用户名: 密码: 验证码:
支气管败血波氏杆菌的重组沙门氏菌基因工程疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支气管败血波氏杆菌(Bordetella bronchiseptica,Bb)可引起猪发生肺炎和萎缩性鼻炎(Atrophic rhinitis,AR),也是猪呼吸道疾病综合征(porcine respiratory diseasecomplex,PRDC)的重要致病因子之一。更重要的是,Bb的先期感染易于导致其它多种病原的继发感染,从而增加猪群呼吸道疾病的发病率和严重程度,造成严重经济损失。以AR为代表的猪波氏菌病现已遍布养猪业发达国家,已成为猪的重要呼吸道传染病之一。本研究对Bb的病原流行病学、生物学特性、免疫原性基因、诊断方法和重组沙门氏菌基因工程疫苗进行研究,为我国Bb的流行病学分布提供理论依据,为猪波氏菌病的临床诊断、预防与控制提供新方法。主要研究内容如下:
     1.Bb的分离鉴定与病原流行病学研究
     从全国十五个省市送检的2,057份有肺炎或AR症状猪的肺脏等病料组织中分离出190株Bb和不同数量的共感染菌。2003~2006年间的Bb总分离率为9.2%;不同省份Bb的总分离率介于7.5~14.1%之间;不同年份Bb的总分离率介于7.3~11.8%之间;Bb的分离率与猪日龄有一定关系。Bb最常见的共感染菌依次是链球菌(55.9%)、副猪嗜血杆菌(50.0%)、大肠杆菌(43.1%)、巴氏杆菌(25.5%)和绿脓杆菌(17.6%)。在43份有典型AR症状猪的病料中,分离出22株Bb、7株产毒素巴氏杆菌和6株绿脓杆菌;在分离出产毒素巴氏杆菌的7份病料中均同时分离出Bb,而其中6份又同时分离出绿脓杆菌。研究结果表明,Bb在我国猪群的感染十分普遍,Bb与其它病原菌的共感染情况非常严重,且在AR的发生中具有重要作用。
     2.Bb的生长特性及强毒菌株的筛选
     Bb在多种培养基中均生长良好,但加血液的鲍-姜氏培养基更易于BbⅠ相菌形态的维持,且在含绵羊血的鲍-姜氏培养基上产生更明显的β-溶血环。小鼠致死性试验结果表明Bb毒力普遍较弱,但少数菌株如1562、3331、HH0809等表现出很强的毒力。以HH0809株为出发菌株分别建立小鼠和仔猪的呼吸道感染模型。采用建立的感染模型测定HH0809株对小鼠的LD_(50)(the 50%lethal dose)为1.4×10~5 CFU,对猪的LD_(50)为2.0×10~(10) CFU,详细记录了感染小鼠和感染仔猪的症状和病理变化。Bb生长特性研究以及小鼠和仔猪的呼吸道感染模型的建立为猪波氏菌病快速诊断试剂及高效疫苗的研制、开发奠定基础。
     3.Bb保护性抗原基因的筛选
     以强毒菌株HH0809的基因组为模板,分段克隆表达Bb重要的保护性抗原丝状血凝素基因fhaB(6,260 bp)和百日咳杆菌粘附素基因prn(2040 bp)。fhaB基因分为5段,从N端到C端分别命名为F5(1,400 bp)、F4(1,200 bp)、F3(1,200 bp)、F2(1,800bp)和F1(660 bp);prn基因分为2段,从N端到C端分别命名为P1(1,190 bp)和P2(850 bp),以及prn基因全段(2,040 bp);将8段DNA片段分别克隆到pGEX-KG表达载体并在大肠杆菌BL21中进行诱导表达,纯化包涵体后使用30μg(与等体积弗氏完全佐剂混合)免疫BALB/c小鼠,于21 d后使用4×LD_(50)的Bb强毒株HH0809进行呼吸道的气雾攻毒。结果表明:fhaB基因各片段表达产物GST-F1、GST-F2、GST-F3、GST-F4和GST-F5免疫组小鼠的存活率分别为66.7%(6/9)、0(0/9)、0(0/9)、44.4%(4/9)和11.1%(1/9);prn基因各片段表达产物GST-P1、GST-P2和GST-PRN免疫组小鼠的存活率分别为88.9%(8/9)、100%(9/9)和100%(9/9)。小鼠保护力试验结果证实FHA和PRN均是Bb重要的保护性抗原成分。其中,FHA的C端F1片段(TypeⅠdomain)和PRN的P2段(RegionⅡdomain)分别为两种抗原最重要的免疫保护性抗原区域,有望作为波氏菌病的诊断抗原和新型疫苗的成分。
     4.Bb抗体检测ELISA方法的建立与应用
     利用已纯化的各段表达蛋白GST-F5、GST-F4、GST-F3、GST-F2、GST-F1、GST-P1、GST-P2和GST-PRN分别进行间接ELISA检测方法研究。结果显示,作为包被抗原,GST-PRN优于其它各段蛋白。进一步通过凝血酶Thrombin酶切GST-PRN并回收,获得纯的不含GST载体蛋白的PRN蛋白片段。以PRN蛋白片段为抗原建立检测PRN抗体的间接ELISA检测方法。结果表明,PRN-ELISA方法特异性良好,该方法对猪巴氏杆菌病等7种常见细菌性疾病阳性血清的检测结果均为阴性;ELISA方法能够检测到人工感染仔猪14 d的血清抗体IgG,比乳胶凝集方法高4~128倍,但与其符合率为100%;用该ELISA方法检测2005~2007年间来自全国各地的1,229份猪血清样本,阳性率为32.7%。该方法对2个阳性猪场的检测结果表明保育期仔猪的合群导致猪群大量感染Bb。
     5.表达Bb保护性抗原的重组沙门氏菌株的构建及生物学特性
     将fhaB F1段和prn P2段依次与pMD18-T载体连接,然后将F1-P2融合片段转移连入沙门氏菌asd平衡表达质粒pYA3493中,制备重组平衡表达质粒pYA-F1P2。将pYA-F1P2和pYA3493分别电转化猪霍乱沙门氏菌C500的asd缺失株C501中,制备重组菌株C501(pYA-F1P2)和空载体菌株C501(pYA3493)。研究结果表明,重组菌株C501(pYA-F1P2)保留了亲本菌株C500的生化特性和抗原表型,能稳定遗传并高效分泌表达Bb的rF1P2抗原;C501(pYA-F1P2)的毒力较亲本菌C500降低了4.5倍。将C501(pYA-F1P2)分别高剂量接种仔猪和怀孕母猪观察其作为重组疫苗的安全性。结果表明,该重组菌株和亲本菌株C500接种的仔猪均没有异常临床表现;该重组菌株和亲本菌株C500接种的怀孕母猪也没有异常临床表现,与没做任何处理的对照组怀孕母猪所产仔数没有差异。猪霍乱沙门氏菌C500弱毒株是我国广泛使用的预防仔猪副伤寒的标准疫苗株。本研究利用猪霍乱沙门氏菌C500弱毒疫苗株的asd基因缺失株构建平衡载体表达系统菌株C501(pYA-F1P2)能高效分泌表达Bb免疫原性重组抗原蛋白;该活疫苗株C501(pYA-F1P2)的毒力较亲本菌株C500稍低,对断奶仔猪和怀孕母猪均是安全的,有望成为新型猪波氏菌病-副伤寒二价活疫苗的候选菌株。
     6.支气管败血波氏杆菌的重组沙门氏菌基因工程疫苗研究
     利用表达Bb免疫原性基因F1(fhaB的TypeⅠ)片段和prn基因的P2(prn的Region 2)片段重组猪霍乱沙门氏菌弱毒疫苗株C501(pYA-F1P2),制备支气管败血波氏杆菌重组沙门氏菌基因工程疫苗,检验该重组活疫苗对免疫BALB/c小鼠和猪针对猪霍乱沙门氏菌和Bb攻击的保护效力。将2.1×10~9 CFU和2.1×10~8 CFU重组菌株C501(pYA-F1P2)分别通过口服和皮下注射途径免疫BALB/c小鼠,结果显示两种免疫方法均能产生较高水平的血清IgG,并保护小鼠抵抗10×LD_(50)猪霍乱沙门氏菌强毒株C78-1的口服攻击(4/4)。但使用4×LD_(50) Bb强毒株HH0809进行呼吸道气雾攻毒后,口服免疫不能提供有效保护(4/22),而皮下免疫能够提供完全保护(22/22)。进一步检测结果表明,皮下免疫能产生较高水平的肺脏IgG,口服免疫则不能。同时,皮下免疫重组蛋白HIS-F1P2的小鼠也能完全抵抗4×LD_(50) Bb强毒株HH0809的攻击。将1.2×10~(10) CFU重组菌株C501(pYA-F1P2)通过颈部肌肉注射免疫20日龄仔猪,结果显示免疫仔猪能产生较高水平的针对沙门氏菌和Bb重组蛋白rF1P2的血清IgG,并能抵抗5×LD(Lethal dose)猪霍乱沙门氏菌强毒株C78-1的口服攻击(4/4)。同时,免疫仔猪也能抵抗4×LD_(50) Bb强毒株HH0809呼吸道途径的攻击(4/4),而PBS组(0/4)和C501(pYA3493)载体对照组(1/4)均不能提供有效保护。另外,重组菌株C501(pYA-F1P2)组诱导仔猪抵抗Bb攻击的保护力优于重组蛋白HIS-F1P2。该研究构建的支气管败血波氏杆菌重组沙门氏菌基因工程疫苗菌株C501(pYA-F1P2)能保护免疫仔猪完全抵抗猪霍乱沙门氏菌和Bb的致死性攻击,有望成为实用有效的新型双价基因工程活疫苗。
Bordetella bronchiseptica is an etiologic agent of atrophic rhinitis and bronchopneumonia in young pigs.B.bronchiseptica is also a contributory agent in porcine respiratory disease complex,a multifactorial disease state increasingly problematic for swine producers.Although the primary disease is important,more significant is the fact that this bacteria predisposes to colonization and disease with other viral and bacterial pathogens,resulting in higger morbidity and more serious diseases. This study reported here focused on the pathogen epidemiology,bio-characteristics, immunogenicity genes,diagnostic method,and new recombinate Salmonella vaccine, which provided very important materials for basic research and contributed for preventing and control of bordetellosis in China.The results are as follows.
     1.Isolation and identification of B.bronchiseptica from pigs and pathogen epidemiology of bordetellosis in China
     Up to 190 B.bronchiseptica strains were isolated from 2,057 lesion lungs of pigs with clinical signs of pneumonia or atrophic rhinitis,while different concurrent infection bacteria species were also separated from the same samples.The isolation ratios in the samples that were collected from different provinces and at the different time points(year) ranged from 7.5%to 14.1%and 7.3%to 11.8%,respectively.The average isolation ratio between the years of 2003 to 2006 was 9.2%.The isolation ratios of identified co-infection bacterial species were 55.9%(57 strains),50.0%(51 strains),43.1%(44 strains),25.5%(26 strains),17.6%(18 strains) and 11.8%(12 strains) for Streptococcus, Haemophillus parasuis,E.coli,Pasterella multocida,Pseudomonas aeruginosa and Salmonella,respectively.Twenty-two B.bronchiseptica strains were isolated from 43 samples of lesion lungs and nasal swabs of pigs with typical clinical signs of atrophic rhinitis,while 7 toxigenic Pasteurella multocida(T~+Pm) strains and 6 Pseudomonas aeruginosa strains were also separated from the same samples.The infection of swine caused by B.bronchiseptica,which was often accompanied with other co-infection bacterial species,is very prevalent in swine herds in China and B.bronchiseptica may play an important role in causing atrophic rhinitis of swine.
     2.Bio-characteristics of B.bronchiseptica and selection of high virulence strains
     The cultural characteristics of B.bronchiseptica have been evaluated in various kinds of medium.Good growth have been seen in several medium,but Bordet-Gengou(BG) agar medium supplemented with 15%(v/v) defibrinated blood showed to be better for maintaing I phase of B.bronchiseptica,andβ-zone of hemolysis on BG agar supplemented with sheep blood showed more obvious than that of swine blood.By virulence tests,we found that most of B.bronchiseptica showed low virulence,but several B.bronchiseptica strains,such as 1562,3331 and HH0809 strains showed very high virulence.In this study,a B.bronchiseptica aerosol infection model was established using BALB/c mice and piglets,respectively.The 50%lethal dose(LD_(50)) of HH0809 in mice have been tested to be 1.4×10~5 CFU in aerosol infection model.The LD_(50) of HH0809 in piglets had been tested to be 2.0×10~(10) CFU.In these two models,the symptom and pathological change have been recorded and summaried in detail.In this study,the determination of cultural characteristics and the development of mouse and piglets aerosol challenge modelsof B.bronchiseptica may contribute to the development of new vaccine and diagnostic method of bordetellosis.
     3.Research on protective antigens of B.bronchiseptica
     Using the genome of selected virulent Bb HH0809 strain as PCR template,fhaB(6,260 bp) and prn(2,040 bp) encoding the most important antigens of B.bronchiseptica filamentous haemogglutinin(FHA) and pertactin(PRN) were cloned and expressed in Escherichia coli BL21 segmentedly.The fhaB gene has been divided into 5 fragments,F5 (1,400 bp),F4(1,200 bp),F3(1,200 bp),F2(1,800 bp) and F1(660 bp) from N termination to C termination;The prn gene has been divided into 2 fragments,P1(1,190 bp) and P2(850 bp) from N termination to C termination,and the whole prn gene(2,040 bp).The all 8 DNA fragments were cloned into pGEX-KG and expressed in BL21, respectively.Then 30μg purified protein mixed with an equal volume of complete Freund's adjuvant was used to immunize BALB/c mice subcutaneously.Twenty-one days after immunization,the mice were challenged with 4×LD_(50) of HH0809 strain by using the aerosol challenge model to evaluate the protective efficacy of each protein fragments.The results showed that the expressed protein fragments of fhaB gene could provide groups of mice different protective efficacy:GST-F1 66.7%(6/9),GST-F2 0%(0/9),GST-F3 0% (0/9),GST-F4 44.4%(4/9) and GST-F5(1/9);the expressed protein fragments of prn gene have the following protective efficiency:GST-P1 88.9%(8/9),GST-P2 100%(9/9) and GST-PRN 100%(9/9).The expressed proteins could protect mice from B.bronchiseptica callenge with different proctective efficacy,which confirmed that FHA and pertactin antigens are important protective antigens of B.bronchiseptica.In addition,the results showed that the F1 fragment(TypeⅠdomain) of FHA and the P2 fragment(Region 2 domain) of PRN may be respectively the most important protective regions of FHA and pertactin,which may be used to develop new diagnostic antigens and new effective vaccines of bordetellosis.
     4.Development of an indriect ELISA method based on expressed pertactin protein and it's application on diagnosis of bordetellosis
     This study made a try to set up an indirect ELISA method for diagnosis of bordetellosis by using the expressed and purificated protein fragments,GST-F5,GST-F4,GST-F3, GST-F2,GST-F1,GST-P1,GST-P2 or GST-PRN.The results showed that GST-PRN was the best coating antigen than the others for ELISA method.The recombinant protein fragement of rPRN was purified from the GST-PRN fusion protein after digesting by thrombin protease.Then the rPRN-based indirect ELISA was developed for detection of antibodies against PRN.No false positive results were found in detection of seven antisera against porcine bacterial diseases,suggesting that PRN-ELISA had good specificity.The ELISA could pick up the positive samples in experimentally infected pigs 14 days postinoculation and the degree of sensitivity is 4 to 128 times higher than the latex agglutination test with the coating antigen of killed B.bronchiseptica,but with a 100%coincidence rate.Four hundred and two positive samples were picked up from 1,229 clinical serum samples with a positive rate of 32.7%in different provinces in China. Serum samples from two bordetellosis-positive pig fields were tested by the indirect ELISA method suggesting that most of pigs might be infected by B.bronchiseptica when the pig moved together during the nursery periods.
     5.Construction and bio-characterics of Salmonella choleraesuis C500 strain expressing the recombinant FHA and pertactin antigens
     The F1 DNA fragment specifying the important immunodominant typeⅠdomain of the fhaB gene,and the P2 DNA fragment specifying the main immunodominant regionⅡof the prn gene,were cloned into the pYA3493 vector,resulting in the recombinant plasmid pYA-F1P2.Then pYA-F1P2 and pYA3493 were electrotransformed toΔasdC500 strain (named as C501),resulting in the recombinant Salmonella strain C501(pYA-F1P2) and vector control C501(pYA3493) respectively.Both C501(pYA-F1P2) and C501(pYA3493) strains remained the serum type and energy source using characterics of parent C500 strain,and the recombinant heterologous antigens were highly expressed secretarily in C501(pYA-F1P2).The C501(pYA-F1P2) strain had 4.5 times lower virulence than the parent C500 strain in lethal test of BALB/c mice.In addition,the strain was safe to piglets and sows after being inocubated subcutaneously.Salmonella choleraesuis C500 strain was an attenuated vaccine strain to prevent piglet paratyphoid in China.In this study,the recombinant C501(pYA-F1P2) strain could express secretorily the recombinant heterologous antigens of B.bronchiseptica and was safe to piglets and sows,which might be a potential canditate strain as a new recombinant recombinate Salmonella vaccine against both bordetellosis and paratyphoid in swine.
     6.A new recombinant Salmonella vaccine against both bordetellosis and paratyphoid in swine
     The recombinant S.choleraesuis C501(pYA-F1P2) strain expressing the recombinant filamentous haemagglutinin typeⅠdomain and pertactin region 2 domain antigen(rF1P2) of B.bronchiseptica was used as a new recombinate vaccine against both bordetellosis and paratyphoid in swine.Both the subcutaneously(s.c.) and oral vaccines conferred complete protection(4/4) against fatal infection with 10×LD_(50) of virulent parent S. choleraesuis strain C78-1.All 20 mice vaccinated s.c.survived intranasal challenge with 4×LD_(50) of virulent B.bronchiseptica(HH0809) compared with 4 of 20 vector-treated controls and 1 of 18 phosphate-buffered saline(PBS)-treated controls that survived,but no significant protection against HH0809 was observed in orally vaccinated animals (4/22).Lung homogenates from s.c.vaccinated animals had detectably high levels of rF1P2-specific IgG.But only a much lower level of rF1P2-specific IgG was detected in samples from orally vaccinated mice.Simultaneously,mice immunized with the recombinant HIS-F1P2 protein survived the aerosol challenge of B.bronchiseptica. Piglets immunized s.c.with 1.2×10~(10) CFU C501(pYA-F1P2) produced robust Salmonella-and rF1P2-specific serum IgG and IgA antibodies.All piglets(4/4) survived the oral challenge with 5 times of lethal doses(LD) of wild-type S.choleraesuis C78-1.In addition,piglets survived the respiratory challenge with 4×LD_(50) of highly virulent B. bronchiseptica HH0809 strain compared with 1 of 4 vector-treated controls and 0 of 4 phosphate-buffered saline(PBS)-treated controls that survived.But the protective efficacy of HIS-F1P2 was inferior to the recombinant CS01(pYA-F1P2) vaccine. Subcutaneous immunization with the recombinant C501(pYA-F1P2) vaccine can provide piglets complete protection against infections with both S.choleraesuis and B. bronchiseptica,showing the potential as a new recombinant Salmonella vaccine against both piglets bordetellosis and paratyphoid.
引文
1.蔡宝祥主编.家畜传染病学.第三版.北京:中国农业出版社,2001,198-201
    2.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001,9-348
    3.房晓文.仔猪副伤寒弱毒疫苗研究.研究报告汇辑,中国兽医药品监察所,1978,4:1-11
    4.哈利,张梅.犬源性支气管败血波氏杆菌生物学特性的初步研究.畜牧兽医科技信息,2005,10:47-48
    5.黄昌炳,冯文达,薛民权,张绪基,杨少章,杨绍钧,费荟梅,贾顺庚.仔猪副伤寒弱毒通气培养冻干苗口服免疫研究.中国农业科学,1981,6:89-94
    6.康凯.仔猪副伤寒活疫苗.中国兽药杂志,2003,37(2):49
    7.刘国平,吴斌,刘梦元,何启盖,唐先春,郭黎明,黄晓东,陈焕春.致仔猪水肿病大肠杆菌的分离、鉴定及生物学特性.中国兽医学报,2005,25(1):31-33
    8.鲁承,金鑫,杨咏洁.多重PCR在猪传染性萎缩性鼻炎诊断中的应用.中国兽医科技,2003,39:7-9
    9.陆承平主编.兽医微生物学.第三版.北京:中国农业出版社,2002,199-384
    10.裴洁.猪支气管败血波氏杆菌分离鉴定及疫苗菌株的生物学特性研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    11.斯特劳,阿莱尔,蒙加林,泰勒主编.第八版.(赵德明,张中秋,沈建中主译).猪病学.北京:中国农业大学出版社,2000,369-395
    12.苏雄,汪梦萍,陈毓川,刘贤洪,叶冬青,张钢.用双层平板和双温培养法分离支气管败血波氏杆菌.华中农业大学学报,1994,13:487-491
    13.唐先春,吴斌,索绪峰,王大林,陈焕春,尹争艳.猪多杀性巴氏杆菌的分离鉴定及生物学特性研究.畜牧兽医学报,2005,36(6):590-595
    14.汪莉,王玉民,岳俊杰,梁龙,黄培堂.Ⅲ型分泌系统分子伴侣研究进展.微生物学报,2004,44:840-844
    15.王桂枝,石德时.免疫学实验指导.武汉:华中农业大学教务处印,2002,126
    16.王双山,杨前锋,高自杰.猪传染性萎缩性鼻炎病原的分离鉴定和药物敏感试验.黑龙江畜牧兽医,2005:40-42
    17.吴斌,陈焕春,何启盖,邱德新,刘建杰,陈隆达,黎艳.应用乳胶凝集试验进行猪传染性萎缩性鼻炎血清流行病学调查.中国兽医科技,2001,31(6):21-22
    18.徐引弟.猪霍乱沙门氏菌C500株crp~-,asd~-缺失株平衡致死系统的构建和应用.[博士学位论文].武汉:华中农业大学图书馆,2006
    19.杨佩琼.猪传染性萎缩性鼻炎病原菌分离培养基对比试验.中国兽医科技,1984,2:17-20
    20.张耀相,仇建华,穆杨,刑福珊,许信刚,李健强.猪萎缩性鼻炎的微生物学诊断与防制.西北农林科技大学学报(自然科学版),2001,29:44-45
    21.赵战勤,胡睿铭,吴斌,向敏,陈利苹,杨明柳,金梅林,陈焕春.猪源链球菌的分离鉴定及生物学特性研究.畜牧兽医学报,2007,38(4):376-381
    22.中国农业科学院,哈尔滨兽医研究所.兽医微生物学.北京:中国农业出版社,1998,583-586
    23.朱忠勇主编.实用医学检验学.北京:人民军医出版社,1992:57-59
    24. Bachtiar E W, Sheng K C, Fifis T. Delivery of a heterologous antigen by a registered Salmonella vaccine (STM1). FEMS Microbiol Lett, 2003, 227(2):211-217
    25. Backstrom L. Present uses of and experiences with swine vaccines. In: Veterinary vaccines and diagnostics. San Diego: Academic Press, 1999
    26. Banemann A, Gross R. Phase variation affects long-term survival of Bordetella bronchiseptica in professional phagocytes. Infect Immun, 1997, 65:3469-3473
    27. Baysinger A. PRDC: is it new or deja vu? Pork '99 1999:64
    28. Bej A K, McCarty S C and Atlas R M. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring. Applied and Environmental Microbiology, 1991, 57:2429-2432
    29. Bemis D A, Greisen H A, Appel M. Bacteriological variation among Bordetella bronchiseptica isolates from dogs and other species. J Clin Microbiol, 1977, 5:471-480
    30. Bemis D A, Wilson S A. Influence of potential virulence determinants on Bordetella bronchiseptica-induced ciliostasis. Infect Immun, 1985 Oct, 50: 35-42
    31. Bock A, Gross R. The bvgAS two-component system of Bordetella spp.: a versatile modulator of virulence gene expression. Int J Med Microbiol, 2001, 291: 119-130
    32. Borckmeier S. The Role of Bordetella bronchiseptica in Respiratory Diseases of Swine: Atrophic Rhinitis and Beyond. Pig Progress. 2003, 6:20-21
    33. Boursaux-Eude C, Guiso N. Polymorphism of repeated regions of pertactin in Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica. Infect Immun, 2000 Aug, 68:4815-4817
    34. Brockmeier S L, Palmer M V, Bolin S R. Effects of intranasal inoculation of porcine reproductive and respiratory syndrome virus, Bordetella bronchiseptica, or a combination of both organisms in pigs. Am J Vet Res, 2000, 61:892-899
    35. Brockmeier S L, Register K B, Magyar T, Lax A J, Pullinger G D, Kunkle R A. Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect Immun, 2002 Feb, 70:481-490
    36. Brockmeier S L, Register K B. Effect of temperature modulation and bvg mutation of Bordetella bronchiseptica on adhesion, intracellular survival and cytotoxicity for swine alveolar macrophages. Vet Microbiol, 2000, 73:1-12
    37. Brockmeier S L. Prior infection with Bordetella bronchiseptica increases nasal colonization by Haemophilus parasuis in swine. Vet Microbiol. 2004, 99(1):75-78
    38. Brown A, Hormaeche C E, Demarco de Hormaech R, Winther M, Dougan G, Maskell D J and Stocker B A. An attenuated aroA Salmonella typhimurium vaccine elicits humoral and cellular immunity to cloned beta-galactosidase in mice. J Infect Dis. 1987, 155:86-92
    39. Cai X, Chen H, Blackall P J, Yin Z, Wang L, Liu Z and Jin M. Serological characterization of Haemophilus parasuis isolates from China. Veterinary Microbiology, 2005, 111(3):231-236
    40. Carbone M, Fera M T, Pennisi M G, Masucci M, De Sarro A, Macri C. Activity of nine fluoroquinolones against strains of Bordetella bronchiseptica. Int J Antimicrob Agents, 1999 Aug, 12:355-358
    41. Cardenas L and Clements J D. Development of mucosal protection against the heat-stable enterotoxin (ST) of Escherichia coli by oral immunization with a genetic fusion delivered by a bacterial vector. Infect Immun, 1993, 61:4629-4636
    42. Carrier M J, Chatfield S N, Dougan G, Nowicka U T, O'Callaghan D, Beesley J E, Milano S, Cillari E and Liew F Y. Expression of human Il—1 beta in Salmonella typhimurium. A model system for the delivery of recombinant therapeutic proteins in vivo. J Immunol, 1992, 148:1176-1181
    43. Chabalgoity J A, Khan C M, Nash A A. and Hormaeche C E. A Salmonella typhimurium htrA live vaccine expressing multiple copies of a peptide comprising amino acids 8-23 of herpes simplex virus glycoprotein D as a genetic fusion to tetanus toxin fragment C protects mice from herpes simplex virus infection. Mol Microbiol, 1996, 19:791-801
    44. Chanter N, Magyar T, Rutter J M. Interactions between Bordetella bronchiseptica and toxigenic Pasteurella multocida in atrophic rhinitis of pigs. Res Vet Sci, 1989 Jul, 47:48-53
    45. Charbit A, Martineau P, Ronco J, Leclerc R, Lo-Man V, Michel O C D and Hofnung M. Expression and immunogenicity of the V3 loop from the envelope of human immunodeficiency virus type 1 in an attenuated aroA strain of Salmonella typhimurium upon genetic coupling to two Escherichia coli carrier proteins. Vaccine, 1993, 11:1221-1228
    46. Charles I G, Dougan G, Pickard D, Chatfield S, Smith M, Novotny P, Morrissey P, and Fairweather N F. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc Natl Acad Sci, 1989, 86:3554-3558
    47. Charles I G, J Li, Roberts M, Beesley K. Identification and characterization of a protective immunodominant B cell epitope of pertactin (P.69) from Bordetella pertussis. Eu J Immunol, 1991,21:1147-1153
    48. Chatfield S N, Charles I, Makoff A J, Oxer M D, Dougan G, Pickard D, Slater D and Fairweather N. Use of the nirB promoter to direct stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single dose oral tetanus vaccine. BioTechnology, 1992, 10:888-892
    49. Chatfield S N, Strahan K, Pickard D, Charles I G, Hormaeche C E and Dougan G. Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog, 1992, 12(2):145—151
    50. Collings L A, Rutter J M. Virulence of Bordetella bronchiseptica in the porcine respiratory tract. J Med Microbiol, 1985 Apr, 19: 247-255
    51. Cotter P A, Yuk M H, Mattoo S, Akerley B J, Boschwitz J, Relman D A, Miller J F. Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun, 1998 Dec, 66:5921-5929
    52. Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A: Prediction of transmembrane alpha-helices in procariotic membrane proteins: the Dense Alignment Surface method. Prot Eng vol, 1997, 10(6):673-676
    53. Curtiss III R, Doggett T, Nayak A, and Srinivasan J. 1996. Strategies for the use of live recombinant avirulent bacterial vaccines for mucosal immunization, p. 499-511. In H. Kiyono and M. F. Kagnoff (ed.), Essentials of mucosal immunology. Academic Press, San Diego, Calif
    54. Darji A, Guzman C A, Gerstel B, Wachholz P, Timmis K N, Wehland J, Chakraborty T and Weiss S. Oral somatic transgene vaccination using attenuated 5. typhimurium. Cell, 1997, 91:765-775
    55. de Jong M F, Akkermans J P W M. Atrophic rhinitis caused by Bordetella bronchiseptica and the meaning of a thermolabile toxin of P.multocida. Vet Q, 1986, 8(3):204-214
    56. de Jong M F. Atrophic Rhinitis in Pigs. Thesis, Univ Utrecht. Elinkwijk B. V. Urecht.1985
    57. De Jong M F. Progressive and nonprogressive atrophic rhinitis. (In): Straw B E, d'Allaire S, Mengeling W L (eds.), Diseases of swine. Ames, IA: Iowa State University Press, 1999, 355-384
    58. Decker G R, Lavelle J P, Kumar P N, Pierce P F. Pneumonia due to Bordetella bronchiseptica in a patient with AIDS. Rev Infect Dis, 1991 Nov-Dec, 13:1250-1251
    59. Denich K, Borlin P, O'Hanley P D, Howard M and Heath A W. Expression of the murine interleukin-4 gene in an attenuated aroA strain of Salmonella typhimurium: persistence and immune response in BALB/c mice and susceptibility to macrophage killing. Infect Immun, 1993, 61:4818-4827
    60. Di Tommaso A, Domenighini M, Bugnoli M, Tagliabue A, Rappuoli R, De Magistris M T. Identification of subregions of Bordetella pertussis filamentous hemagglutinin that stimulate human T-cell responses. Infect Immun, 1991, 59:3313-3315
    61. DiGiandomenico A, Rao J, Harcher K, Zaidi T S, Gardner J, Neely A N, Pier G B, Goldberg J B. Intranasal immunization with heterologously expressed polysaccharide protects against multiple Pseudomonas aeruginosa infections. Proc Natl Acad Sci USA, 2007, 104:4624-4629
    62. Done J T. Porcine atrophic rhinitis-An update. Vet Annu, 1985, 25:180-191
    63. Dong X Z, Cai M Y. A systematic manual of determinative bacteriology. Beijing: Chinese Scientific Press, 2001:9-348
    64. Dugal F, Belange M, Jacques M. Enhanced adherence of Pasteurella multocida to porcine tracheal rings preinfected with Bordetella bronchiseptica. Can J Vet Res, 1992 Jul, 56: 260-264
    65. Dunstan S J, Ramsay A J, Strugnell R A. Studies of immunity and bacterial invasiveness in mice given a recombinant Salmonella vector encoding murine interleukin-6. Infect Immun, 1996, 64:2730-2736
    66. Dunstan S J, Simmons C P, Strugnell R A. Use of in vivo-regulated promoters to deliver antigens from attenuated Salmonella enterica var. Typhimurium. Infect Immun, 1999, 67:5133-5141
    67. Edwards J A, Groathouse N A, Boitano S. Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect Immun, 2005 Jun, 73:3618-3626
    68. Edwards R A, Keller L H, Schifferli D M. Improved allelic exchange vectors and their use to analyze 987p fimbriae gene expression. Gene, 1998, 207:149-157
    69. Eldering G, Hornbeck C, Baker J. Serological study of Bordetella pertussis and related species. J Bacteriol, 1957 Aug, 74:133-136
    70. Endoh M, Amitani M, Nakase Y. Purification and characterization of heat-labile toxin from Bordetella bronchiseptica. Microbiol Immunol, 1986, 30:659-673
    71. Everest P, Frankel G, Li J, Lund P, Chatfield S and Dougan G. Expression of LacZ from the htrA, nirB and groE promoters in a Salmonella vaccine strain: influence of growth in mammalian cells. FEMS Microbiol Lett, 1995, 126:97-102
    72. Fang X W. The research of piglet paratyphoid attenuated vaccine. Edition of Research Report. China Institute of Veterinary Drug Control. 1978, 4:1-11
    73. Forde C B, Shi X, Li J, Roberts M. Bordetella bronchiseptica-Mediated Cytotoxicity to Macrophages Is Dependent on bvg-Regulated Factors, Including Pertactin. Infect Immun, 1999, 67:5972-5978
    74. Galan J E, Nakayama K and Curtiss R D. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene, 1990, 94:29-35
    75. Galan J E, and Sansonetti P J. Molecular and cellular bases of Salmonella and Shigella interaction with host cells. (In): Neidhardt F C, Curtiss III R, Ingraham J L, Lin E C C, Low K B, Magasanik B, Reznikoff W S, Riley M, Schaechter M, and Umbarger H E (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. Washington D C: ASM Press, 1996, 2757-2773
    76. Galen J E, Gomez-Duarte O G, Losonsky G A, Halpern J L, Lauderbaugh C S, Kaintuck S, Reymann M K and Levine M M. A murine model of intranasal immunization to assess the immunogenicity of attenuated Salmonella typhi live vector vaccinesin stimulating serum antibody responses to expressed foreign antigens. Vaccine, 1997, 15:700-708
    77. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server, (In) John M. Walker (ed): The Proteomics Protocols Handbook. Humana Press, 2005:571-607
    78. Gay P, Le Coq D, Steinmetz M, Berkelman T, and Kado C I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol, 1985, 164:918-921
    79. Gentschev I, Sokolovic Z, Kohler S, Krohne G F, Hof H, Wagner J and Goebel W. Identification of p60 antibodies in human sera and presentation of this listerial antigen on the surface of attenuated Salmonella by the HlyB-HlyD secretion system. Infect Immun, 1992, 60:5091-5098
    80. Giles C J, Smith I M, Baskerville A J, Brothwell E. Clinical, bacteriological and epidemiological observations on infectious atrophic rhinitis of pigs in southern England. Vet Rec, 1980, 106:25
    81. Goodnow R A. Biology of Bordetella bronchiseptica. Micro Rev, 1980 Dec:722-738
    82. Greco D, Salmaso S, Mastrantonio P, Giuliano M, Tozzi A, Anemona A, Ciofi degli Atti, M L, Giammanco A, Panei P, Blackwelder, W C, Klein D L, Wwassilak S, G F, and Progetto Pertosse Working Group. A controlled trial of two acellular vaccines and one whole-cell against pertussis. New Engl J Med, 1996, 334:341-348
    83. Gueirard P, Guiso N. Virulence of Bordetella bronchiseptica: role of adenylate cyclase-hemolysin. Infect Immun, 1993 Oct, 61:4072-4078
    84. Gustafsson L, Hallander H O, Olin P, Reizenstein E, Storsaeter J. A controlled trial of a two component acellular, a five-component acellular, and a whole-cell vaccine against pertussis vaccine. New Engl J Med, 1996, 334:349-355
    85. Hahn H P, Hess C, Gabelsberger J, Domdey H and Von Specht B U. A Salmonella typhimurium strain genetically engineered to secrete effectively a bioactive human interleukin (hIL)-6 via the Escherichia coli hemolysin secretion apparatus. FEMS Immunol Med Microbiol, 1998, 20:111-119
    86. Hanna J, McCracken R, O'Brien J J. Evaluation of a live Salmonella choleraesuis vaccine by intranasal challenge. Res Vet Sci, 1979, 26(2): 216-219
    87. Hassan J O, Curtiss R 3rd. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli 078 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis, 1999, 43(3):429-441
    88. Hess J, Dietrich G, Gentschev I, Miko D, Goebel W and Kaufmann S H E. Protection against murine listeriosis by an attenuated recombinant Salmonella typhimurium vaccine strain that secretes the naturally somatic antigen superoxide dismutase. Infect Immun, 1997, 65:1286-1292
    89. Hess J, Gentschev I, Miko D, Welzel M, Ladel C, Goebel W and Kaufmann S H E. Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci USA, 1996, 93:1458-1463
    90. Hibrand-Saint Oyant L, Bourges D, Chevaleyre C, Raze D, Locht C, Salmon H. Role of Bordetella bronchiseptica adenylate cyclase in nasal colonization and in development of local and systemic immune responses in piglets. Vet Res, 2005 Jan-Feb, 36:63-77
    91. Ho Y K, Charles M D, Steven A T. Transduction-mediated transfer of unmarked deletion and point mutations through use of counterselectable suicide vectors. J Bacteri, 2002, 1(184):307-312
    92. Holby N, Hertz J B, Andersen V. Cross-reactions between Bordetella pertussis and twenty-eight other bacterial species. Acta Pathol Microbiol Scand. 1976, 84(6):395-400
    93. Hone D M, Attridge S R, Forrest B, Morona R, Daniels D, LaBrooy J T, Bartholomeusz R C, Shearman D J and Hackett J. A galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence in humans. Infect Immun, 1988, 56:1326-1333
    94. Hone D, Attridge S, Van den Bosche L and Hackett J. A chromosomal integration system for stabilization of heterologous genes in Salmonella based vaccine strains. Microb Pathogen, 1988, 5:407-418
    95. Hopkins S, Kraehenbuhl J P, Schodel F, Potts A, Peterson D, De Grandi P, Nardelli-Haefliger D. A recombinant Salmonella typhimurium vaccine induces local immunity by four different routes of immunization. Infect Immun, 1995, 63:3279-3286
    96. Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Matsuda M. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc Natl Acad Sci USA, 1997 Oct, 94:11623-11626
    97. Horiguchi Y, Matsuda H, Koyama H, Nakai T, Kume K. Bordetella bronchiseptica dermonecrotizing toxin suppresses in vivo antibody responses in mice. FEMS Microbiol Lett, 1992 Jan, 69:229-234
    98. Horiguchi Y, Nakai T, Kume K. Simplified procedure for purification of Bordetella bronchiseptica dermonecrotic toxin. FEMS Microbiol Lett, 1990 Jan, 54:39-43
    99. Horiguchi Y, Okada T, Sugimoto N, Morikawa Y, Katahira J, Matsuda M. Effects of Bordetella bronchiseptica dermonecrotizing toxin on bone formation in calvaria of neonatal rats. FEMS Immunol Med Microbiol, 1995 Sep, 12:29-32
    100. Hoskins J D, Williams J, Roy A F, Peters JC, McDonough P. Isolation and characterization of Bordetella bronchiseptica from cats in southern Louisiana. Vet Immunol Immunopatho, 1998 Oct, 65:173-176
    101. Hozbor D, Fouque F, Guiso N. Detection of Bordetella bronchiseptica by the polymerase chain reaction. Res Microbiol, 1999 Jun, 150:333-341
    102. Huang Changbing, Feng Wenda, Xue Minquan, Zhang Xuji, Yang Shaozhang, Yang Shaojun, Dou Yinmei and Jia Shungeng. Oral administration of the live vaccine against swine paratyphoid. Sci Agri Sin, 1981,6:89-94
    103. Ianaro A, Xu D, O'Donnell C A, Di Rosa M and Liew F Y. Expression of TGF-beta in attenuated Salmonella typhimurium: oral administration leads to the reduction of inflammation, IL-2 and IFN-gamma, but enhancement of IL—10, in carrageenin-induced oedema in mice. Immunology, 1995, 84:8-15
    104. Ishikawa H, Isayama Y, Ohmae K. Decrease in antimicrobial susceptibility of Bordetella bronchiseptica caused by antigenic modulation and phase variation. Antimicrob Agents Chemother, 1988 Dec, 32:1891-1892
    105. Ishikawa H, Isayama Y. Bordetella bronchiseptica phase variation induces by crystal violet. J Clin Microbiol, 1986, 23:235-239
    106. Jacob-Dubuisson F, Buisine C, Willery E, Renauld-Mongenie G, Locht C. Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries. J Bacteriol, 1997, 179:775-783
    107. Jacob-Dubuisson F, Kehoe B, Willery E, Reveneau N, Locht C, Relman D A. Molecular characterization of Bordetella bronchiseptica filamentous haemagglutinin and its secretion machinery. Microbiology, 2000 May, 146:1211-1221
    108. Jagusztyn-Krynicka E K, Clark-Curtiss J E and Curtiss III R. Escherichia coli heat-labile toxin subunit B fusions with Streptococcus sobrinus antigens expressed by Salmonella typhimurium oral vaccine strains: importance of the linker for antigenicity and biological properties of the hybrid proteins. Infect Immun, 1993, 61:1004-1015
    109. Jenkins E M. An agglutination test for the detection of Bordetella bronchiseptica infection in swine. Can J Comp Med, 1978, 42(3):286-292
    110. Julio SM, Cotter P A. Characterization of the Filamentous Hemagglutinin-Like Protein FhaS in Bordetella bronchiseptica. Infect Immun, 2005 Aug, 73:4960-4971
    111. Kadlec K, Kehrenberg C, Schwarz S. Molecular basis of resistance to trimethoprim, chloramphenicol and sulphonamides in Bordetella bronchiseptica. J Antimicrob Chemother, 2005 Sep, 56:485-490
    112. Kang H Y, Srinivasan J, Curtiss III R. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar Typhimurium vaccine. Infect Immun, 2002, 70:1739-1749
    113. Karen B Register. Bordetella bronchiseptica: an underestimated threat? Pig Progrss, 2000, 1:10-11.
    114. Kashimoto T, Katahira J, Cornejo W R, Masuda M, Fukuoh A, Matsuzawa T, Ohnishi T, Horiguchi Y. Identification of functional domains of Bordetella dermonecrotizing toxin. Infect Immun, 1999 Aug, 67:3727-3732
    115. Keil D J, Burns E H, Kisker W R, Bemis D, Fenwick B. Cloning and immunologic characterization of a truncated Bordetella bronchiseptica filamentous hemagglutinin fusion protein. Vaccine, 1999 Dec, 18:860-867
    116. Khan C M, Villarreal-Ramos B, Pierce R J, Demarco de Hormaeche R, McNeill H, Ali T, Chatfield S, Capron A, Dougan G and Hormaeche C E. Construction, expression, and immunogenicity of multiple tandem copies of the Schistosoma mansoni peptide 115-131 of the P28 glutathione S-transferase expressed as C-terminal fusions to tetanus toxin fragment C in a live aro~-attenuated vaccine strain of Salmonella. J Immunol, 1994, 153:5634-5642
    117. Khan C M, Villarreal-Ramos B, Pierce Riveau G, Demarcode Hormaeche R, McNeill H, Ali T, Fairweather N, Chatfield S, Capron A. Dougan G and Hormaeche C E. Construction, expression, and immunogenicity of the Schistosoma mansoni P28 glutathione S-transferase expressed as a genetic fusion to tetanus toxin fragment C in a live Aro attenuated vaccine strain of Salmonella. Proc Natl Acad Sci USA, 1994, 91:11261 -11265
    118. Kimura A, Mountzouros K T, Relman D A, Falkow S, Cowell J L. Bordetella pertussis filamentous hemagglutinin: evaluation as a protective antigen and colonization factor in a mouse respiratory infection model. Infect Immun, 1990, 58:7-16
    119. Knight J B, Huang Y Y, Halperin S A, Anderson R, Morris A, Macmillan A, Jones T, Burt D S, Van Nest G, Lee S F. Immunogenicity and protective efficacy of a recombinant filamentous haemagglutinin from Bordetella pertussis. Clinical & Experimental Immunology, 2006, 144:543-551
    120. Kobisch M, Novotny P. Identification of a 68-kilodalton outer membrane protein as the major protective antigen of Bordetella bronchiseptica by using specific-pathogen-free piglets. Infect Immun, 1990, 58:352-357
    121. Kramer T T, Roof M B, Matheson R R. Safety and efficacy of an attenuated strain of Salmonella choleraesuis for vaccination of swine. Am J Vet Res, 1992, 53(4):444-448
    122. Kume K, Nakai T, Samejima Y, Sugimoto C. Properties of dermonecrotic toxin prepared from sonic extracts Bordetella bronchiseptica. Infect Immun, 1986 May, 52:370-377
    123. Lacerda H M, Pullinger G D, Lax A J, Rozengurt E. Cytotoxic necrotizing factor 1 from Escherichia coli and dermonecrotic toxin from Bordetella bronchiseptica. J Biol Chem, 1997 Apr, 272:9587-9596
    124. Lariviere S, Leblanc L, Mittal K R, Martineau G P. Comparison of isolation methods for the recovery of Bordetella bronchiseptica and Pasteurella multocida from the nasal cavities of piglets. J Clin Microbiol, 1993 Feb, 31:364-367
    125. Lee J J, Sinha K A, Harrison J A, Demarco de Hormaeche R, Riveau G, Pierce R J, Capron A, Wilson R A and Khan C M A. Tetanus toxin fragment C expressed in live Salmonella vaccines enhances antibody responses to its fusion partner Schistosoma haematobium glutathione S-transferase. Infect Immun, 2000, 68:2503-2512
    126. Leininger E, Bowen S, Renauld-Mongenie G. Immunodominant domains present on the Bordetella pertussis vaccine component filamentous hemagglutinin. J Infect Dis, 1997, 175:1423-1431
    127. Leininger E, Ewanowich C A, Bhargava A. Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect Immun. 1992, 60:2380-2385
    128. Li J, Fairweather N F, Novotny P, Dougan G, Charles I G. Cloning, nucleotide sequence and heterologous expression of the protective outer-membrane protein P.68 pertactin from Bordetella bronchiseptica. J Gen Microbiol, 1992Aug, 138(8):1697-1705
    129. Liu G P, Wu B, Liu M Y, He Q G, Tang X C, Guo L M, Huang X D, Chen H C. Detection, identification and biological characterization of Escherichia coli eliciting edema of piglet. Chinese Journal of Veterinary, 2005, 25(1):31-33
    130. Lopez-Boado Y S, CoBb L M, Deora R. Bordetella bronchiseptica flagellin is a proinflammatory determinant for airway epithelial cells. Infect Immun, 2005 Nov, 73:7525-7534
    131. Lorenzo-Pajuelo B, Villanueva J L, Rodriguez-Cuesta J, Vergara-Irigaray N, Bernabeu-Wittel M, Garcia-Curiel A, Martinez de Tejada G. Cavitary pneumonia in an AIDS patient caused by unusual Bordetella bronchiseptica variant producing reduced amounts of pertactin and other major antigens. J Clin Microbiol, 2002 Sep, 40: 3146-3154
    132. Magyar T, Chanter N, Lax A J, Rutter J M, Hall G A. The pathogenesis of turbinate atrophy in pigs caused by Bordetella bronchiseptica. Vet Microbiol, 1988 Oct, 18:135-146
    133. Magyar T, Glavits R, Pullinger G D, Lax A J. The pathological effect of the Bordetella dermonecrotic toxin in mice. Acta Vet Hung, 2000, 48:397-406
    134. Marshall D G, Haque A, Fowler R, Del Guidice G, Dorman C J, Dougan G and Bowe F. Use of the stationary phase inducible promoters, spv and dps, to drive heterologous antigen expression in Salmonella vaccine strains. Vaccine, 2000, 18:1298-1306
    135. Maskell D J, Sweeney K J, O'Callaghan D, Hormaeche CE, Liew F Y and Dougan G. Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile enterotoxin B subunit to the murine secretory and systemic immune systems. Microb Pathogen, 1987, 2:211-221
    136. Matsuzawa T, Kashimoto T, Katahira J, Horiguchi Y. Identification of a receptor-binding domain of Bordetella dermonecrotic toxin. Infect Immun, 2002 Jul, 70:3427-3432
    137. Mattoo S, Cherry J D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev, 2005, 8(2):326-382
    138. Mattoo S, Foreman-Wykert A K, Cotter P A, Miller J F. Mechanisms of Bordetella pathogenesis. Front Biosci, 2001, 6:168-186
    139. Mattoo S, Miller J F, Cotter P A. Role of Bordetella bronchiseptica fimbriae in tracheal colonization and development of a humoral immune response. Infect Immun, 2000 Apr, 68:2024-2033
    140. McSorley S J, Xu D, Liew F Y. Vaccine efficacy of Salmonella strains expressing glycoprotein 63 with different promoters. Infect Immun, 1997, 65:171-178
    141. Medina E, Guzman C A. Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine, 2001, 19:1573-1580
    142. Menozzi F D, Boucher P E, Riveau G, Gantiez C, Locht C. Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis. Infect Immun, 1994, 62:4261-4269
    143. Mesnard R. Guiso N, Michelet C, Sire J M, Pouedras P, Donnio P Y, Avril J L. Isolation of Bordetella bronchiseptica from a patient with AIDS. Eur J Clin Microbiol Infect Dis, 1993 Apr, 12:304-306
    144. Molina N C, Parker C D. Murine antibody response to oral infection with live aroA recombinant Salmonella dublin vaccine strains expressing flamentous hemagglutinin antigen from Bordatella pertussis. Infect Immun, 1990, 58:2523-2528
    145. Montaraz J A, Novotny P, Ivanyi J. Identification of a 68-kilodalton protective protein antigen from Bordetella bronchiseptica. Infect Immun, 1985, 47:744-751
    146. Nagai S, Someno S and Yagihashi T. Differention of toxigenic from nontoxigenic isolates of Pasteurella multocida by PCR. Journal of Clinical Microbiology, 1994, 32:1004-1010
    147. Nagano H, Nakai T, Horiguchi Y, Kume K. Isolation and characterization of mutant strains of Bordetella bronchiseptica lacking dermonecrotic toxin-producing ability. J Clin Microbiol, 1988 Oct, 26:1983-1987
    148. Nakayama K, Kelly S M and Curtiss III R. Construction of an Asd expression cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio-Technology, 1988, 6:693-697
    149. Nnalue N A, B A D Stocker. Some galE mutants of Salmonella choleraesuis retain virulence. Infect Immun, 1986, 54:635-640
    150. Novotny P, Kobisch M, Cownley K, Chubb A P, Montaraz J A. Evaluation of Bordetella bronchiseptica vaccines in specific-pathogen free piglets with bacterial cell surface atigens in enzyme-linked immunosorbent assay. Infect Immun, 1985, 50:190-198
    151. O'Callaghan D, Charbit A, Martineau P, Leclerc C, Van der Werf S, Nauciel C and Hofnung M. Immunogenicity of foreign peptides expressed in bacterial envelope proteins. Res Microbiol, 1990, 141:963-969
    152. Oda M, Cowell J L, Burstyn D G, Manclark C R. Protective activities of the filamentous hemagglutinin and the lymphocytosis-promoting factor of Bordetella pertussis in mice. The Journal Infectious Diseases, 1984, 150(6):823-833
    153. Oldenburg J, Kohler B, Fuchs H W, Horsch F. Occurrence and importance of Bordetella bronchiseptica in rabbits. Montsh Veterinaermed, 1972 Oct, 27:738-743
    154. Oliveira A S, Gil-Turnes C. Studies on the antigenic relationships of six adherent isolates of Bordetella bronchiseptica. Vet Microbiol, 1988 Dec, 18:327-333
    155. Oliveira S, Galina L and Pijoan C. Development of a PCR test to diagnose Haemophilus parasuis infections. Journal of Veterinary Diagnostic Investigation, 2001, 13(6):495-501
    156. Orr N, Galen J E and Levine M M. Novel use of anaerobically induced promoter, dmsA, for controlled expression of fragment C of tetanus toxin in live attenuated Salmonella enterica serovar Typhi strain CVD 90S-htrA. Vaccine, 2001, 19:1697-1700
    157. Oxer M D, Bently C M, Doyle J G, Peakman T C, Charles I G and Makoff A J. High level heterologous expression in E. coli using the anaerobically-activated nirB promoter. Nucleic Acids Res, 1991,19:1889-1892
    158. Pagliaccia C, Manetti R, Rappuoli R. Pertactin antigens extracted from Bordetella pertussis and Bordetella bronchiseptica differ in the isoelectric point. Arch Microbiol, 1997 Nov, 168: 437-440
    159. Panina E M, Mattoo S, Griffith N, Kozak N A, Yuk M H, Miller J F. A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol Microbiol, 2005 Oct, 58:267-279
    160. Parkhill J, Sebaihia M, Preston A, Murphy L D, Thomson N, Harris D E, Holden M T, Churcher C M, Bentley S D, Mungall K L, Cerdeno-Tarraga A M, Temple L, James K, Harris B, Quail M A, Achtman M, Atkin R, Baker S, Basham D, Bason N. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet, 2003 Sep, 35:32-40
    161. Pasetti M F, Levine M M, Sztein M B. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar typhi live oral vaccines and live vectors. Vaccine, 2003, 21:401-418
    162. Piatti G. Identification of immunodominant epitopes in the filamentous hemagglutinin of Bordetella pertussis. FEMS Immunol Med Microbiol, 1999, 23:235-241
    163. Pilione M R, Pishko E J, Preston A, Maskell D J, Harvill E T. Pagp is required for resistance to antibody-mediated complement lysis during Bordetella bronchiseptica respiratory infection. Infect Immun, 2004 May, 72:2837-2842
    164. Pistor S, Hobom G. OmpA haemagglutinin fusion protein for oral immunization with live attenuated Salmonella. Res Microbiol, 1990, 141:879-881
    165. Plotkin S A, Cadoz M. The acellular pertussis vaccine trials: an interpretation. Pediatr. Infect Dis, 1997, 16:508-517
    166. Preston A, Parkhill J, Maskell D J. The Bordetellae: lessons from genomics. Nat Rev Microbiol, 2004 May, 2:379-390
    167. Pullinger G D, Adams T E, Mullan P B, Garrod T I and Lax A J. Cloning, expression, and molecular characterization of the dermonecrotic toxin gene of Bordetella spp. Infect Immun, 1996, 64(10):4163-4171
    168. Rahn K, De Grandis S A, Clarke R C, McEwen S A, Galan J E, Ginocchio C, Curtiss R 3rd and Gyles C L. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes, 1992, 6(4):271-279
    169. Rajeev S, Nair R V, Kania S A, Bemis D A. Expression of a truncated Pasteurella multocida toxin antigen in Bordetella bronchiseptica. Vet Microbiol, 2003 Jul, 94: 313-323
    170. Reed L J, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg, 1938, 27:493-197
    171. Register K B, Ackermann M R, Dyer D W. Nonradioactive colony lift-hybridization assay for detection of Bordetella bronchiseptica infection in swine. J Clin Microbiol, 1995 Oct, 33:2675-2678
    172. Register K B, Ducey T F, Brockmeier S L, Dyer D W. Reduced Virulence of a Bordetella bronchiseptica Siderophore Mutant in Neonatal Swine. Infect Immun, 2001 Apr, 69:2137-2143
    173. Register K B, Lee R M, Thomson C. Two-color hybridization assay for simultaneous detection of Bordetella bronchiseptica and toxigenic Pasteurella multocida from swine. J Clin Microbiol, 1998 Nov, 36:3342-3346
    174. Riising H J, van Empel P, Witvliet M. Protection of piglets against atrophic rhinitis by vaccinating the sow with a vaccine against Pasteurella multocida and Bordetella bronchiseptica. Vet Rec, 2002 May, 150:569-571
    175. Roland K, Curtiss III R, Sizemore D. Construction and evaluation of a cya crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli 078 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis, 1999, 43:429-441
    176. Roof M B, Doitchinoff D D. Safety, efficacy, and duration of immunity induced in swine by use of an avirulent live Salmonella choleraesuis-containing vaccine. Am J Vet Res, 1995, 56(1):39-44.
    177. Roof M B, T T Kramer, J A Roth, F C Minion. Characterization of a Salmonella choleraesuis isolate after repeated neutrophil exposure. Am J Vet Res, 1992, 53:1328-1332
    178. Roop R M, Veit H P, Sinsky R J, Veit S P, Hewlett E L, Komegay E T. Virulence factors of Bordetella bronchiseptica associated with the production of infectious atrophic rhinitis in experimentally infected neonatal swine. Infect Immun, 1987 Jan, 55:217-222
    179. Russmann H, Shams H, Poblete F, Fu Y, Galan J E and Donis R O. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science, 1998, 281:565-568
    180. Rutter J M. Atrophic rhinitis in swine. Adv Vet Sci Comp Med. 1985, 29:239-279
    181. Rutter J M. Quantitative observations on Bordetella bronchiseptica infection in atrophic rhinitis of pigs. Vet Rec, 1981, 108:451-454
    182. Rutter J M. Virulence of Pasteurella multocida in atrophic rhinitis of gnotobiotic pigs infected with Bordetella bronchiseptica. Res Vet Sci, 1983 May, 34:287-295
    183.Sakurai Y, Suzuki H, Terada E. Purification and characterisation of haemagglutinin from Bordetella bronchiseptica. J Med Microbiol, 1993, 39:388-392
    184. Saltzman D A, Heise C P, Hasz D E, Zebede M, Kelly S M, Curtiss III R, Leonard A S and Anderson P M. Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer Biother Radiopharm, 1996, 11:145-153
    185. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, NY, 1989
    186. Sekiya K, Kawahira M, Nakase Y. Protection against experimental Bordetella bronchiseptica infection in mice by active immunization with killed vaccine. Infect Immun, 1983 Aug, 41:598-603
    187. Shahin R D, Amsbaugh D F, Leef M F. Mucosal immunization with filamentous hemagglutinin protects against Bordetella pertussis respiratory infection. Infect Immun, 1992, 60:1482-1488
    188. Sirard J C, Niedergang F, Kraehenbuhl J P. Live attenuated Salmonella: a paradigm of mucosal vaccines. Immuno Rev, 1999, 171:5-26
    189. Skinner J A, Pilione M R, Shen H, Harvill E T, Yuk M H. Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J Immunol, 2005 Oct, 175:4647-4652
    190. Sluzewska M, Truszczynski Kordzielewski K M. Investigations on live vaccine against pig Salmonellosis. Pol Arch Weter, 1975, 18(2): 161-174
    191. Sluzewska M, Truszczynski M. Immunogenic properties of S. choleraesuis for pigs. Pol Arch Weter, 1975, 17(4):599-608
    192. Smith I M, Giles C J, Baskerville A J. The immunization of pigs against experimental infection with Bordetella bronchiseptica. Vet Rec, 1982, 110:488
    193. Speakman A J, Binns S H, Dawson S, Hart C A, Gaskell R M. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from cats and a comparison of the agar dilution and E-test methods. Vet Microbiol, 1997 Jan, 54:63-72
    194. Spreng S, Dietrich G, Weidinger G. Rational design of Salmonella-based vaccination strategies. Methods, 2006, 38:133-143
    195. Stefanelli P, Mastrantonio P, Hausman S Z. Molecular characterization of two Bordetella bronchiseptica strains isolated from children with coughs. J Clin Microbiol, 1997 Jun, 35:1550-1555
    196. Stevenson A, Roberts M. Use of Bordetella bronchiseptica and Bordetella pertussis as a live vaccines and vectors for heterologous antigens. FEMS Immunol Med Microbiol, 2003, 37:121-128
    197. Stevenson A, Roberts M. Use of rationally attenuated Bordetella bronchiseptica as a live mucosal vaccine and vector for heterologous antigens. Vaccine, 2002, 20:2325-2335
    198. Strugnell R A, Dougan G, Chatffield S, Charles I, Fairweather N, Tite J, Li J L, Beesley J, Roberts M. Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordatella pertussis. Infect Immun, 1992, 60:3994-4002
    199. Strugnell R A, Maskell D, Fairweather N, Pickard D, Cockayne A, Penn C, Dougan G. Stable expression of foreign antigens from the chromosome of Salmonella typhimurium vaccine strains. Gene, 1990, 88:57-63
    200. Susan L B, Karen B R, Tibor Magyar, Alistair J L, Gillian D P, Robert A K. Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infection and Immunity, 2002, 70(2):481-490
    201. Switzer W P, Farrington D O. Infectious atrophic rhinitis. In Diseases of Swine, 4th ed. Ed. H. W. Dunne and A. D. Leman. Ames: Iowa State Univ Press, 1975, p.687
    202. Tang X C, Wu B, Suo X F, Wang D L, Chen H C, Yin Z Y. Isolation, identification and biological characteristics research of swine Pasteurella multocida. Chinese Journal of Animal and Veterinary Sciences, 2005, 36(6):590-595
    203. Tijhaar E J, Zheng X Y, Karlas J A, Meyer T F, Stukart M J, Osterhaus A D and Mooi F R. Construction and evaluation of an expression vector allowing the stable expression of foreign antigens in a Salmonella typhimurium vaccine strain. Vaccine, 1994, 12:1004-1011
    204. Tornoe N, Nielsen N C, Svendsen J. Bordetella bronchiseptica isolations from the nasal cavity of pigs in relation to atrophic rhinitis. Nord Vet Med, 1976, 28:1
    205. Townsend K M, Boyce J D, Chung J Y, Frost A J, Adler B. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. Journal Clinical Microbiology, 2001, 39 (3):924-929
    206. Tu X, Nisan I, Miller J F, Hanski E, Rosenshine I. Construction of mini-Tn5cyaA'and its utilization for the identification of genes encoding surface-exposed and secreted proteins in Bordetella bronchiseptica. FEMS Microbiol Lett, 2000 Nov, 205:119-123
    207. Tusnady G E, Simon I. The HMMTOP transmembrane topology prediction server[J]. Bioinformatics. 2001, 17: 849-850
    208. Tzschaschel B D, Guzman C A, Timmis K N and De Lorenzo V. An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: export of Shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nature Biotechnol, 1996, 14:765-769
    209. United States Department of Agriculture. 2001. Part I: reference of swine health and management in the United States, 2000. CO: National Animal Health Monitoring System, Fort Collins, #N338.0801:2001:39
    210. United States Department of Agriculture. 2002. Part II: reference of swine health and health management in the United States, 2000. CO: USDA:APHIS:VS, CEAH, National Animal Health Monitoring System, Fort Collins, #N355.0202:2002:29
    211. Valencia M E, Enriquez A, Camino N, Moreno V. Bordetella bronchiseptica pneumonia in patients with HIV. Enferm Infecc Microbiol Clin, 2004 Oct, 22:502-503
    212. Van den Akker W M. Bordetella bronchiseptica has a BvgAS-controlled cytotoxic effect upon interaction with epithelial cells. FEMS Microbiol Lett, 1997 Nov, 156:239-244
    213. Vecht U, Wisselink H J, van Dijk J E, Smith H E. Virulence of Streptococcus suis type 2 strains in newborn germfree pigs depends on phenotype. Infect. Immun, 1992, 60:550-556
    214. Viejo G, de la Iglesia P, Otero L, Blanco M I, Gomez B, De Miguel D, Del Valle A, De la Fuente B. Bordetella bronchiseptica pleural infection in a patient with AIDS. Scandinavian Journal of Infecioust Diseases. 2002, 34(8):628-629
    215. Voets M T. Evaluation of the challenge model to test AR vaccine. Proc Int Congr Pig Vet Soc. 1990, 11:56
    216. Walker K E, Weiss A A. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Infect Immun, 1994 Sep, 62:3817-3828
    217. Watanabe M, Komatsu E, Abe K, Iyama S, Sato T Nagai M. Efficacy of pertussis components in an acellular vaccine, as assessed in a murine model of respiratory infection and a rnurine intracerebral challenge model. Vaccine. 2002, 31:1429-1434
    218. West N P, Fitter J T, Jakubzik U, Rohde M, Guzman C A, Walker M J. Non-motile mini-transposon mutants of Bordetella bronchiseptica exhibit altered abilities to invade and survive in eukaryotic cells. FEMS Microbiol Lett, 1997 Jan, 146:263-269
    219. Whittle B L, Lee E, Wier R C and Verma N K. Enhancement of the specific mucosal IgA response in vivo by interleukin-5 expressed by an attenuated strain of Salmonella serotype Dublin. J Med Microbiol, 1997, 46:1029-1038
    220. Whittlestone P. Infectious agents associated with porcine respiratory diseases. Pig Vet Soc Proc, 1982,9:71
    221. Wilson D R, Chatfield S, Berts J, Griffiths A, Leung K Y, Dougan G, Finlay B B. Alternative methods of attenuating Salmonella species for potential vaccine use. Res Microbiol, 1990, 141(7-8):827-830
    222. Wilson D R, Siebers A, Finlay B B. Antigenic analysis of Bordetella pertussis filamentous hemagglutinin with phage display libraries and rabbit anti-filamentous hemagglutinin polyclonal antibodies. Infect Immun, 1998, 66:4884-4894
    223. Winstanley C, Hales B A, Sibanda L M, Dawson S, Gaskell R M, Hart C A. Detection of type III secretion system genes in animal isolates of Bordetella bronchiseptica. Vet Microbiol, 2000 Mar, 72:329-337
    224. Woolfrey B F, Moody J A. Human infection associated with Bordetella bronchiseptica. Clin Microbiol Rev, 1991 Jul, 4:243-255
    225. Xu D, Mcsorely S J, Tetley L, Chatfield S, Dougan G, Chan W L, Satoskar A, David J R, Liew F Y. Protective effect on Lieshmania major infection of migration inhibitory factor, TNF-K, and IFN-Q administered orally via attenuated Salmonella typhimurium. J Immunol, 1998, 160:1285-1289
    226. Xu Y D, Guo A Z, Liu W H. Construction and characterization of Acrp Aasd mutant Host-Vector Balanced Lethal System of Salmonella choleraesuis C500 strain. Chinese Journal of Biotechnology, 2006, 22:366-372
    227. Yan Z X, Meyer T F. Mixed population approach for vaccination with live recombinant Salmonella strains. J Biotechnol, 1996, 44:197-201
    228. Yan Z X, Reuss F, Mayer T F. Construction of an invertible DNA segment for improved antigen expression by a hybrid Salmonella vaccine strain. Res Microbiol, 1990, 141:1003-1004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700