早期多次卡介苗接种对哮喘小鼠气道重塑的影响及相关免疫机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支气管哮喘(简称哮喘)是一种以嗜酸性粒细胞(Eosinophils, Eos)、肥大细胞和T淋巴细胞浸润为主的气道慢性炎症性疾病,表现为气道高反应性和可逆性气流受限。气道炎症的反复发生或持续存在会使气道出现不可逆的结构改变,称为气道重塑,其特征主要有:气道周围平滑肌增生/肥大,上皮下纤维化和胶原沉积,上皮细胞黏液化生和黏液高分泌以及微血管的增生。当哮喘发展至气道重塑阶段会出现气流受限的不完全可逆,患者对抗炎治疗的反应下降而使预后变差。
     哮喘严重威胁人类健康,其发病率在全世界范围内有增高趋势。目前全球有超过3亿哮喘患者,我国约有3900万哮喘患者。现行的以吸入糖皮质激素为首选的治疗方案能控制哮喘症状,但需长期用药,不能预防及根治其发生,也不能抑制气道重塑的发生。如何从哮喘的发病机制入手寻找一有效的哮喘预防手段是目前面临的难题。
     现有研究表明哮喘是一种免疫失衡性疾病,哮喘的发生与机体IFN-γ的微环境缺失和Th2细胞免疫的过度存在相关,大量Th2细胞因子(IL-4, IL-5, IL-13等)的增加,促进了IgE的释放,致使肺组织嗜酸性粒细胞浸润和气道黏液高分泌,导致气道反应性的增高和气道重塑的发生。通过纠正机体失衡的Th1/Th2免疫反应成为预防哮喘研究的热点和靶点。
     减毒活菌卡介苗(Bacillus Calmette-Guerin, BCG)是一种很强的Thl免疫刺激剂,多项动物研究显示,BCG干预可明显抑制抗原致敏激发所致的气道Eos浸润,降低气道高反应性。流行病学研究关于人体BCG接种与哮喘发生的关系虽然有争议,但是最近一项对23项临床研究的荟萃分析结果表明,人类生命早期接种BCG疫苗能够降低儿童哮喘发生率,进一步支持了BCG接种能够预防哮喘发生的观点。
     BCG接种对哮喘的抑制作用与多种因素有关,包括BCG结构重组,采用不同的接种途径、接种次数以及改变接种时间窗等。多年来我们实验室致力于寻求一种最有效的、安全的、有望应用于人类的接种方式。通过一系列的前期研究,我们发现新生儿期幼鼠多次皮下给予小剂量BCG接种可以抑制成年后哮喘的发生,并且该保护作用能维持至老年。既然BCG早期多次接种能长期抑制哮喘气道炎症,那么是否可以进一步抑制与炎症持续存在相关的气道重塑的发生呢?目前为止,有关早期多次BCG接种对哮喘气道重塑的影响尚未见报道。
     其次是关于BCG接种抑制哮喘发生的免疫机制问题。虽然多数研究均证实BCG是一很强的Thl免疫刺激剂,但随着调节性T细胞(regulatory T cells, Treg)和新型Th细胞(Thl7细胞)的发现以及功能的不断研究,BCG是否通过Treg或Th17来抑制哮喘发生也受到重视。有研究发现IL-17能够促进机体对结核杆菌最佳的Thl免疫反应,介导T细胞分泌IFN-γ,并促进表达IFN-γ的CD4+T细胞向肺内迁移,从而在结核杆菌疫苗干预哮喘的过程中发挥作用。也有研究认为结核杆菌疫苗能够通过诱导Treg增殖抑制哮喘炎症。但以上研究多基于急性炎症模型或体外研究。而现有研究发现,慢性或重症哮喘与急性或轻症哮喘患者中多种炎症因子的表达存在明显差异,如在慢性持续性或重症哮喘患者中Th17细胞比例和IL-17的表达明显高于轻症患者。基于本研究中我们使用的是慢性气道重塑模型,我们有兴趣观察BCG早期接种在慢性哮喘中的免疫调节模式,而这方面目前鲜见报道。
     由此,本实验分两部分进行研究:(1)通过构建小鼠哮喘气道重塑模型,观察新生期多次BCG接种对小鼠哮喘气道重塑发生的影响;(2)通过流式细胞术和real-time PCR检测早期多次BCG接种后肺组织T细胞亚群的变化,从而了解早期多次皮下接种BCG在气道重塑模型中的免疫应答情况。
     第一部分小鼠哮喘气道重塑模型的建立及早期多次卡介苗接种对气道重塑的影响
     目的:通过抗原致敏和反复激发建立具有典型气道重塑特征的慢性哮喘模型。观察早期多次卡介苗接种对哮喘气道重塑的影响。
     方法:采用BALB/c新生鼠,分为OVA致敏激发组(OVA组)、早期多次BCG接种组(BCG+OVA组)和生理盐水阴性对照组(SHAM组)。BCG+OVA组小鼠分别在出生0、7、14天予以BCG105CFUs的剂量行皮下接种3次,OVA组和SHAM组注射等体积注射用水。小鼠长大至5周时予OVA腹腔注射致敏,2周后第二次致敏,10天后以1%OVA雾化吸入激发,每次40min,每周连续雾化吸入3天,连续8周。最后一次激发后24小时行气道反应性测定。48小时收集标本,行支气管肺泡灌洗液细胞分类计数,肺组织病理切片观察气道炎症、气道周围平滑肌增生、胶原沉积和黏液分泌情况。
     结果:OVA组小鼠经抗原致敏和反复激发后出现了典型的气道重塑特征,包括气道周围平滑肌明显增生、胶原沉积增加、气道黏液高分泌以及气道和血管周围大量炎症细胞浸润,同时气道反应性明显增高。而早期多次BCG接种后的小鼠(BCG+OVA组)BALF中炎症细胞总数减少,尤其Eos减少更明显(P<0.01)。气道周围平滑肌增生和胶原沉积较OVA组减少,尤其以直径150-250μm的小气道周围减少明显(P<0.05)。气道反应性也较OVA组降低(P<0.05)。
     结论:我们通过OVA抗原致敏和反复雾化吸入激发的方法构建了稳定的具有典型气道重塑特征和气道高反应性的小鼠慢性哮喘模型。新生鼠早期多次BCG接种可降低慢性哮喘模型气道周围炎症细胞尤其是Eos的浸润,减轻气道周围平滑肌增生和胶原沉积,降低气道高反应性,其中对小气道周围气道重塑的抑制较中大气道更为明显。
     第二部分早期多次卡介苗接种减轻哮喘气道重塑的相关免疫机制
     目的:观察早期多次BCG接种后肺组织T细胞免疫应答的变化。观察BCG接种对肺组织中Eos活化因子和趋化因子表达的影响,以及对影响气道重建的重要因子TGF-β1表达的影响。
     方法:最后一次抗原激发后48小时行肺泡灌洗,ELISA法检测灌洗液上清中IFN-γ、IL-5、IL-17、IL-13、eotaxin-1、TGF-β1的水平。分离肺组织淋巴细胞,经PMA刺激后行表面抗体标记(CD3, CD4, CD8, CD25),细胞破膜处理后标记胞内抗体(IFN-γ, IL-4, IL-17A, IL-10, Foxp3),流式细胞术检测和分析各T’细胞亚群的比例。另取肺组织提取RNA,经逆转录后用real-time PCR法检测IFN-γ, IL-17A和Fopx3mRNA的表达。肺组织石蜡切片行TGF-β1免疫组化染色,图像分析计数气道基底膜外围30μm范围内TGF-β1+细胞数。
     结果:与SHAM组相比,OVA组表达IL-4和表达IL-17的T细胞比例增高,而表达IFN-γ的T细胞比例无明显变化。BCG多次接种后肺组织中表达IFN-γ的T细胞明显增高达4倍,尤其表现为Thl细胞的增加(5.01±0.66%vs 0.83±0.18%ofCD3+T cells, BCG+OVA vs OVA, P<0.01). Thl7细胞、Th2细胞和Treg在OVA组和BCG+OVA组之间无明显差别。real-time PCR检测结果与流式分析的结果一致,BCG接种后仅发现促进IFN-γmRNA明显增高,而IL-17A和Fopx3 mRNA水平在BCG+OVA组与OVA组之间无明显差异,但这两组的IL-17A mRNA水平均较SHAM组明显增高。用ELISA方法检测BALF中细胞因子表达水平,结果显示:OVA组和SHAM组EFN-γ水平无明显差异,BCG接种组IFN-γ较未接种组明显增高(P<0.05)。OVA组BALF中IL-5和Eotaxin-1水平较SHAM组显著增加,BCG+OVA组IL-5和Eotaxin-1水平均下降,两组间相比差异有显著性。IL-13水平OVA组较SHAM组高,BCG+OVA组较OVA组有下降,但统计无显著差异。IL-17水平各组中均很低,在检测的敏感性之外。BALF中TGF-β1水平用ELISA方法检测结果显示:OVA组BALF中TGF-β1水平较SHAM组显著增加,BCG+OVA组TGF-β1水平较OVA组下降,两组间相比差异有显著性。肺组织切片TGF-β1免疫组化染色发现:OVA组气道周围TGF-β1染色阳性的细胞数较SHAM组明显增高,BCG接种组较OVA组降低。
     结论:早期多次BCG接种导致肺组织中Thl细胞比例和IFN-γ水平明显升高,而对Treg无明显影响,说明早期BCG皮下接种对慢性哮喘的抑制主要通过诱导Th1免疫而非通过Treg增加而起作用。Th17细胞和IL-17参与了慢性哮喘炎症和气道重塑发生的过程,但早期皮下接种BCG并不影响其表达。早期多次BCG接种降低了肺组织中IL-5和TGF-β1的水平,可能与气道重塑的减轻相关。
     总结
     我们实验室前期研究发现,早期多次BCG接种可降低哮喘急性模型的气道炎症,且该作用可持续至老年。本研究在此基础上,进一步观察了早期多次BCG皮下接种对小鼠慢性哮喘气道重塑模型的影响及肺组织T细胞免疫应答的变化,得出如下结论:
     1、通过OVA抗原致敏和反复雾化吸入激发,成功建立了稳定的具有典型气道重塑特征和气道高反应性的小鼠慢性哮喘模型。
     2、早期多次BCG接种可减轻小鼠慢性哮喘模型的气道周围平滑肌增生和胶原沉积,降低气道高反应性,减轻气道炎症细胞浸润,尤其Eos浸润明显抑制。
     3、早期多次BCG接种降低了肺组织中IL-5和TGF-β1的水平,可能与气道重塑的减轻相关。
     4、早期多次BCG皮下接种导致肺组织中Th1细胞比例和IFN-γ水平明显升高,而对Treg无明显影响,说明早期BCG皮下接种对慢性哮喘的抑制主要通过诱导Thl免疫而非通过Treg增加而起作用。
     5、Th17细胞和IL-17参与了慢性哮喘炎症和气道重塑发生的过程,但早期皮下接种BCG并不影响其表达。
Asthma is a chronic airway inflammatory disease, which is characterized by the presence of increased numbers of eosinophils and a predominantly Th2 response. A persistent Th2 response leads to airway remodeling, characterized by increased globet cell numbers and consequent mucus production, smooth muscle hypertrophy and hyperplasia, collagen and elastic fiber deposition, and increased angiogenesis.
     Current asthma management strategies principally involve the use of inhaled corticosteroids to control symptoms, but it has little effect on inhibiting the disease progression and the development of airway remodeling. Therefore, preventative interventions may be a better approach to protect individuals from asthma. BCG as a strong inducer for Thl-type immune response, is considered as a potential candidate. Lately a mata-analysis for 23 studies suggested a protective effect of BCG exposure on childhood asthma occurrence, supports the hypothesis that exposure to the BCG vaccine in early life prevents asthma. Several factors may affect the efficacy of BCG vaccination, including the route and time of delivery. Our group has demonstrated previously that neonatal BCG vaccination has a long-term effect on inhibiting AHR and eosinophilia in mouse asthma. However, the potential of neonatal multiple BCG vaccination in preventing the development of airway remodeling associated with repeated allergen exposure remains to be addressed.
     Concerning the underlying mechanisms of BCG vaccination against asthma, most previous studies demonstrated that BCG inhibited Th2 response by inducing a strong Thl-type immune response. But lately some studies also suggested that BCG or killed Mycobacterium vaccae confer protection against airway inflammation by giving rise to allergen-specific regulatory T cells. Th17 is the newest member of the Th cell family. It's function in asthma, especially in chronic and severe asthma, is receiving attention. How neonatal BCG vaccination eliciting an immunological response in an airway remodeling model remains to be addressed.
     In this study, using a chronic asthma model of OVA-sensitized and repeated challenged mice, we further determined if neonatal multiple BCG vaccination is capable of reducing the airway remodeling. Then we used Flow Cytometric and Real-time PCR analysis to examine the differentiation of pulmonary T cell populations and to determine the underlying mechanisms of neonatal BCG vaccination in inhibiting asthma.
     Part I The establishment of murine model of airway remodeling and the effect of neonatal multiple BCG vaccination on the airway remodeling of asthma
     Objective:To investigate whether neonatal multiple vaccination with BCG could decrease the airway remodeling of asthma.
     Methods:BALB/c mice were injected intradermally with 25μl Freeze-dried living BCG suspension [105 infection units (IU)] at birth, and boosted two times on days 7,14 with the same dose of BCG. At 5 weeks of age, mice were immunized i.p. on days 0,14 with 20μg of OVA emulsified in 100μl Imject Alum. Groups of mice that had been sensitized with OVA were challenged with an aerosolized OVA thrice a week for 8 weeks. Age-and sex-matched mice that had been sensitized and challenged with saline at each time point were used as negative controls.24h after the final OVA challenge, airway hyperresponsiveness (AHR) to inhaled methacholine was measured. Mice were sacrificed 48h after the final OVA challenge and bronchoalveolar lavage fluid (BALF) and lungs were analyzed. Lungs were processed for either histologic staining (HE, PAS and Masson trichrome) or immunostaining (a-SMA). Lung inflammation, smooth muscle layer thickness, peribronchial fibrosis, airway mucus expression were analyzed.
     Results:OVA sensitive and repeated challenge induced airway remodeling including increased mucus production, smooth muscle hyperplasia, increased collagen deposition and airway hyperresponsiveness. Multiple BCG vaccination decreased levels of BALF total cells (30.27±3.06×104 vs 41.72±3.11×104 BCG+OVA vs OVA; p<0.05) and eosinophils (1.22±0.28×104 vs 8.46±1.34×104; BCG+OVA vs OVA; p<0.01). BCG vaccination also inhibited airway responsiveness, reduced the levels of peribronchial a-smooth muscle actin stained area (0.93±0.08 vs 1.45±0.12μm2/μm; BCG+OVA vs OVA; p< 0.05) and peribronchial collagen deposition (0.64±0.06 vs 0.88±0.09μm2/μm; BCG+OVA vs OVA;p<0.05). The mucus overproduction also decreased.
     Conclusion:Allergen sensitive and repeated aerosolized allergen challenge established murine model of airway remodeling. Multiple neonatal BCG vaccination reduced levels of allergen-induced airway remodeling and airway hyperresponsiveness in mice.
     Part II The possible mechanisms of BCG vaccination inhibiting the airway remodeling of mice
     Objective:To investigate the pulmonary T cell response following neonatal BCG vaccination and the possible mechanisms of BCG vaccination inhibiting the airway remodeling.
     Methods:48h after the final OVA challenge, mice were sacrificed and BALF was collected. Levels of selected cytokines and chemokines in BALF (IFN-y, IL-5, IL-17, IL-13, eotaxin-1, TGF-β1) were assayed using ELISA kits. Lung lymphocytes were isolated and labeled with T cells surface Abs (CD3, CD4, CD8 and CD25) and intracellular Abs (IFN-γ, IL-4, IL-17A, IL-10, Foxp3). Data were collected and analyzed using a FACScan for three-color flow cytometry. Lung tissue RNA was extracted with Trizol. Real-time PCR quantitative analyses were performed to detect the level of IFN-y, IL-17A, Foxp3mRNA. Lung tissues paraffin were also immunostained with TGF-β1 Ab, and peribronchial TGF-β1+cells were counted.
     Results:Neonatal BCG vaccination induced significantly increased level of BALF IFN-y and decreased the levels of BALF IL-5 and BALF eotaxin-1 compared with non-vaccinted and chronic OVA challenge alone. The level of IL-13 also decreased but had not statistical significance. Flow cytometric detection of T cell subpopulations in the lungs showed that BCG vaccination increased almost 6-fold CD3+CD8- IFN-γ+T cells (5.01±0.66 vs 0.83±0.18% of CD3+T cells) in the lungs as compared with the non-vaccinated mice. No difference was observed in the frequency of CD3+CD8- IL-4+T cells, CD3+CD8- IL-17+T cells and CD4+Foxp3+T cells(Treg) in the lungs of BCG vaccinated and non-BCG vaccinated mice, but IL-4+T cells and IL-17+T cells of OVA and BCG+OVA group mice significantly increased comparing with control mice. The results of IFN-y, IL-17A, Foxp3mRNA level in lung tissue were similar with flow cytometric detection of T cell subpopulations. Exposure of mice to chronic OVA challenge induced a significant increase in the level of TGF-β1 in BALF and peribronchial TGF-β1+cells. Multiple BCG vaccination decreased the level of TGF-β1 in BALF and peribronchial TGF-β1+cells.
     Conclusion:Our data suggested that neonatal multiple BCG vaccination primarily increased the level of IFN-y and IFN-y producing T cells in lungs. But has little effect on IL-17 producing T cells and pulmonary regulatory T cells. BCG vaccination decreased the level of IL-5 and Eotaxin-1 in BALF, also reduced levels of TGF-β1 in BALF and peribronchial TGF-β1+cells which may contribute to the abatement of airway remodeling.
     Our previous study showed that compared to other studies with single dose of BCG immunization, neonatal multiple BCG vaccination elicited longer-term protection by inhibiting allergic airway inflammation. In the present study, we further investigated the effect of multiple vaccination with BCG at newborn on the airway remodeling of chronic asthma and determined the possible immunological mechanisms. Conclusions obtained from our data were listed as following:
     1. We established a stable murine model of chronic asthma with typical airway remodeling features.
     2. Multiple neonatal BCG vaccination reduced levels of allergen-induced airway remodeling and airway hyperresponsiveness, as well as the airway inflammation.
     3. Multiple neonatal BCG vaccination decreased the levels of IL-5 and TGF-β1 in lungs, which may contribute to the inhibition of airway remodeling.
     4. Multiple BCG vaccination increased the frequency of Thl cells and IFN-y level, but not Treg cells, which suggested that the inhibition of asthma by BCG vaccination was not associated with an increased number of pulmonary regulatory T cells, but was positively correlated with the increase of IFN-y producing T cells.
     5. Thl 7 cells and IL-17 contribute to the development of airway remodeling. Neonatal BCG vaccination did not change the frequency of Th17 cells and IL-17 level.
引文
1. Shen H, Huang H, Wang J, et al. Neonatal vaccination with Bacillus Calmette-Guerin elicits long-term protection in mouse-allergic responses. Allergy 2008; 63(5):555-563.
    2. Lagranderie M, Abolhassani M, Vanoirbeek J, et al. Mycobacterium bovis BCG killed by extended freeze-drying reduces airway hyperresponsiveness in 2 animal models. J Allergy Clin Immunol.2008;121(2):471-478.
    3. Erb KJ, Holloway JW, Sobeck A, et al. Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. J Exp Med 1998; 187(4):561-569.
    4. Zuany-Amorim C, Sawicka E, Manlius C. et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med.2002;8(6):625-629.
    5. Koh YI, Choi IS, Kim WY. BCG infection in allergen-presensitized rats suppresses Th2 immune response and prevents the development of allergic asthmatic reaction. J Clin Immunol.2001;21(1):51-59.
    6. Hopfenspirger MT, Agrawal DK. Airway hyperresponsiveness, late allergic response, and eosinophilia are reversed with mycobacterial antigens in ovalbumin-presensitized mice. J Immunol.2002; 168(5):2516-2522.
    7. Christ AP, Rodriguez D, Bortolatto J, et al. Enhancement of Thl Lung Immunity Induced by Recombinant Mycobacterium bovis BCG Attenuates Airway Allergic Disease. Am J Respir Cell Mol Biol.2009 Oct 5. [Epub ahead of print].
    8. Major T, Wohlleben G, Reibetanz B, Erb KJ. Application of heat killed Mycobacterium bovis-BCG into the lung inhibits the development of allergen-induced Th2 responses. Vaccine.2002;20(11-12):1532-1540.
    9. Ou-Yang HF, Hu XB, Ti XY, et al. Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG. Immunology.2009; 128(1 Suppl):e343-352.
    10. Shirakawa T, Enomoto T, Shimazu S, et al. The inverse association between tuberculin responses and atopic disorder. Science.1997;275(5296):77-79.
    11. Soysal A, Baheciler N, Barlan I, et al. Lack of an inverse association between tuberculosis infection and atopy:by T-cell-based immune assay (RD1-ELISpot). Pediatr Allergy Immunol.2008;19(8):709-715.
    12. El-Zein M, Parent ME, Benedetti A, et al. Does BCG vaccination protect against the development of childhood asthma? A systematic review and meta-analysis of epidemiological studies. Int J Epidemiol.2009 Oct 12. [Epub ahead of print]
    13. Salvatore S, Keymolen K, Hauser B, et al. Intervention during pregnancy and allergic disease in the offspring. Pediatr Allergy Immunol.2005;16(7):558-566.
    14. Leigh R, Ellis R, Wattie J, et al. Dysfunction and remodeling of the mouse airway persist after resolution of acute allergen-induced airway inflammation. Am J Respir Cell Mol Biol.2002;27(5):526-535.
    15. Johnson JR, Wiley RE, Fattouh R, et al.Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med.2004;169(3):378-385.
    16. Takahashi G, Tanaka H, Wakahara K, et al. Effect of diesel exhaust particles on house dust mite-induced airway eosinophilic inflammation and remodeling in mice.2010;112(2):192-202.
    17. Kim CH, Ahn JH, Kim SJ, et al. Co-administration of vaccination with DNA encoding T cell epitope on the Der p and BCG inhibited airway remodeling in a murine model of chronic asthma. J Asthma.2006;43(5):345-353.
    18. Ozdemir C, Akkoc T, Bahceciler NN, et al. Impact of Mycobacterium vaccae immunization on lung histopathology in a murine model of chronic asthma. Clin Exp Allergy.2003;33(2):266-270.
    19. Yazi D, Akkoc T, Yesil O, et al. Treatment with Mycobacterium vaccae ameliorates airway histopathology in a murine model of asthma. Allergy Asthma Proc. 2008;29(1):67-73.
    20. Slats AM, Janssen K, van Schadewijk A, et al. Expression of smooth muscle and extracellular matrix proteins in relation to airway function in asthma. J Allergy Clin Immunol.2008; 121(5):1196-1202.
    21. Burgel PR, Lazarus SC, Tam DC, et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor receptor activation. J Immunol 2001;167(10):5948-5954.
    22. Shen HH, Ochkur SI, McGarry MP, et al. A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol 2003;170(6):3296-3305.
    23. Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science.2004;305(5691):1776-1779.
    24. Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5 deficient mice. J Clin Invest.2004; 133:551-560.
    25. Kanda A, Driss V, Hornez N, et al. Eosinophil-derived IFN-gamma induces airway hyperresponsiveness and lung inflammation in the absence of lymphocytes. J Allergy Clin Immunol.2009;124(3):573-582.
    26. Aceves SS, Newbury RO, Dohil R, et al. Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol 2007;119:206-212.
    27. Makinde T, Murphy RF, Agrawal DK. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol.2007;85(5):348-536.
    28. Levi-Schaffer F, Garbuzenko E, Rubin A, et al. Human eosinophils regulate human lung-and skin-derived fibroblast properties in vitro:a role for transforming growth factor beta (TGF-beta). Proc Natl Acad Sci USA.1999; 96(17):9660-9665.
    29. Zagai U, Dadfar E, Lundahl J, et al. Eosinophil cationic protein stimulates TGF-betal release by human lung fibroblasts in vitro. Inflammation. 2007;30(5):153-60.
    30. Cohn L, Elias JA, Chupp GL. Asthma:mechanisms of disease persistence and progression. Annu Rev Immunol.2004;22:789-815.
    31. Beller TC, Friend DS, Maekawa A, et al. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci U S A.2004;101(9):3047-3052.
    32. Hirota JA, Ellis R, Inman MD. Regional differences in the pattern of airway remodeling following chronic allergen exposure in mice. Respir Res.2006 Sep 21;7(1):120.
    1. Umemura M, Yahagi A, Hamada S, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guenn infection. J Immunol 2007; 178(6):3786-3796.
    2. Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8(4):369-377.
    3. Zuany-Amorim C, Sawicka E, Manlius C, et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 2002; 8(6):625-629.
    4. Lagranderie M, Abolhassani M, Vanoirbeek JA, et al. Mycobacterium bovis bacillus Calmette-Guerin killed by extended freeze-drying targets plasmacytoid dendritic cells to regulate lung inflammation. J Immunol.2010;184(2):1062-1070.
    5. Ou-Yang HF, Hu XB, Ti XY,et al. Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG Immunology.2009;128(1 Suppl):e343-352.
    6. Ahrens B, Gruber C, Rha RD, et al. BCG priming of dendritic cells enhances T regulatory and Thl function and suppresses allergen-induced Th2 function in vitro and in vivo. Int Arch Allergy Immunol.2009; 150(3):210-220.
    7. Hopkin JM. Atopy, asthma, and the mycobacteria. Thorax 2000;55(6):443-445.
    8. Kumar M, Behera AK, Matsuse H, et al. A recombinant bcg vaccine generates a thl-like response and inhibits IgE synthesis in Balb/c mice. Immunology 1999;97(3):515-521.
    9. Mucida DS, de Castro Keller A, Fernvik EC, et al. Unconventional strategies for the suppression of allergic asthma. Curr Drug Targets Inflamm Allergy 2003;2(2):187-195.
    10. Erb KJ, Holloway JW, Sobeck A, et al. Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. J Exp Med 1998;187(4):561-569.
    11. Christ AP, Rodriguez D, Bortolatto J, et al. Enhancement of Thl Lung Immunity Induced by Recombinant Mycobacterium bovis BCG Attenuates Airway Allergic Disease. Am J Respir Cell Mol Biol.2009 Oct 5. [Epub ahead of print]
    12. Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients:linking T cell driven inflammation and granulocytic influx? Respir Res. 2006; 7:135.
    13. Kaminska M, Foley S, Maghni K, et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction.J Allergy Clin Immunol.2009;124(1):45-51.e1-4.
    14. Agache I, Ciobanu C, Agache C, et al. Increased serum IL-17 is an independent risk factor for severe asthma.Respir Med.2010 Mar 23. [Epub ahead of print]
    15. Hopfenspirger MT, Agrawal DK. Airway hyperresponsiveness, late allergic response, and eosinophilia are reversed with mycobacterial antigens in ovalbumin-presensitized mice. J Immunol.2002;.168(5):2516-2522.
    16. Boussiotis VA, Tsai EY, Yunis EJ, et al. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest.2000; 105(9):1317-1325.
    17. Curotto de Lafaille MA, Kutchukhidze N, Shen S, et al. Adaptive Foxp3+regulatory T cell-dependent and-independent control of allergic inflammation. Immunity. 2008;29(1):114-126.
    18. Teran LM, Mochizuki M% Bartels J, et al. Thl-and Th2-type cytokines regulate the expression and production of eotaxin and RANTES by human lung fibroblasts. Am J Respir Cell Mol Biol.1999;20(4):777-786.
    19. Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5 deficient mice. J Clin Invest 2004;133:551-560.
    20. Ochkur SI, Jacobsen EA, Protheroe CA, et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J Immunol.2007;178(12):7879-7889.
    21. Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest.2003;112:1029-1036.
    22. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103:779-788.
    23. Mabalirajan U, Aich J, Agrawal A, et al. Mepacrine inhibits subepithelial fibrosis by reducing the expression of arginase and TGF-betal in an extended subacute mouse model of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2009;297(3):L411-419.
    24. Bosse Y, Rola-Pleszczynski M. Controversy surrounding the increased expression of TGF beta 1 in asthma. Respir Res.2007;8:66.
    25. Min MG, Song DJ, Miller M, et al. Coexposure to environmental tobacco smoke increases levels of allergen-induced airway remodeling in mice. J Immunol. 2007;178(8):5321-5328.
    26. McMillan SJ, Xanthou G, Lloyd CM. et al.Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-beta antibody:effect on the Smad signaling pathway. J Immunol.2005;174(9):5774-5780.
    27. Levi-Schaffer F, Garbuzenko E, Rubin, A et al. Human eosinophils regulate human lung-and skin-derived fibroblast properties in vitro:a role for transforming growth factor beta (TGF-beta). Proc Natl Acad Sci USA 1999; 96(17):9660-9665.
    28. Nissim Ben Efraim AH, Levi-Schaffer F. Tissue remodeling and angiogenesis in asthma:the role of the eosinophil. Ther Adv Respir Dis.2008;2(3):163-171.
    29. Makinde T, Murphy RF, Agrawal DK. The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol.2007;85(5):348-356.
    30. Al-Ramli W, Prefontaine D, Chouiali F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma.J Allergy Clin Immunol.2009; 123(5):1185-1187.
    31. Sun YC, Zhou QT, Yao WZ. Sputum interleukin-17 is increased and associated with airway neutrophilia in patients with severe asthma. Chin Med J (Engl).2005;118(11):953-6.
    1. Kiwamoto T, Ishii Y, Morishima Y, et al. Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am J Respir Crit Care Med 2006; 174:142-151.
    2. Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5 deficient mice. J Clin Invest 2004;133:551-560.
    3. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103:779-788.
    4. Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 2003;112:1029-1036.
    5. Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients:linking T cell driven inflammation and granulocytic influx? Respir Res. 2006 3; 7:135.
    6. Wakashin H, Hirose K, Maezawa Y, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med.2008; 178 (10):1023-1032.
    7. Saitoh T, Kusunoki T, Yao T, et al. Role of interleukin-17A in the eosinophil accumulation and mucosal remodeling in chronic rhinosinusitis with nasal polyps associated with asthma. Int Arch Allergy Immunol.2010;151(1):8-16.
    8. Ling EM, Smith T, Nguyen XD, et al. Relation of CD41CD251 regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 2004;363:608-615.
    9. Grindebacke H,Wing K, Andersson AC, et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin Exp Allergy 2004;34:1364-1372.
    10. Bellinghausen I, Klostermann B, Knop J, et al. Human CD4+CD25+T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J Allergy Clin Immunol 2003; 111:862-868.
    11. Hartl D, Koller B, Mehlhora AT, et al. Quantitative and functional impairment of pulmonary CD41CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 2007; 119:1258-1266.
    12. Kearley J, Robinson DS, Lloyd CM. CD4+CD25+regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling.J Allergy Clin Immunol.2008; 122(3):617-624.
    13. Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science.2004;305(5691):1776-1779.
    14. Kanda A, Driss V, Hornez N, et al. Eosinophil-derived IFN-gamma induces airway hyperresponsiveness and lung inflammation in the absence of lymphocytes. J Allergy Clin Immunol.2009;124(3):573-582.
    15. Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5 deficient mice. J Clin Invest 2004;133:551-560.
    16. Wegmann M, Goggel R, Sel S, et al. Effects of a low-molecular-weight CCR-3 antagonist on chronic experimental asthma. Am J Respir Cell Mol Biol 2007;36:61-67.
    17. Aceves SS, Newbury RO, Dohil R, et al. Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol 2007;119:206-212.
    18. Zanini A, Chetta A, Saetta M, et al. Chymase-positive mast cells play a role in the vascular component of airway remodeling in asthma. J Allergy Clin Immunol 2007; 120:329-333.
    19. Yu M, Tsai M, Tam SY, et al. Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Invest 2006; 116:1633-1641.
    20. Carroll NG, Mutavdzic S, James AL. Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma. Thorax 2002,57:677-682.
    21. Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 2005;6:1047-1053.
    22. Broide DH, Lawrence T, Doherty T, et al. Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium. Proc Natl Acad Sci U S A 2005;102:17723-17728.
    23. Tang W, Geba GP, Zheng T,et al. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest.1996;98(12):2845-2853.
    24. Wynn A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117:524-529.
    25. Xie S, Sukkar MB, Issa R, et al. Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-{beta}. Am J Physiol Lung Cell Mol Physiol 2007;293:L245-253.
    26. Le AV, Cho JY, Miller M, et al. Inhibition of allergen-induced airway remodeling in smad 3-deficient mice. J Immunol 2007; 178:7310-7316.
    27. McMillan SJ, Xanthou G, Lloyd CM. Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-beta antibody:effect of the Smad signaling pathway. J Immunol 2005;174:5774-5780.
    28. Asai K, Kanazawa H, Otani K, et al. Imbalance between vascular endothelial growth factor and endostatin levels in induced sputum from asthmatic subjects. J Allergy Clin Immunol 2002; 110:571-575.
    29. Lee GL, Lin H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004;10:1095-1103.
    30. Bhandari V, Choo-Wing R, Chapoval S, et al. Essential role of nitric oxide in VEGF-induced asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci U S A 2006; 103:11021-11026.
    31. Henderson WR Jr, Chiang GK, Tien YT, et al. Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med 2006;173:718-728.
    32. Kelly MM, Chakir J, Vethanayagam D, et al. Montelukast treatment attenuates the increase in myofibroblasts following low-dose allergen challenge. Chest 2006;130:741-753.
    33. Kelly EA, Busse WW, Jarjour NN. Increased matrix metalloproteinase-9 in the airway following allergen challenge. Am J Respir Crit Care Med 2000; 162: 1157-1161.
    34. Lim DH, Cho JY, Miller M, et al. Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am J Physiol Lung Cell Mol Physiol 2006;291:L265-271.
    35. Foley SC, Mogas AK, Olivenstein R, et al. Increased expression of ADAM33 and ADAM8 with disease progression in asthma. J Allergy Clin Immunol 2007;119:863-871.
    36. Chen C, Huang X, Sheppard D. ADAM33 is not essential for growth and development and does not modulate allergic asthma in mice. Mol Cell Biol 2006;26: 6950-6956.
    37. Angkasekwinai P, Park H, Wang YH, et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 2007;204:1509-1517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700