以Ⅳ型胶原酶为靶点的单抗导向药物的抗肿瘤作用以及建立Ⅳ型胶原酶抑制剂筛选模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of the Antitumor Efficacy of Monoclonal Antibody Immunoconjugates Directed Against Type Ⅳ Collagenase and the Estalishment of Screening Models for Inhibitors of the Enzyme
  • 作者:王风强
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2002
  • 导师:甄永苏
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2002-06-01
摘要
近几年来,基质金属蛋白酶因在肿瘤的生长、转移和血管生成等多个环节中发挥着重要作用而成为肿瘤治疗研究中引人注目的新靶点。研究表明,MMPs的组织特异性抑制剂TIMPs或合成的小分子MMP抑制剂(MMPIs)可以抑制肿瘤的生长和转移。Ⅳ型胶原酶作为MMPs家族中的重要成员之一,可以通过降解Ⅳ型胶原等胶原底物破坏基底膜和细胞外基质的完整性,从而有利于肿瘤的生长、转移和血管生成。一般来说,在肿瘤细胞及其邻近的间质组织中,Ⅳ型胶原酶的表达和活化显著增加,并且这种增加与肿瘤的恶性表型呈正相关。以其为分子靶点,发展的多种小分子Ⅳ型胶原酶抑制剂在恶性肿瘤的治疗中显示出确切的疗效,部分化合物进入了临床研究阶段。我室制备的小鼠抗Ⅳ型胶原酶单抗3D6可以与Ⅳ型胶原酶特异性结合并中和该酶的活性,以其为基础构建的单抗导向药物在小鼠实验肿瘤模型中显示出很好的疗效。本研究进一步构建了单抗3D6及其小型化片段与高效抗肿瘤抗生素力达霉素的免疫偶联物,并对其体内外抗肿瘤作用进行了研究。另外,我们利用单抗3D6与Ⅳ型胶原酶的结合特性,以竞争性抑制为基础,建立了Ⅳ型胶原酶抑制剂的筛选模型,并利用该模型进行了Ⅳ型胶原酶抑制剂的筛选。研究内容主要包括以下几个部分。
     一、抗Ⅳ型胶原酶单抗3D6与力达霉素偶联物的制备及其抗肿瘤作用
     单抗3D6可以与Ⅳ型胶原酶特异性结合,以其为载体与抗肿瘤抗生素平阳霉素构建的偶联物在肿瘤生长和转移的动物实验模型中显示出比游离药物更好的治疗作用,以SPDP作为偶联剂制备的3D6-LDM偶联物对小鼠移植性肝癌(H22)的初步研究亦显示出一定的疗效。最近,放射免疫偶联物Zevalin获得FDA的批准上市,给鼠源性单抗用于肿瘤治疗带来了希望。我们以巯基引入试剂2-IT和异型双功能偶联剂MBS作为交联剂,制备了以1:1分子比的偶联产物为主的单抗3D6与高效抗肿瘤抗生素力达霉素的偶联物,该偶联物保留了单抗3D6与Ⅳ型胶原酶和Ⅳ型胶原酶表达较高的H22肿瘤细胞的结合能力,并在体外MTT实验中显示出比游离力达霉素更强的细胞毒作用。采用体外细胞毒性实验中与游离力达霉素作用相当的剂量,在第1
Matrix metalloproteinases (MMPs) has been viewed as a promising target in tumor therapy in recent years due to their key role in tumor growth, angiogenesis, invasion and metastasis. MMP inhibitors, including both the natural tissues MMPs inhibitors (TIMPs) and synthetic low molecular MMPs inhibitors showed the potency of inhibiting tumor growth and metastsis. Type Ⅳ collagenase is an important member of MMPs family which can destroy the integrity of basement membrane and extracellular matrix through the degrading of Type Ⅳ collagen, thus facilitate the process of tumor invasion and metastasis. Also, the expression and secretion of Type Ⅳ collagenase is highly elevated in tumor cells and adjacent interstitial tissue, especially in malignancy with high potential of invasion and metastasis. Studies using Type Ⅳ collagenase as a molecular target have achieved a lot in tumor therapy especially in the control of tumor metastasis. Based on this, the study of using Type Ⅳ collagenase inhibitors to control its activity and the study of using anti-Type Ⅳ collagenase monoclonal antibody as a vector to realize targeting antitumor drugs to the tumor site are two prospective methods for malignancy therapy. And the latter may have dual effects due to the antibody neutralization of enzyme activity and the specific cell-killing effect of antitumor drugs. In this study we developed research on both of the two methods mentioned above. The studies focus on the below fields.
    1. The preparation of immunoconjugate composed of lidamycin and monoclonal antibody 3D6 and the evaluation of its antitumor effects
    Murine monoclonal antibody 3D6 can bind to Type Ⅳ collagenase specifically. The immunoconjugate composed of mAb 3D6 and pingyangmycin have shown some striking results in tumor therapy. Lidamycin (LDM, also named as C1027), conjugated with mAb 3D6 also exhibited preliminary results. Recently, the approval of a new immunoconjugate consisting of radionuclides Yttrium-90 and an intact murine anti-CD20 antibody by FDA
引文
1. Dickman S. Antibodies stage a comeback in cancer treatment. Science, 1998, 280: 1196-1197
    2.甄永苏.单克隆抗体药物治疗肿瘤的研究现状与展望.中国医学科学院学报 2000,22(1):9-13
    3. Dillman RO. Magic bullets at last! Finally-approval of a monoclonal antibody for the treatment of cancer!!! Cancer Biother Radiopharm 1997, 12: 223-225
    4. Cohen RL. Herceptin R: Breaking new ground. Cancer Biother Radiopharm 1999, 14: 1-45. Nguyen DT, Amess JA, Doughty H, et al. IDEC-C2B8 anti-CD20 (rituximab) immunotherapy in patients with low-grade non-Hodgkin's lymphoma and lymphoproliferative disorders: evaluation of response on 48 patients. Eur J Haematol. 1999, 62: 76-82
    6. Dillman, RO. Perceptions of Herceptin~R: a monoclonal antibody for the treatment of breast cancer. Cancer Biother Radiopharma 1999,14: 5-10
    7. Linenberger ML, Maloney DG, Bernstein ID. Antibody-directed therapies for hematological malignancies. Trends Mol Med 2002,8 (2): 69-76
    8. Kennedy B, Rawstron A, Carter C, et al. Campath-1H and fludarabine in combination are highly active in refractory chronic lymphocytic leukemia. Blood 2002, 99 (6): 2245-7
    9. Pangalis GA, Dimopoulou MN, Angelopoulou MK, et al. Campath-1H (anti-CD52) monoclonal antibody therapy in lymphoproliferative disorders. Med Oncol 2001, 18 (2): 99-107
    10. Sievers EL, Linenberger M. Mylotarg: antibody-targeted chemotherapy comes of age . Curr Opin Oncol 2001,13 (6): 522-7
    11. Stadtmauer EA. Trials with gemtuzumab ozogamicin (mylotarg(r)) combined with chemotherapy regimens in acute myeloid leukemia. Clin Lymphoma 2002, 2 suppl 1: S24-8
    12. Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev. 2001, 53 (2): 171-216
    13. Green MC, Murray JL, Hortobagyi GN. Monoclonal antibody therapy for solid tumors. Cancer Treat Rev 2000,26 (4): 269-86
    14. Yu AE, Hewitt RE, Connor EW, et al. Matrix metalloproteinases, novel target for directed cancer therapy. Drugs Aging 1997, 11(3): 229-44
    15. Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000, 18(5): 1135-1149
    16. Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with a selective gelatinase inhibitors. Nat Biotech 1999, 17: 768-774
    17. Mc Cawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000, 6(4): 149-561.甄永苏.抗肿瘤导向药物研究的现状与展望.药学学报 1994,29:1-6
    2. Bross PF, Beitz J, Chen G, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leulemia. Clin Cancer Res 2001, 7 (6): 1490-6
    3. Reff ME, Heard C. Areview of modifications to recombinant antibodies: attempt to increase efficacy in oncology applications. Crit Rev Oncol Hematol 2001, 40 (1): 25-35
    4. Brinkmann U, Keppler-Hafkemeyer A, Hafkemeyer P. Recombinant immunotoxins for cancer therapy. Expert Opin Biol Ther 2001, 1 (4): 693-702
    5. Wagner HN Jr, Wiseman GA, Marcus CS, et al. Administration guidelines for radioimmunotherapy of non-Hodgkin's lymphoma with (90)Y-labeled anti-CD20 monoclonal antibody. J Nucl Med 2002, 43 (2): 267-72
    6. Gordon LI, Witzig TE, Wiseman GA, et al. Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin's lymphoma. Semin Oncol 2002, 29 (1 Suppl 2): 87-92
    7. Kuan CT, Wikstand C J, Bigner DD. EGFRvⅢ as a promising target for antibody-based brain tumor therapy. Brain Tumor Pathol 2000, 17 (2): 71-88. Yu AE, Hewitt RE, Connor EW, et al. Matrix metalloproteinases, novel target for directed cancer therapy. Drugs Aging 1997, 11 (3): 229-44
    9.徐琳娜,王维刚,尚伯杨,等。抗Ⅳ型胶原酶单抗及其药物偶联物的抗肿瘤作用。国外医学·肿瘤学分册 1998,5:68
    10.李军智,江敏,薛玉川,等。抗癌抗生素C1027与单克隆抗体Fab片段偶联物的抗肝癌作用。药学学报 1993,28:260-265
    11. Xu YJ, Li DD and Zhen YS. Mode of action of C-1027, a new macromolecular antitumor antibiotic with highly potent cytotoxicity, on human BEL-7402 cells. Cancer Chemother Pharmacol 1990, 27: 41-46
    12. Xu YJ, Zhen YS, and Goldberg IH. C1027 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage. Biochemistry 1994, 33: 5947-5954
    13.邵荣光,甄永苏.新烯二炔类大分子抗肿瘤抗生素C1027的分子构成与活性关系.药学学报 1995,30:336-342
    14.甄永苏,邵荣光,江敏,等.抗癌抗生素C1027与单克隆抗体偶联物的抗肿瘤作用.中国肿瘤生物治疗杂志 1994,2:94-98
    15.邵荣光.中国协和医科大学中国医学科学院博士研究生论文 1994.
    16.汲言山,贺永怀,陈兴,等.不同交联方法制备的免疫毒素及其体内外特性.生物化学与生物物理进展 1991,18:443-446,1. Kreitman RJ and Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: fewer than 1000 molecules per cell are sufficient for complete responses. Cancer Res 1998, 58: 968-9?5.
    2. Kreitman R J, Wang QC, FitzGerald DJP, et al. Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4 (dsFv)-PE38 at doses tolerated by cynomolgus monkeys. Int J Cancer 1999, 81: 148-155.
    3. BeraTK, Viner J, Brinkman E, et al. Pharmacokintics and antitumor activity of a bivalent disuifide-stablized Fv immunotoxin with improved antigen binding to erbB2. Cancer Res 1999, 59: 4018-4022.
    4.刘小云,尚伯杨,刘秀均,甄永苏.应用平阳霉素与单克隆抗体Fab′片段偶联物抑制肝癌生长与肿瘤肝转移.中华医学杂志 2001,81(4):201-204
    5.刘小云,甄永苏.力达霉素构建的小型化单克隆抗体免疫偶联物的抗肿瘤作用.中国医学科学院学报.2001,23(6):563-567
    6. Liu XY and Zhen YS. Antitumor effects of monoclonal antibody Fab' fragment containing immunoconjugates. Chin Med Sci J 2002, 17 (1): 1-6
    7.徐琳娜,王维刚,尚伯杨,甄永苏.抗Ⅳ型胶原酶单抗及其药物偶联物的抗肿瘤作用.国外医学·肿瘤学分册 1998,5:68.
    8.刘小云.中国协和医科大学中国医学科学院博士研究生学位论文.2000
    9. Xu YJ, Li, DD and Zhen YS. Mode of action of C-1027, a new macromolecular antitumor antibiotic with highly potent cytotoxicity, on human BEL-7402 cells. Cancer Chemother. Pharmacol. 1990, 27: 41-46.
    10. Xu YJ, Zhen YS and Goldberg IH. C1027 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage. Biochemistry 1994, 33: 5947-5954.
    11. Zhen YS, Ming XY, Yu B, Otani T, et al. A new macromolecular antitumor antibiotics, C1027 Ⅲ. Antitumor activity. J Antibiot 42: 1294-1298,
    12.甄红英,薛玉川,甄永苏。抗肿瘤抗生素C1027抑制血管生成及其抗肿瘤转移作用。中华医学杂志 1997,7:657-660。1. Kahari VM and Saarialho-kere U. Matrix metalloproteinases and their inhibitors in tumor growth and invasion. Ann Med. 1999, 31: 34-45
    2. McCawley L J, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000, 6(4): 149-56
    3. Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumor invasion and metastasis. Eur. J. Cancer 2000, 36(13): 1621-30
    4. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinases inhibitors in cancer therapy. J Natl Cancer Inst 2001, 93(3): 178-193
    5. Macaulay VM., O' Byrne K, Saunders MP, et al. Phase Ⅰ study of intrapleural Batimastat(BB-94), a MMPI, in the treatment of malignant pleural effusions. Clin Cancer Res 1999, 5 (3): 513-520
    6. Bramhali SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol 2001, 19 (15): 3447-55
    7. Inokoshi J, Shiomi K, Masuma R, et al. Funalenone, a novel collagenase inhibitor produced by Aspeergillus Niger. J A ntibiot 1999, 52(12): 1095-1100
    8. Golub LM, Lee HM, Ryan ME, et al. Tetracyclines inhibit connective tissue break down by multiple non-antimicrobial mechanisms. Adv Dent Res 1998, 12: 12-26
    9. Seftor RE, Seftor EA, De Larco JE, et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 1998, 16: 217-25
    10. Jacobsen EJ, Mitchell MA, Hendges SK, et al. Synthesis of a series of??stromelysin-selective thiadiazole urea matrix metalloproteinase inhibitors. J Med Chem 1999, 42 (9): 1525-1536
    11. Tamura Y, Watanabe F, Nakatani T, et al. Highly selective and orally active inhibitors of type Ⅳ collagenase (MMP-9 and MMP-2): N-sulfonylamino acid derivatives. J Med Chem 1998, 41 (4): 640-649
    12.唐勇,甄永苏.抗Ⅳ型胶原酶单链抗体的表达及其对肿瘤细胞侵袭的抑制作用[J].癌症,2001:20(8):801-805
    13.徐琳娜,王维刚,尚伯杨,等。抗Ⅳ型胶原酶单抗及其药物偶联物的抗肿瘤作用。国外医学·肿瘤学分册 1998,5:681. Parsons SL, Watson SA, Brown PD, et al. Matrix metalloproteinases. Br J Surgery 1997, 84: 160-166
    2. Kugler A. Matrix metalloproteinases and their inhibitors. Anticancer Res 1999, 19: 1589-1592.
    3. Kahari VM and Saarialho-kere U. Matrix metalloproteinases and their inhibitors in tumor growth and invasion. Ann Med. 1999, 31: 34-45
    4. Yu AE, Hewitt RE, Connor EW, et al. Matrix metalloproteinases, novel target for directed cancer therapy. Drugs Aging 1997, 11 (3): 229-445. Giavazzi R, Taraboletti G. Preclinical development of metalloproteinases and metalloproteinase inhibitors in cancer therapy. Crit Rev Oncol Hematol 2001, 37(1): 53-60
    6. Heath EI, Growchow LB. Clinical potential of matrix metalloproteinases inhibitors in cancer therapy. Drugs 2000, 59(5): 1043-55
    7. Hidalgo M, Eckhardt SG Development of matrix metalloproteinases inhibitors in cancer therapy. J Natl Cancer Inst 2001, 93(3): 178-193
    8. Coussens LM, Fingleton B, Matrisian LM. Matix metalloproteinases inhibitors and cancer: trials and tribulations. Science 2002, 295: 2387-2392
    9. Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 2000, 18(5): 1135-1149
    10. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 2001, 13(5): 534-40
    11. Kleiner DE, Stetler-stevenson WG. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol. 1999, 43 suppl: S42-S51
    12. Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumor invasion and metastasis. Eur. J. Cancer 2000, 36(13): 1621-30
    13. Pendas AM, Uria JA, Jimenez MG, et al. An overview of collagenase-3 expression in malignant tumors and analysis of its potential value as a target in antitumor therapies. Clin Chim Acta 2000, 291(2): 137-55
    14. Jones L, Ghaneh P, Humphreysm, Neoptolemes JP. The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer. Ann N Y Acad Sci 1999, 880: 288-307
    15. Bernhard EJ, Gruber SB, Muschel RJ. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci U S A 1994, 91: 4293-7.
    16. Valente P, Fassina G, Melchiori A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer 1998, 75(2): 246-253
    17. Kawamata H, Kameyama S, Kawai K, et al. Marked acceleration of the metastatic phenotype of a rat bladder carcinoma cell line by the expression of human gelatinase A. Int J Cancer 1995, 63: 568-75.18. Tsunezuka Y, Kinoh H, Takino T, et al. Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 1996, 56: 5678-83.
    19. Powell WC, Knox JD, Navre M, et al. Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 1993, 53: 417-22
    20. Wilson CL, Heppner KJ, Labosky PA, et al. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A 1997, 94: 1402-7
    21. Itoh H, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 1998, 58: 1048-51
    22. Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 1998, 140: 1535—41
    23. Chambers AF, Matrisian L. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997, 89(17): 1260-1270
    24. Hiraoka N , Allen E, Apel IJ, et al. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibinolysins. Cell 1998, 95: 365-377
    25. Mc Cawley LJ , Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000,6(4): 149-56
    26. Martin DC, Fowlkes JL, Babic B, et al. Insulin-like growth factor II signaling in neoplastic proliferation is blocked by transgenic expression of the metalloproteinase inhibitor TIMP-1. J Cell Biol 1999, 146: 881-92
    27. Manes S, Mira E, Barbacid MM, et al. Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 1997, 272: 25706-12
    28. Dano K, Romer J, Nielsen B, et al. Cancer invasion and tissue remodeling—cooperation of protease systems and cell types. APMIS 1999, 107: 120-7
    29. Uria A, Stahle-Backdahl M, Seiki M, et al. Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal-epithelial cell interactions. Cancer Res 1997,57:4882-830. Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol 2000, 2(10): 737-744
    31. Coussens LM, Tinkle CL, Hanahan D, et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000, 103(3): 481-90
    32. Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res 1998, 58: 1135-9
    33. Ray JM, Stetler-Stevenson WG The role of matrix metalloproteinases and their inhibitors in tumor invasion, metastasis and angiogenisis. Eur Respir J 1994, 7: 2062-2072
    34. Basset P, Okada A, Chenard MP, et al. Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications. Matrix Biol 1997, 15: 535-41
    35. Murono S, Yoshizaki TK, Sato H, et al. Aspirin Inhibitors tumor cell invasion by Epstein-Barr Virus Latent Membrane Protein 1 through suppression of MMP-9 expression. Cancer Res 2000, 60(9): 2555-2561
    36. Elkin M, Reich R, Nagler A, et al. Inhibition of matrix metalloproteinase-2 expresssion and bladder carcinoma metastasis by halofuginone. Clin Cancer Res 1999, 5(8): 1982-1988
    37. Hasegawa S, Koshikawa N, Momiyama N, et al. Matrylysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer 1998, 76: 812-6
    38. Hua J, Muschel RJ. Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res 1996, 56: 5279-84
    39. Demeule M, Brossard M, Page M, et al. Matrix metalloproteinases inhibition by green tea catechins. Biochim Biophys Acta 2000, 1478(1): 51-60
    40. Tabot DC and Brown PD. Experimental and clinical sudies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur J Cancer 1996, 32A(14): 2528-2533
    41. Wojtowicz-Praga SM, Dickson RB and Hawkins MJ. Matrix metalloproteinases inhibitors. Invest New Drugs 1997, 15: 61-7542. Inokoshi J, Shiomi K, Masuma R, et al. Funalenone, a novel collagenase inhibitor produced by Aspeergillus Niger. J Antibiot 1999, 52(12): 1095-1100
    43. Lee HJ, Chung MC, Lee CH, et al. Gelastatins, new inhibitors of matrix metalloproteinases from Westerdykella multispora F50733. Ann N Y Acad Sci 1999, 878: 635-637
    44. Betz M, Huxley P, Davies SJ, et al. 1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur J Biochem 1997, 247: 356-63
    45. Brown PD. Clinical studies with matrix metalloproteinase inhibitors. APMIS 1999, 107: 174-80
    46. Golub LM, Lee HM, Ryan ME, et al. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 1998, 12: 12-26
    47. Fife RS, Rougraff BT, Proctor C, et al. Inhibition of proliferation and induction of apoptosis by doxycycline in cultured human osteosarcoma cells. J Lab Clin Med 1997, 130:530-4
    48. Seftor RE, Seftor EA, De Larco JE, et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 1998, 16: 217-25
    49. Stearns ME. Alendronate blocks TGF-beta1 stimulated collagen 1 degradation by human prostate PC-3 ML cells. Clin Exp Metastasis 1998, 16: 332-9
    50. Teronen O, Heikkila R, Konttinen YT, et al. MMP inhibition and downregulation by bisphosphonates. Ann N Y Acad Sci 1999, 878: 453-65
    51. Lozonschi L, Sunamura M, Kobari M. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res 1999, 59: 1252-1258
    52. Maekawa R, Maki H, Yoshida H. Correlation of antiangiogenic and antitumor efficacy of N-bibenyl Sulfonyl-Phenyl-Alanine Hydroxiamic Acid (BPHA), an Orally-active, Selective MMP inhibitor. Anticancer Res 1999, 59: 1231-1235
    53. Yip D, Ahmad A, Rayapetis CS, et al. Matrix metalloproteinase inhibitors: application in oncology. Invest New Drugs 1999, 17(4): 387-99
    54. Belotti D, Paganoni P, Giavazzi R. MMP inhibitors, experimental and clinical studies.??Int J Biol Markers 1999, 14(4): 232-8
    55. Lokeshwar BL. MMP inhibition in prostate cancer. Ann N Y Acad Sci 1999, 878: 271-89
    56. Kasmussen HS, Mclann PP. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther 1997, 75(1): 69-75
    57. Giavazzi R, Garofalo A, Ferri C, et al. Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian cancer. Clin Cancer Res 1998, 4: 985-92
    58. Prontera C, Mariani B, Rossi C, et al. Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer 1999, 81: 761-6
    59. Price A, Shi Q, Morris D, Wilcox ME, et al. Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res 1999, 5: 845-54
    60. Ferrante K, Winograd B, Canetta R. Promising new developments in cancer chemotherapy. Cancer Chemother Pharmacol 1999, 43 Suppl:S61-8
    61. Selzer MG, Zhu B, Block NL, et al. CMT-3, a chemically modified tetracycline, inhibits bony metastases and delays the development of paraplegia in a rat model of prostate cancer. Ann N Y Acad Sci 1999, 878: 678-82
    62. Macaulay VM., O' Byrne K, Saunders MP, et al. Phase I study of intrapleeural Batimastat(BB-94), a MMPI, in the treatment of malignant pleural effusions. Clin Cancer Res 1999, 5(3): 513-520
    63. Beattie GJ, Smyth JF. Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin Cancer Res 1998, 4: 1899-902
    64. Bramhall SR, Rosemurgy A, Brown PD, et al. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol 2001, 19(15): 3447-55
    65. Brow PD. Ongoing trials with matrix metalloproteinase inhibitors. Expert Opin Investig Drugs 2000, 9: 2167-77
    66. Rosemurgy A, Buckels J, Charnley R. A randomized study comparing marimastat to gemcitabine as first line therapy in patients with non-resectable pancreatic cancer??[abstract]. Proc ASCO 1999, 18: 261
    67. Fielding J, Scholefield J, Stuart P, et al. A randomized double-blind placebo controlled study of marimastat in patients with inoperable gastric adenocarcinoma [abstract]. Proc ASCO 2000,19: 240
    68. Rowinsky E, Humphrey R, Hammond LA, et al. Phase I and pharmacologic study of the specific matrix metalloproteinase inhibitor BAY 12-9566 on a protracted oral daily dosing schedule in patients with solid malignancies. J Clin Oncol 2000, 18: 178-86
    69. Moore MJ, Hamm P, Eisenberg P, et al. A comparison between gemcitabine (GEM) and the matrix metalloproteinase (MMP) inhibitor BAY 12-9566 (9566) in patients (pts) with advanced pancreatic cancer [abstract]. Proc ASCO 2000, 19: 240a.
    70. Shalinsky DR, Brekken J, Zou H, et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci 1999, 878: 236-70
    71. Shalinsky DR, Brekken J, Zou H, et al. Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant human non-small cell lung cancer tumors: single agent and combination chemotherapy studies. Clin Cancer Res 1999, 5: 1905-17
    72. Rudek M, Figg W, Dyer V, et al. A phase I clinical trial of oral Col-3, a matrix metalloproteinase inhibitor, administered daily in patients with refractory metastatic cancer [abstract]. Proc Am Assoc Cancer Res 2000,41:612.
    73. Skotnicki JS, Zask A, Nelson FC, et al. Design and synthetic considerations of matrix metalloproteinases inhibitors. Ann N Y Acad Sci 1999, 878: 61-72
    74. Porta PD, Soeitl R, Krell HW, et al. Combined Treatment with serine protease inhibitor Aprotinin and matrix metalloproteinase inhibitor batimastat (BB-94) does not prevent invasion of human Esophageal and ovarian carcinoma cell in vivo. Anticancer Research 1999,3809-3816.1. Bagshawe KD. Antibody directed enzyme revive anti-cancer prodrugs concept. Br J Cancer 1987, 56: 531-2
    2. Syrigos KN and Epenetos AA. Antibody directed enzyme prodrug therapy (ADEPT): a review of the experimental and clinical considerations. Anticancer Res 1999, 19: 605-614
    3. Niculescu-Duvaz Ⅰ and Springer CJ. Antibody-directed enzyme prodrug therapy (ADEPT): a review. Advanced Drug Delivery Reviews 1997, 26: 151-172
    4. Quadri SM, Malik AB, Tang XZ, et al. Preclinical analysis of intraperitoneal administration of Ⅲ In-labeled human tumor reactive monoclonal IgM AC6C3-2B 12. Cancer Res 1995, 55: 5736-42
    5. Bagshawe KD, Sharma SK, Springer C J, et al. Antibody directed enzyme prodrug therapy (ADEPT). A review of some theoretical, experimental and clinical aspects. Ann Oncol 1994, 5: 879-91
    6. Senter PD, Marquardt H, Beth AT, et al. The role of rat serum carboxylesterase in the??activation of paclitaxel and camptothecin prodrugs. Cancer Res 1996, 56: 1471-1474
    7. Senter PD, Wallace PM, Svensson HP, et al. Generation of cytotoxic agents by targeted enzymes. Bioconjugate Chem 1993, 4: 3-9
    8. Deonarain MP, Epenetos AA. Targeting enzymes for cancer therapy: old enzymes in new roles. Br J Cancer 1994, 70: 786-794
    9. Melton RG, Sherwood RF. Antibody-enzyme conjugates for cancer therapy. J Natl Cancer Inst 1996, 88: 153-165
    10. Tucker AD, Rowsell S, Melton RG, et al. A new crystal form of carboxypeptidase G2 from Pseudonomas sp. strain RS-16 which is more amenable to structure determination. Acta crystallogr Sect D biol Crystallogr 1996, D52, 890-892
    11. Bosslet K, Czech J, Hoffman D. Tumor-selective prodrug activation by fusion protein-mediated catalysis. Cancer Res 1994, 54: 2151-2159
    12. Rodrigues ML, Presta LG, Kotts CE, et al. Development of a humanized disulfide-stabilized anti-p185HER Fv-β-lactamase fusion protein for activation of a cephalosporin doxorubicin prodrug. Cancer Res 1995, 55: 63-70
    13. Bhatia J, Sharma SK, Chester KA, et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv: carboxypeptidase G2 fusion protein. Int J Cancer 2000, 85: 571-577
    14. Niculescu-Duvaz I, Friedlos F, Niculescu-Duvaz D, et al. Prodrugs for antibody-and gene-directed enzyme prodrug therapies (ADEPT and GDEPT). Anti-Cancer Drug Design 1999, 14: 517-538
    15. Blakey DC, Burke PD, Davies DH, et al. ZD2767, an improved system for antibody-directed enzyme prodrug therapy that results in tumor regressions in colorectal tumor xenografts. Cancer Res 1996, 56: 3287-3292
    16. Springer CJ and Niculescu-Duvaz Ⅰ. Antibody-direced enzyme prodrug therapy (ADEPT) with mustard prodrugs. Anti-Cancer Drug Design. 1995, 10: 361-372
    17. Springer CJ. CMDA, an antineoplastic prodrug. Drugs Future 1993, 18: 212-215
    18. Sharma SK, Boden JA, Springer CJ, et al. Antibody-directed enzyme prodrug therapy (ADEPT). A three-phase study in ovarian tumor xenografts. Cell Biophys 1994, 24/25: 219-228
    19. Eccles S, Court WJ, Box GA, et al. Regression of established breast carcinoma xenografts with antibody-directed enzyme prodrug therapy against C-erbB2 p185.??Cancer Res 1994, 54: 5171-5177
    20. Springer CJ, Niculescu-Duvaz Ⅰ, Pedley RB. Novel prodrugs of alkylating agents derived from 2-fluoro-and 3-fluoro-benzoic acids for antibody-directed enzyme prodrug therapy. J Med Chem 1994, 37: 2361-2370
    21. Blakey DC, Davies DH, Dowell RI, et al. Antitumor effect of an antibody-carboxypeptidase G2 conjugate in combination with phenol mustard prodrugs. Br J cancer 1995, 72: 1083-1088
    22. Monks NR, Calvete JA, Curtin NJ, et al. Cellular glutathione as a determinant of the sensitivity of colorectal tumor cell-lines to ZD2767 antibody-directed enzyme prodrug therapy (ADEPT). Br J cancer. 2000, 83(2): 267-269
    23. Webley SD, Francis RJ, Pedley RB, et al. Measurement of the critical DNA lesions produced by antibody-directed enzyme prodrug therapy (ADEPT) in vitro, in vivo and in clinical material. Br J Cancer 2001, 84(12): 1671-1676
    24. Roffler SR, Wang SM, Chern MY, et al. Anti-neoplastic glucuronide prodrug treatment of human tumor cells targeted with a monoclonal antibody-enzyme conjugate. Biochem Pharmacol 1991, 42: 2062-2065
    25. Svesson HP, Wallace PM, Senter PD, et al. Monoclonal antibody-β-lactamase conjugates for the activation of a cephalosporin mustard prodrug. Bioconjugate Chem 1992, 2: 176-181
    26. Kerr DE, Schreiber GJ, Vrudhula VM, et al. Regressions and cures of melanoma xenografts following treatment with monoclonal antibody beta-lactamase conjugates in combination with anticancer prodrugs. Cancer Res 1995, 55: 3558-3563
    27. Hanessian S, Wang J. Design and synthesis of a cephalosporin-carboplatinum prodrug activatable by a β-lactamase. Can J Chem 1993, 71: 896-906
    28. Knox RJ, Friedlos F, Biggs PJ, et al. Identification, synthesis and properties of 5-(aziridin-1-yl)-2-nitro-4-nitrosobenzamide, a novel DNA cross-linking agent derived from CB 1954. Biochem Pharmacol 1993, 46: 797-803
    29. Davies LC. Simple synthesis of the 5-O-benzoylriboside of 1,4-dihydronicotinic acid: a cofactor for DT diaphorase and nitroreductase enzymes. Nucleosides Nucleotides 1995, 14: 311-312
    30. Knox RJ, Friedlos F and Boland MP. The bioactivation of CB1954 and its use as a prodrug in antibody-directed enzyme prodrug therapy (ADEPT). Cancer and??Metastasis reviews 1993,12: 195-212
    31. Somani HH, Wilman DEV. Novel analogues of CB 1954: their potential use in Antibody Directed Enzyme Therapy. Eur J Cancer 1994, 30A: 9
    32. Anlezark GM, Melton RG, Sherwood RF, et al. Bioactivation of dinitrobenzamide mustards by an Escherichia coli-B nitroreductase. Biochem Pharmacol 1995, 50: 609-618
    33. Mauger AB, Burke PJ, Somani HH, et al. Self-immolative prodrugs: candidates for antibody-directed enzyme prodrug therapy in conjunction with a nitroreductase enzyme. J Med Chem 1994,37: 3452-3458
    34. Hay MP, Wilson WR, Denny WA, et al. A novel enediyne prodrug as a substrate for antibody directed enzyme prodrug therapy (ADEPT) using E. coli-B nitroreductase. Bioorg Med Chem Lett 1995, 5:2829-2834
    35. Vitols KS, Haag-Zeino B, Baer T, et al. Methotrexate- α -phenylalanine : optimization of methotrexate prodrug for activation by carboxypeptidase A-monoclonal antibody. Cancer Res 1995, 55: 478-481
    36. Laethem RM, Blumenkopf TA, Cory M, et al. Expression and characterization of human pancreatic preprocarboxylpeptidase A2. Arc Biochem Biophys 1996, 32: 8-18
    37. Springer CJ, Bavetsias V, Jackman AL, et al. Prodrugs of thymidylate synthase inhibitors: potential for antibody directed enzyme prodrug therapy (ADEPT). Anti Cancer Drug Design 1996,11: 625-636
    38. Svensson HP, Vrudhula VM, Emswiler JE, et al. In vitro and in vivo activities of a doxorubicin prodrug in combination with monoclonal antibody β -lactamase conjugates. Cancer Res 1995, 55:2357-2363
    39. Senter PD, Svensson HP, Schreiber GJ, et al. Poly(ethylene glycol)-doxorubicin conjugates containing β -lactamase sensitive linkers. Bioconjugate Chem 1995, 6:389-394
    40. Meyer DL, Law KL, Payne JK, et al. Site specific drug activation by antibody- β -lactamase conjugates: preclinical investigation of the efficacy and toxicity of doxorubicin delivered by antibody directed catalysis. Bioconjugate Chem 1995, 6: 440-446
    41. Azoulay M, Florent JC, Monneret C, et al. Prodrugs of anthracycline antibiotics suited fro tumor-specific activation. Anti-Cancer Drug Design 1995, 10: 441-45042. Haisma HJ, Muijen MV, Pinedo HM, et al. Comparison of two anthracycline-based prodrugs for activation by a monoclonal antibody- β -glucuronidase conjugate in specific treatment of cancer. Cell Biophys 1994, 24/25: 185-192
    43. Bosslet K, Czech J, Seeman G, et al. Fusion protein mediated prodrug activation (FMPA) in vivo. Cell Biophys 1994, 24/25: 51-63
    44. Haisma HJ, Boven E, Muijen MV, et al. A monoclonal antibody- β -glucuronidase conjugate as activator of the prodrug epirubicin-glucuronide for the specific treatment of cancer. Br J Cancer 1992,66:474-478
    45. Florent JC, Dong X, Gaudel G, et al. Prodrugs of anthracyclines for use in antibody directed enzyme prodrug therapy. J Med Chem 1998, 41: 3572-3581
    46. Houba PHJ, Boven E, Meulen-Muileman IHVD, et al. Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody β -glucuronidase conjugate. Int J Cancer 2001, 91: 550-554
    47. Bakina Elena and Farquhar David. Intensely cytotoxic anthracycline prodrugs: galactosides. Anti-cancer Drug Design 1999,14: 507-515
    48. Vrudhula MV, Senter PD, Fischer K, et al. Prodrugs of doxorubicin and melphalan and their activation by a monoclonal anti-penicillin-G amidase conjugate. J Med Chem 1993,36:919-923
    49. Jungheim LN, Shepherol TA and Meyer DL. Synthesis of acylhydrazido-substituted cephems. Design of cephalosporin-vinca alkaloids prodrugs: substrates for an antibody-targeted enzyme. J Org Chem 1992, 57: 2334-2340
    50. Meyer DL, jungheim LN and Law KL, et al. Site-specific prodrug activation by antibody- β -lactamase conjugates: regression and long-term growth inhibition by human colon carcinoma xenograft models. Cancer Res 1993, 53: 3956-3963
    51. Rodrigues ML, Carter P and Wirth C, et al. Synthesis and β-lactamase mediated activation of a cephalosporin-taxol prodrug. Chem Biol 1995, 2: 223-227
    52. Leu YL, Roffler SR and Chern JW. Design and synthesis of water-soluble glucuronide derivatives of campothecin for cancer prodrug monotherapy and antibody-directed enzyme prodrug therapy (ADEPT). J Med Chem 1999, 42: 3623-3628
    53. Danks MK, Morton CL, Krull EJ, et al. Comparison of activation of CPT-11 by rabbit and human carboxylesterases for use in enzyme/prodrug therapy. Clincal??Cancer Res 1999, 5: 917-924
    54. Bignani GS, Senter PD, Grothaus PG, et al. N-(4'-hydroxyphenylacetyl)palytoxin: a palytoxin prodrug that can be activated by a monoclonal antibody-penicilin-G-amidase conjugate. Cancer Res 1992, 52: 5759-5764
    55. Bagshawe KD, Sharma SK, Springer CJ, et al. Antibody-directed enzyme prodrug therapy (ADEPT): a pilot scale clinical therapy. Tumor Targeting 1995, 1: 17-29.
    56. Martin J, Stribbling SM, Poon GK, et al. Antibody-directed enzyme prodrug therapy: pharmacokinetics and plasma levels of prodrugs and drug in a phase Ⅰ clinical trial. Cancer Chemther Pharmacol 1997, 40: 189-201
    57. Wentworth P, Datta A, Blakey D, et al. Toward antibody-directed "abzyme" prodrug therapy, ADAPT: carbamate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc Natl Acad Sci USA 1996, 93: 799-803
    58. Khan TH, Eno-Amooquaye EA, Searle F, et al. Novel inhibitors of carboxypeptidase G_2 (CPG_2): potential use in antibody-directed enzyme prodrug therapy. J Med Chem. 1999, 42: 951-956
    59. Syrigos KN, Rowlinson-Busza G and Epenetos AA. In vitro cytotoxicity following specific activation of amygdalin by β-glucosidase conjugated to a bladder cancer-associated monoclonal antibody. Int J Cancer 1998, 78: 712-719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700