTA诱导的巨噬细胞的炎症反应,但是过高浓度则可以导致细胞损伤。本实验以15ug/mL的LL-37干预RAW264.7细胞,以10ug/mLELISA的LL-37干预小鼠原代腹腔巨噬细胞。
     5.LL-37可以通过降低炎症因子的表达减弱LTA诱导的巨噬细胞炎症反应TNF-α及IL-6是炎症中的主要炎症因子。我们通过实时定量PCR检测RAW264.7细胞中及ELISA检测小鼠原代巨噬细胞培养基中的TNF-α及IL-6表达来证明LL-37是否可以通过降低炎症因子的表达减弱LTA诱导的巨噬细胞炎症反应。结果显示:在RAW264.7细胞中与对照组比较,LTA干预组中,TNF-α及IL-6的mRNA分别增加8.75±0.47倍及34.12±9.68倍;与LTA干预组比较,LTA和LL-37同时干预组TNF-α及IL-6的mRNA明显降低。提示LL-37可以明显降低TNF-α及IL-6的mRNA表达水平。在小鼠原代巨噬细胞中,与对照组比较,LTA干预组中,TNF-α及IL-6的浓度分别由基础值的4.98±1.30ng/L,16.75±9.06ng/L增加至7.53±2.21ng/L,180.38±29.46ng/L;与LTA干预组比较,LTA和LL-37同时干预组TNF-a及IL-6的浓度明显降低。因此LL-37可以通过降低炎症因子TNF-a及IL-6的表达减弱LTA诱导的炎症反应。
     6.LL-37通过抑制p38MAPK及Akt的磷酸化抑制LTA诱导的巨噬细胞炎症反应
     通过验证RAW264.7细胞及小鼠原代巨噬细胞中p38MAPK及Akt的磷酸化水平检测LL-37的信号通路。结果显示:LTA通过增加巨噬细胞p38MAPK及Akt的磷酸化水平促进炎症产生;LL-37通过抑制巨噬细胞p38MAPK及Akt的磷酸化水平抑制LTA诱导的巨噬细胞炎症产生。
     结论:
     1.在LTA诱导的金黄色葡萄球菌感染的巨噬细胞炎症模型中,TNF-α、IL-6及LL-37表达水平上升,提示LTA可以引起巨噬细胞产生炎症反应,LL-37参与LTA引起的炎症反应。
     2.LL-37降低炎症因子表达,提示LL-37可以缓解炎症反应。
     3.LTA可以促进p38及Akt磷酸化,LL-37可以抑制p38及Akt的磷酸化,提示LL-37可以通过抑制p38及Akt磷酸化参与LTA诱导的炎症反应。
Objectives:Antimicrobial peptides play an important role in host defense. Various families of antimicrobial peptides have been identified, including the cathelicidin. Cathelicidin is characterized by a conserved N-terminal cathelin domain and a variable C-terminal part of the only human cathelicidin identified to date called human cationic antimicrobial protein (hCAP-18). LL-37is the only human cathelicidin. LL-37is a37-residue, amphipathic, helical peptide found throughout the body and has been shown to exhibit a broad spectrum of antimicrobial activity. It has been found to have defensive roles such as regulating the inflammatory response and chemoattracting cells of the immune system to wound or infection sites, binding and neutralizing LPS, and promoting re-epthelialization and wound repair. In this study, we established the LTA-induced inflammation models in vitro and analyzed the expression, function and mechanism of LL-37in macrophages.
     Methods:We established cellular inflammation model by treatment of RAW264.7cells and primary C57BL/6mouse peritoneal macrophage with2ug/mL LTA for24h. The expression of inflammatory cytokines were determined by ELISA and real-time quantitative PCR method, LL-37was measured by immunofluorescence and Western blot method. The mechanism of LL-37in LTA induced inflammation was deteced by Western blot.
     Results:
     1. Distribution of LL-37in macrophages
     To determine whether LL-37was expressed in macrophages and to determine its expression pattern, we did LL-37immunofluorescence staining in RAW264.7cells. The immunofluorescence staining showed that LL-37was mainly expressed in the cytoplasma but not in the nucleus. The merged figure also showed that LL-37was mainly expressed in the cytoplasma with uneven distribution.
     2. LTA could induce inflammatory reaction in macrophages
     LTA is an exotoxin of S. aureus. In order to determine whether LTA could cause an inflammatory effect in macrophages, we used different concentrations of LTA to treat the RAW264.7cells and primary mouse peritoneal macrophages and analyzed TNF-a expression by ELISA. When the concentration of LTA is from0to2μg/mL, the con-centration of TNF-a increased from4.56±0.89to7.49±1.80ng/L in RAW264.7cells and from5.18±0.91to11.22±0.88ng/L in primary mouse peritoneal macrophages, in a concentration dependent manner while high doses of LTA from5to20μg/mL could cause acute cell death and attenuate the expression of TNF-a. This result indicates that0-2μg/mL of LTA can induce inflammation reaction in macrophages, but a high concentration of LTA could induce acute cell injury and death.
     3. LL-37expression in LTA treated RAW264.7cells
     To investigate the change of LL-37in LTA induced inflammation in RAW264.7cells, we checked LL-37expression in RAW264.7cells after LTA treatment. We also put chemically synthesized LL-37in the culture medium of RAW264.7cells to check its uptake efficiency by immunofluorescence staining and Western blot. There are four groups in the experiment:control group, LL-37treated positive control group, LTA treated group, and LTA and LL-37double treated group. After LTA treatment, the expression of LL-37is1.33±0.13fold compared with the control group (p<0.05). In the chemically synthesized LL-37and LTA double treated group, the expression of LL-37increases1.93±0.18fold compared with the control group (p<0.05). The LL-37expression in the double treated group is higher than that in the LTA treated group (p<0.05), but no significant difference with the LL-37treated group (p>0.05). These results indicated that LTA could effectively increase LL-37expression and chemically synthesized LL-37could be transported into RAW264.7cells.
     4. LL-37could attenuate LTA induced inflammation in macrophages
     To investigate whether LL-37could attenuate LTA induced inflammation reaction in macrophages, we check the TNF-a expression in different concentrations of LL-37in RAW264.7cells and primary mouse peritoneal macrophages by ELISA. We used2μg/mL of LTA treated RAW264.7cells and primary mouse peritoneal macrophages to induce inflammation. Then we used0-40μg/mL of LL-37to treat the RAW264.7 cells and primary mouse peritoneal macrophages.1-15μg/mL of LL37could effectively attenuate TNF-a expression in a concentration dependent manner, and decrease TNF-a to4.63±0.81ng/L compared with the basal level of6.46±0.36ng/L after LTA treatment in RAW264.7cells. And in primary mouse peritoneal macrophages,1-10μg/mL of LL37could effectively attenuate TNF-a expression in a concentration dependent manner, and decrease TNF-a to6.69±0.64ng/L compared with the basal level of10.52±0.92ng/L. The medium TNF-a concentration decreased to the lowest at the LL-37concentration of15μg/mL in RAW264.7cells and10μg/mL in primary mouse macrophages. On the other hand, if LL-37concentration is increased at over15μg/mL in RAW264.7cells and10μg/mL in primary mouse peritoneal macrophages, it will cause cell damage and increase TNF-a expression. Thus a moderate concentration of LL-37could attenuate LTA induced inflammation in macrophages. A high concentration of LL-37will cause cell damage. According to this, we used the optimal LL-37concentration of15μg/mL in RAW264.7cells and10μg/mL in primary mouse peritoneal macrophages for the rest of the experiments.
     5. LL-37attenuates LTA induced inflammatory reaction by decreasing
     inflammatory cytokine expression TNF-a and IL-6are two important inflammatory cytokines during inflammation. We checked TNF-a and IL-6expression by real time RT-PCR in RAW264.7cells and ELISA in primary mouse peritoneal macrophages. In the LTA treated group, the inflammatory cytokines TNF-a and IL-6mRNA increased8.75±0.47and34.12±9.68fold compared with the control group. The mRNA of TNF-a and IL-6in the LL-37and LTA double treated group decreased obviously compared with the LTA treated group.LL-37treatment alone could decrease cell TNF-a and IL-6mRNA expression. Similarly, in the LTA treated primary mouse peritoneal macrophages, the inflammatory cytokine TNF-a and IL-6expression increased to7.53±2.21ng/L and180.38±29.46ng/L compared with the basal level of4.98±1.30ng/L and16.75±9.06ng/L, respectively. The concentration of TNF-a and IL-6in the LL-37and LTA double treated group decreased obviously compared with that in the LTA treated group, and LL-37treatment alone could also decrease cell TNF-a and IL-6expression. So the exogenous chemically synthesized LL-37could attenuate LTA induced inflammatory reaction by the down regulation of TNF-a and IL-6expression in macrophages.
     6. LL-37attenuates LTA induced inflammation by the inhibition of p38MAPK and
     Akt activation in macrophages To investigate the signal transduction pathway of LL-37, we tested the activation of p38MAPK and Akt in the RAW264.7cells and primary mouse peritoneal macrophages. LTA could increase p38MAPK and Akt phosphorylation and cause the inflammatory reaction in the RAW264.7cells and primary mouse peritoneal macrophages. LL-37treatment could inhibit p38MAPK and Akt activation compared with the LTA treated group, which could attenuate inflammation reaction and modulate immune response. It suggested that LL-37could regulate inflammation by inhibition of p38MAPK and Akt signal transduction pathways in macrophages.
     Conclusions:
     1. In the cell model of Staphylococcus aureus infection induced by LTA, the expression of TNF-a, IL-6and LL-37increases, suggesting that LTA can induce macrophages to produce inflammatory reaction, LL-37is involved in the inflammatory response induced by LTA.
     2. LL-37reduced the expression of inflammatory factors, suggesting that LL-37can attenuate the inflammatory reaction.
     3. LTA could promote the phosphorylation of p38and Akt, however LL-37could inhibit the phosphorylation of p38and Akt, suggesting that LL-37takes part in the inflammatory reaction induced by LTA by inhibiting phosphorylation of p38and Akt.
引文
(1)Kraus D, Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol 2008; 3(4):437-451.
    (2)Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 2001; 7(2):178-182.
    (3)Elston DM. Community-acquired methicillin-resistant Staphylococcus aureus. J Am Acad Dermatol 2007; 56(1):1-16.
    (4)Bowdish DM, Davidson DJ, Speert DP, Hancock RE. The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol 2004; 172(6):3758-3765.
    (5)Scott A, Weldon S, Buchanan PJ et al. Evaluation of the ability of LL-37 to neutralise LPS in vitro and ex vivo. PLoS One 2011; 6(10):e26525.
    (6)Tjabringa GS, Aarbiou J, Ninaber DK et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 2003; 171(12):6690-6696.
    (7)Brown MD, Sacks DB. Protein scaffolds in MAP kinase signalling. Cell Signal 2009; 21(4):462-469.
    (8)Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38(MAPK):stress responses from molecular mechanisms to therapeutics. Trends Mol Med 2009; 15(8):369-379.
    (9)Chung KF. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 2011; 139(6):1470-1479.
    (10)Hoogendijk AJ, Diks SH, Peppelenbosch MP, Van Der PT, Wieland CW. Kinase activity profiling of gram-negative pneumonia. Mol Med 2011; 17(7-8):741-747.
    (11)Abraham E. Alterations in cell signaling in sepsis. Clin Infect Dis 2005; 41 Suppl 7:S459-S464.
    (12)Bozinovski S, Vlahos R, Hansen M, Liu K, Anderson GP. Akt in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis 2006; 1(1):31-38.
    (13)Tachado SD, Samrakandi MM, Cirillo JD. Non-opsonic phagocytosis of Legionella pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase. PLoS One 2008; 3(10):e3324.
    (14)Wunderink RG. How Important is Methicillin-Resistant Staphylococcus aureus as a Cause of Community-Acquired Pneumonia and What is Best Antimicrobial Therapy? Infect Dis Clin North Am 2013; 27(1):177-188.
    (15)Chambers HF. Community-associated MRSA--resistance and virulence converge. N Engl J Med 2005; 352(14):1485-1487.
    (16)Chambers HF, Deleo FR. Waves of resistance:Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7(9):629-641.
    (17)Dufour P, Gillet Y, Bes M et al. Community-acquired methicillin-resistant Staphylococcus aureus infections in France:emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 2002; 35(7):819-824.
    (18)Ewig S, Welte T, Chastre J, et al. Rethinking the concepts of community-acquired and health-care-associated pneumonia. Lancet Infect Dis 2010;10(4):279-87.
    (19)Gillet Y, Issartel B, Vanhems P et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 2002; 359(9308):753-759.
    (20)Kallen AJ, Reed C, Patton M, Arnold KE, Finelli L, Hageman J. Staphylococcus aureus community-onset pneumonia in patients admitted to children's hospitals during autumn and winter of 2006-2007. Epidemiol Infect 2010; 138(5):666-672.
    (21)Marwick JA, Caramori G, Casolari P et al. A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2010; 125(5):1146-1153.
    (22)Fahy RJ, Wewers MD. Pulmonary defense and the human cathelicidin hCAP-18/LL-37. Immunol Res 2005; 31(2):75-89.
    (23)Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity:macrophages, mast cells and neutrophils. Nat Immunol 2011; 12(11):1035-1044.
    (24)Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 2009; 15(21):2377-2392.
    (25)Girnita A, Zheng H, Gronberg A, Girnita L, Stahle M. Identification of the cathelicidin peptide LL-37 as agonist for the type I insulin-like growth factor receptor. Oncogene 2012; 31(3):352-365.
    (26)Zivkovic A, Sharif O, Stich K et al. TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol 2011; 186(3):1608-1617.
    (27)Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev 2011; 243(1):191-205.
    (28)Brown KL, Poon GF, Birkenhead D et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol 2011; 186(9):5497-5505.
    (29)Zhang Z, Cherryholmes G, Shively JE. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol 2008; 84(3):780-788.
    (30)Gustafsson A, Olin AI, Ljunggren L. LPS interactions with immobilized and soluble antimicrobial peptides. Scand J Clin Lab Invest 2010; 70(3):194-200.
    (31)Pinheiro da SF, Gallo RL, Nizet V. Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunol Cell Biol 2009; 87(6):496-500.
    (32)Davidson DJ, Currie AJ, Reid GS et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 2004; 172(2):1146-1156.
    (33)Yang YF, Hsu JY, Fu LS, Weng YS, Chu JJ. Asthma drugs counter-regulate interleukin-8 release stimulated by sodium sulfite in an A549 cell line. J Asthma 2009; 46(3):238-243.
    (34)Bhavsar P, Khorasani N, Hew M, Johnson M, Chung KF. Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur Respir J 2010; 35(4):750-756.
    (35)Moretto N, Bertolini S, Iadicicco C et al. Cigarette smoke and its component acrolein augment IL-8/CXCL8 mRNA stability via p38 MAPK/MK2 signaling in human pulmonary cells. Am J Physiol Lung Cell Mol Physiol 2012; 303(10):L929-L938.
    (36)Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Gialpha dependent PI-3kinase signalling. J Inflamm (Lond) 2012; 9(1):1.
    (1)Larrick JW, Morgan JG, Palings I, Hirata M, Yen MH. Complementary DNA sequence of rabbit CAP18--a unique lipopolysaccharide binding protein. Biochem Biophys Res Commun 1991; 179(1):170-175.
    (2)Larrick J W, Hirata M, Shimomoura Y et al. Antimicrobial activity of rabbit CAP18-derived peptides. Antimicrob Agents Chemother 1993; 37(12):2534-2539.
    (3)Larrick J W, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18:a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 1995; 63(4):1291-1297.
    (4)Amer LS, Bishop BM, van Hoek ML. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 2010; 396(2):246-251.
    (5)Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides 2011; 32(10):1996-2002.
    (6)Davidson DJ, Currie AJ, Reid GS et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 2004; 172(2):1146-1156.
    (7)Coffelt SB, Marini FC, Watson K et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 2009; 106(10):3806-3811.
    (8)Pfosser A, E1-Aouni C, Pfisterer I et al. NF kappaB activation in embryonic endothelial progenitor cells enhances neovascularization via PSGL-1 mediated recruitment:novel role for LL37. Stem Cells 2010; 28(2):376-385.
    (9)Wang G, Watson KM, Buckheit RW, Jr. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob Agents Chemother 2008; 52(9):3438-3440.
    (10)Joly S, Maze C, McCray PB, Jr., Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 2004; 42(3):1024-1029.
    (11)Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY. Selective killing of vaccinia virus by LL-37:implications for eczema vaccinatum. J Immunol 2004; 172(3):1763-1767.
    (12)Chromek M, Slamova Z, Bergman P et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 2006; 12(6):636-641.
    (13)Nizet V, Ohtake T, Lauth X et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414(6862):454-457.
    (14)Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 2005; 174(8):4901-4907.
    (15)Howell MD, Wollenberg A, Gallo RL et al. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 2006; 117(4):836-841.
    (16)Basanez G, Shinnar AE, Zimmerberg J. Interaction of hagfish cathelicidin antimicrobial peptides with model lipid membranes. FEBS Lett 2002; 532(1-2):115-120.
    (17)Sorensen OE, Gram L, Johnsen AH et al. Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin:a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 2003; 278(31):28540-28546.
    (18)Agerberth B, Grunewald J, Castanos-Velez E et al. Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 1999; 160(1):283-290.
    (19)Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 2004; 172(5):3070-3077.
    (20)Tremblay GM, Sallenave JM, Israel-Assayag E, Cormier Y, Gauldie J. Elafin/elastase-specific inhibitor in bronchoalveolar lavage of normal subjects and farmer's lung. Am J Respir Crit Care Med 1996; 154(4 Pt 1):1092-1098.
    (21)Vogelmeier C, Hubbard RC, Fells GA et al. Anti-neutrophil elastase defense of the normal human respiratory epithelial surface provided by the secretory leukoprotease inhibitor. J Clin Invest 1991; 87(2):482-488.
    (22)Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH. Antibacterial activity of antileukoprotease. Infect Immun 1996; 64(11):4520-4524.
    (23)Simpson AJ, Maxwell Al, Govan JR, Haslett C, Sallenave JM. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett 1999; 452(3):309-313.
    (24)Zaiou M, Gallo RL. Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med (Berl) 2002; 80(9):549-561.
    (25)Tjabringa GS, Aarbiou J, Ninaber DK et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 2003; 171(12):6690-6696.
    (26)Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002; 169(7):3883-3891.
    (27)Bowdish DM, Davidson DJ, Speert DP, Hancock RE. The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol 2004; 172(6):3758-3765.
    (28)Zaiou M, Nizet V, Gallo RL. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 2003; 120(5):810-816.
    (29)Wimley WC, Selsted ME, White SH. Interactions between human defensins and lipid bilayers:evidence for formation of multimeric pores. Protein Sci 1994; 3(9):1362-1373.
    (30)Porcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A, Veglia G. NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry 2008; 47(20):5565-5572.
    (31)Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 1999; 341(Pt3):501-513.
    (32)Li X, Li Y, Han H, Miller DW, Wang G. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 2006; 128(17):5776-5785.
    (33)Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 1998; 95(16):9541-9546.
    (34)Schaller-Bals S, Schulze A, Bals R. Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 2002; 165(7):992-995.
    (35)Ong PY, Ohtake T, Brandt C et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347(15):1151-1160.
    (36)Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 2002; 70(2):953-963.
    (37)Schauber J, Svanholm C, Termen S et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes:relevance of signalling pathways. Gut 2003; 52(5):735-741.
    (38)Otoguro K, Oiwa R, Iwai Y, Tanaka H, Omura S. Screening for new antitrichomonal substances of microbial origin and antitrichomonal activity of trichostatin A. J Antibiot (Tokyo) 1988; 41(4):461-468.
    (39)Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAPl 8 expressed in the upper respiratory tract. Infect Immun 2000; 68(3):1664-1671.
    (40)Kim ST, Cha HE, Kim DY et al. Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol 2003; 123(1):81-85.
    (41)Islam D, Bandholtz L, Nilsson J et al. Downregulation of bactericidal peptides in enteric infections:a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 2001; 7(2):180-185.
    (42)Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 2003; 170(11):5583-5589.
    (43)Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2005; 19(9):1067-1077.
    (44)Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol 2009; 4(9):1151-1165.
    (45)Misawa Y, Baba A, Ito S, Tanaka M, Shiohara M. Vitamin D(3) induces expression of human cathelicidin antimicrobial peptide 18 in newborns. Int J Hematol 2009; 90(5):561-570.
    (46)Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999; 67(11):6084-6089.
    (47)Bals R, Weiner DJ, Meegalla RL, Wilson JM. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1999; 103(8):1113-1117.
    (48)Putsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann:an observation study. Lancet 2002; 360(9340):1144-1149.
    (49)Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J 2010; 98(2):248-257.
    (50)Burton MF, Steel PG. The chemistry and biology of LL-37. Nat Prod Rep 2009; 26(12):1572-1584.
    (51)Braff MH, Hawkins MA, Di NA et al. Structure-function relationships among human cathelicidin peptides:dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 2005; 174(7):4271-4278.
    (52)Nagaoka I, Hirota S, Niyonsaba F et al. Augmentation of the lipopolysaccharide-neutralizing activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by replacement with hydrophobic and cationic amino acid residues. Clin Diagn Lab Immunol 2002; 9(5):972-982.
    (53)Nell MJ, Tjabringa GS, Wafelman AR et al. Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 2006; 27(4):649-660.
    (54)Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 2008; 76(9):4176-4182.
    (55)Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides:D-enantiomer of LL-37. Front Microbiol 2011; 2:128.
    (56)Cobo ER, He C, Hirata K et al. Entamoeba histolytica induces intestinal cathelicidins but is resistant to cathelicidin-mediated killing. Infect Immun 2012; 80(1):143-149.
    (57)Gronberg A, Zettergren L, Agren MS. Stability of the cathelicidin peptide LL-37 in a non-healing wound environment. Acta Derm Venereol 2011; 91(5):511-515.
    (58)Chakraborty K, Ghosh S, Koley H et al. Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 2008; 10(12):2520-2537.
    (59)Barlow PG, Svoboda P, Mackellar A et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 2011;6(10):e25333.
    (60)Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, McDermott AM. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 2005; 30(5):385-394.
    (61)Lande R, Gregorio J, Facchinetti V et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007; 449(7162):564-569.
    (62)Lai Y, Adhikarakunnathu S, Bhardwaj K et al. LL37 and cationic peptides enhance TLR3 signaling by viral double-stranded RNAs. PLoS One 2011; 6(10):e26632.
    (63)Montreekachon P, Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Krisanaprakornkit S. Involvement of P2X(7) purinergic receptor and MEK.1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. J Periodontal Res 2011;46(3):327-337.
    (64)Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870):389-395.
    (65)Niyonsaba F, Ushio H, Hara M et al. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol 2010; 184(7):3526-3534.
    (66)Peric M, Koglin S, Kim SM et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J Immunol 2008; 181(12):8504-8512.
    (67)Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383(6603):787-793.
    (68)Otte JM, Zdebik AE, Brand S et al. Effects of the cathelicidin LL-37 on intestinal epithelial barrier integrity. Regul Pept 2009; 156(1-3):104-117.
    (69)Zasloff M. Antimicrobial peptides and suppression of apoptosis in human skin. J Invest Dermatol 2009; 129(4):824-826.
    (70)Barlow PG, Beaumont PE, Cosseau C et al. The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium. Am J Respir Cell Mol Biol 2010; 43(6):692-702.
    (71)Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I. Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 2011; 23(3):185-193.
    (72)Tomasinsig L, Pizzirani C, Skerlavaj B et al. The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 2008; 283(45):30471-30481.
    (73)Zhang Z, Shively JE. Generation of novel bone forming cells (monoosteophils) from the cathelicidin-derived peptide LL-37 treated monocytes. PLoS One 2010; 5(11):e13985.
    (74)Yang D, Chertov O, Oppenheim JJ. The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 2001; 58(7):978-989.
    (75)Elssner A, Duncan M, Gavrilin M, Wewers MD. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 2004; 172(8):4987-4994.
    (76)Niyonsaba F, Iwabuchi K, Someya A et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 2002; 106(1):20-26.
    (77)Koczulla R, von DG, Kupatt C et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003; 111(11):1665-1672.
    (78)Frohm M, Agerberth B, Ahangari G et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997; 272(24):15258-15263.
    (79)Buchau AS, Morizane S, Trowbridge J et al. The host defense peptide cathelicidin is required forNK cell-mediated suppression of tumor growth. J Immunol 2010; 184(1):369-378.
    (80)Wu WK, Wang G, Coffelt SB et al. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int J Cancer 2010; 127(8):1741-1747.
    (81)Chuang CM, Monie A, Wu A, Mao CP, Hung CF. Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther 2009; 20(4):303-313.
    (82)Weber G, Chamorro CI, Granath F et al. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res 2009; 11(1):R6.
    (1)Beisswenger C, Kandler K, Hess C et al. Allergic airway inflammation inhibits pulmonary antibacterial host defense. J Immunol 2006; 177(3):1833-1837.
    (2)Ashitani J, Mukae H, Nakazato M et al. Elevated pleural fluid levels of defensins in patients with empyema. Chest 1998; 113(3):788-794.
    (3)Ashitani J, Mukae H, Hiratsuka T, Nakazato M, Kumamoto K, Matsukura S. Elevated levels of alpha-defensins in plasma and BAL fluid of patients with active pulmonary tuberculosis. Chest 2002; 121 (2):519-526.
    (4)Rivas-Santiago B, Sada E, Tsutsumi V, guilar-Leon D, Contreras JL, Hernandez-Pando R. beta-Defensin gene expression during the course of experimental tuberculosis infection. J Infect Dis 2006; 194(5):697-701.
    (5)Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 2005; 124(5):1080-1082.
    (6)Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311(5768):1770-1773.
    (7)Zasloff M. Fighting infections with vitamin D. Nat Med 2006; 12(4):388-390.
    (8)Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States,1999-2005. Emerg Infect Dis 2007; 13(12):1840-1846.
    (9)Ramirez P, Fernandez-Barat L, Torres A. New therapy options for MRSA with respiratory infection/pneumonia. Curr Opin Infect Dis 2012; 25(2):159-165.
    (10)Klevens RM, Morrison MA, Nadle J et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007; 298(15):1763-1771.
    (11)Wang Y, Hu YJ, Ai XM, Xu HT, Sun TY. Prevalence and clinical prognosis of heteroresistant vancomycin-intermediate Staphylococcus aureus in a tertiary care center in China. Chin Med J (Engl) 2013; 126(3):505-509.
    (12)Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 1988; 319(3):157-161.
    (13)Chang S, Sievert DM, Hageman JC et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 2003; 348(14):1342-1347.
    (14)Cui L, Ma X, Sato K et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol 2003; 41(1):5-14.
    (15)Lodise TP, Graves J, Evans A et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 2008; 52(9):3315-3320.
    (16)Holmes NE, Turnidge JD, Munckhof WJ et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J Infect Dis 2011; 204(3):340-347.
    (17)Haraga I, Nomura S, Fukamachi S et al. Emergence of vancomycin resistance during therapy against methicillin-resistant Staphylococcus aureus in a burn patient--importance of low-level resistance to vancomycin. Int J Infect Dis 2002; 6(4):302-308.
    (18)Hanaki H, Yamaguchi Y, Barata K, Sakai H, Sunakawa K. Improved method of detection of beta-lactam antibiotic-induced VCM-resistant MRSA (BIVR). Int J Antimicrob Agents 2004; 23(3):311-313.
    (19)Miyazaki M, Takata T, Yoshimura H et al. Vancomycin bactericidal activity as a predictor of 30-day mortality in patients with methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2011; 55(4):1819-1820.
    (20)Rybak M, Lomaestro B, Rotschafer JC et al. Therapeutic monitoring of vancomycin in adult patients:a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009; 66(1):82-98.
    (21)Scheetz MH, Wunderink RG, Postelnick MJ, Noskin GA. Potential impact of vancomycin pulmonary distribution on treatment outcomes in patients with methicillin-resistant Staphylococcus aureus pneumonia. Pharmacotherapy 2006; 26(4):539-550.
    (22)Morales G, Picazo JJ, Baos E et al. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 2010; 50(6):821-825.
    (23)Jones RN, Fritsche TR, Sader HS, Ross JE. LEADER surveillance program results for 2006:an activity and spectrum analysis of linezolid using clinical isolates from the United States (50 medical centers). Diagn Microbiol Infect Dis 2007; 59(3):309-317.
    (24)Pea F, Furlanut M, Cojutti P et al. Therapeutic drug monitoring of linezolid:a retrospective monocentric analysis. Antimicrob Agents Chemother 2010; 54(11):4605-4610.
    (25)Conte JE, Jr., Golden JA, Kipps J, Zurlinden E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother 2002; 46(5):1475-1480.
    (26)Rubinstein E, Cammarata S, Oliphant T, Wunderink R. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia:a randomized, double-blind, multicenter study. Clin Infect Dis 2001; 32(3):402-412.
    (27)Kollef MH, Rello J, Cammarata SK, Croos-Dabrera RV, Wunderink RG. Clinical cure and survival in Gram-positive ventilator-associated pneumonia:retrospective analysis of two double-blind studies comparing linezolid with vancomycin. Intensive Care Med 2004; 30(3):388-394.
    (28)Wunderink RG, Mendelson MH, Somero MS et al. Early microbiological response to linezolid vs vancomycin in ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus. Chest 2008; 134(6):1200-1207.
    (29)Tascini C, Gemignani G, Doria R et al. Linezolid treatment for gram-positive infections: a retrospective comparison with teicoplanin. J Chemother 2009; 21(3):311-316.
    (30)Fagon J, Patrick H, Haas DW et al. Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am J Respir Crit Care Med 2000; 161(3 Pt l):753-762.
    (31)Nagaoka I, Kuwahara-Arai K, Tamura H, Hiramatsu K, Hirata M. Augmentation of the bactericidal activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by amino acid substitutions. Inflamm Res 2005; 54(2):66-73.
    (32)Komatsuzawa H, Ouhara K, Yamada S et al. Innate defences against methicillin-resistant Staphylococcus aureus (MRSA) infection. J Pathol 2006; 208(2):249-260.
    (33)Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999; 274(13):8405-8410.
    (34)Komatsuzawa H, Ohta K, Fujiwara T, Choi GH, Labischinski H, Sugai M. Cloning and sequencing of the gene, fmtC, which affects oxacillin resistance in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 2001; 203(1):49-54.
    (35)Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 2004; 172(2):1169-1176.
    (36)Soong LB, Ganz T, Ellison A, Caughey GH. Purification and characterization of defensins from cystic fibrosis sputum. Inflamm Res 1997; 46(3):98-102.
    (37)Bals R, Weiner DJ, Meegalla RL, Accurso F, Wilson JM. Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am J Respir Cell Mol Biol 2001; 25(1):21-25.
    (38)Dauletbaev N, Gropp R, Frye M, Loitsch S, Wagner TO, Bargon J. Expression of human beta defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals, and individuals with acute cold. Respiration 2002; 69(1):46-51.
    (39)Yanagihara K, Kadoto J, Kohno S. Diffuse panbronchiolitis-pathophysiology and treatment mechanisms. Int J Antimicrob Agents 2001; 18 Suppl 1:S83-S87.
    (40)Ashitani J, Mukae H, Ihiboshi H et al. [Defensin in plasma and in bronchoalveoiar lavage fluid from patients with acute respiratory distress syndrome]. Nihon Kyobu Shikkan Gakkai Zasshi 1996; 34(12):1349-1353.
    (41)Matsushita I, Hasegawa K, Nakata K, Yasuda K, Tokunaga K, Keicho N. Genetic variants of human beta-defensin-1 and chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2002; 291(1):17-22.
    (42)Mukae H, Iiboshi H, Nakazato M et al. Raised plasma concentrations of alpha-defensins in patients with idiopathic pulmonary fibrosis. Thorax 2002; 57(7):623-628.
    (43)Agerberth B, Grunewald J, Castanos-Velez E et al. Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 1999; 160(1):283-290.
    (44)Ashitani J, Matsumoto N, Nakazato M. Elevated levels of antimicrobial peptides in bronchoalveolar lavage fluid in patients with chronic eosinophilic pneumonia. Respiration 2007; 74(1):69-75.
    (45)Mukae H, Ishimoto H, Yanagi S et al. Elevated BALF concentrations of alpha-and beta-defensins in patients with pulmonary alveolar proteinosis. Respir Med 2007; 101(4):715-721.
    1. George F.Risi. Prevention of infection in the immunocompromised host.Am J Infect Control.1998;26:594-606.
    2. Boersma WG, Erjavec Z, van der Werf TS et al. Bronchoscopic diagnosis of pulmonary infiltrates in granulocy-topenic patients with hematologic malignancies:BAL versus PSB and PBAL. Respir Med 2007; 101:317-25.
    3. Radzikowska E et al. Pneumonia in immunocompramised patients—general clinical view. Pneumonol. Alergol. Pol.2010; 78,3:236-243.
    4. Mulinde J, Joshi M. The diagnostic and therapeutic approach to lower respiratory tract infections in the neutropenic patient. J Antimicrob Chemother 1998; 41 (Suppl D):51-5.
    5. Janoff EN, Breiman RF, Daley CL et al. Pneumococcal disease during HIV infection. Epidemiologic, clinical, and immunologic perspectives. Ann Intern Med 1992; 117: 314-24.
    6. Rieder HL, Cauthen GM, Comstock GW et al. Epidemiology of tuberculosis in the United States. Epidemiol Rev 1989; 11:79-98.
    7. Robert P. Baughman. The Lung in the Immunocompromised Patient. Respiration 1999;66:95-109.
    8. Hirschtick RE, Glassroth J, Jordan MC et al. Bacterial pneumonia in persons infected with the human immunodeficiency virus. Pulmonary complications of HIV infection study group. N Eng J Med 1995; 333:845-51.
    9. Boiselle PM, Tocino I, Hooley RJ et al. Chest radiograph interpretation of Pneumocystis carinii pneumonia, bacterial pneumonia, and pulmonary tuberculosis in HIV-positive patients: accuracy, distinguishing features,and mimics. J Thorac Imaging 1997; 12:47-53.
    10. Aviram G, Fishman JE, Sagar M. Cavitary lung disease in AIDS:etiologies and correlation with immune status. AIDS Patient Care STDS 2001; 15:353-61.
    11. T. Franquet. Respiratory infection in the AIDS and immunocompromised patients. Eur Radiol.2004;14:E21-E33.
    12. Andrew F. Shorr, Gregory M. Susla and Naomi P. O'Grady. Pulmonary Infiltrates in the Non-HIV-Infected Immunocompromised Patient:Etiologies, Diagnostic Strategies, and Outcomes. Chest.2004;125;260-271.
    13. Yeghen T, Kibbler CC, Prentice G et al.Management of invasive pulmonary aspergillosis in hematology patients:A review of 87 consecutive cases at a single institution. Clin Infection Dis 2000;31;857.
    14. Cunha BA. Community-acquired pneumonias:reality revisited. Am J Med 2000;108;436.
    15. Daiana Stolz, Andreas Stulz, Beat Muller et al. BAL Neutrophils, Serum Procalcitonin, and C-Reactive Protein To Predict Bacterial Infection in the Immunocompromised Host. Chest 2007;132;504-514.
    16. S. Collinet-Adler & H. D. Ward. Cryptosporidiosis:environmental, therapeutic, and preventive challenges. Eur J Clin Microbiol Infect Dis (2010) 29:927-935.
    17. PGill Diamond, Nicholas Beckloff et al. The Roles of Antimicrobial Peptides in Innate Host Defense. Curr Pharm Des.2009; 15(21):2377-2392.
    18. Jie Yu, Neeloffer Mookherjee, Kathleen Wee, Dawn M. Host Defense Peptide LL-37, in Synergy with Inflammatory Mediator IL-lbeta, Augments Immune Responses by Multiple Pathways. J. Immunol.2007;179;7684-7691.
    19. Burke A, Cunha. Pneumonias in the compromised host. Infectious Disease Clinics Of North America.2001;15;2;591-612.
    20. Walter G. Belleza, Brian Browne. Pulmonary considerations in the immunocompromised patient. Emerg Med Clin N Am.2003;499;531.
    21. Tietjen PA Clinical presentation and diagnosis of Pneumocystis carinu infection in HIV infected patients.10.2Address at:http://www uptodate.com Access April 2002.
    22. Jerome A. Leis, Paul E. Bunce, Todd C. Lee, Wayne L. Gold. Brain and lung lesions in an immunocompromised man. CMAJ; 2011; 183(5).
    23. Anthony E. Fiore, Timothy M. Uyeki, Karen Broder, et al. Prevention and Control of Influenza with Vaccines. August 6,2010.
    24. Louis Y. A. Chai, Mihai G. Netea, Steven Teerenstra.. Early Proinflammatory Cytokines and C-Reactive Protein Trends as Predictors of Outcome in Invasive Aspergillosis. The Journal of Infectious Diseases 2010; 202(9):1454-1462.
    25. Konstantinos Leventakos,Russell E. Lewis, Dimitrios P. Kontoyiannis.Fungal Infections in Leukemia Patients:How Do We Prevent and Treat Them? Clinical Infectious Diseases 2010; 50:405-15.
    26. Albert J. Eidl and Raymund R. Razonable. New Developments in the Management of Cytomegalovirus Infection after Solid Organ Transplantation. Drugs 2010; 70 (8):965-981
    27. Robert C Welliver. Pharmacotherapy of respiratory syncytial virus infection. Current Opinion in Pharmacology 2010; 10:289-293.
    28. Paola Zelini, Daniele Lilleri, Giuditta Comolli, Human cytomegalovirus-specific CD4+ and CD8+T-cell response determination:Comparison of short-term (24 h) assays vs long-term (7-day) infected dendritic cell assay in the immunocompetent and the immunocompromised host. Clinical Immunology 2010; 136;269-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700