卢帕他定通过调节机体免疫反应逆转肺纤维化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺纤维化是一种慢性炎性肺疾病,其最主要组织病理学特征为间质性肺炎。肺纤维化的患病率随着年龄增长逐渐增加,其确诊五年后的生存率不到30%,且临床并无十分有效的治疗策略,目前使用的抗纤维化药物效果也差强人意。因此发现新型的抗肺纤维化药物迫在眉睫。在肺纤维化的发病过程中,机体免疫起着重要的调节作用。在重度肺纤维化期,肺部组织是以Th2型免疫反应为主的抑制性免疫微环境,伴有低度的Th1型刺激性免疫反应。此时的治疗策略应为打破这用Th2型免疫反应外加Treg参与介导的免疫抑制,同时保留部分Th1型免疫反应进行组织修复和免疫刺激。这也是为什么临床使用抗炎药物对抗纤维化效果不明显的原因。机体的过敏同样是由免疫反应和过敏细胞参与介导发生的,Th2型免疫反应此时也介导了过敏的产生,而Th1型免疫则不能引起过敏症状,起到一种保护作用。肥大细胞、嗜酸性粒细胞、嗜碱性粒细胞活化都能介导免疫抑制或Th2型免疫反应,同时也与肺纤维化有着种种联系。因此我们认为应用一种安全有效的抗过敏药物能够逆转肺纤维化时的抑制性免疫微环境并达到抗纤维化效果。本文首先在综述中介绍了肺纤维化这种疾病的基本概况、发病机理、临床诊断原则、临床处置原则和目前用作抗纤维化治疗的药物以及正在进行临床试验的抗纤维化药物。还系统介绍了过敏性疾病与纤维化的联系,包括过敏性哮喘与纤维化,嗜酸性粒细胞、嗜碱性粒细胞、肥大细胞与纤维化的关系。实验选择的候选药物卢帕他定是2003年上市的第二代组胺H1受体抑制剂,并具有PAF受体抑制作用,其被证明可以抑制肥大细胞、嗜酸性粒细胞、嗜碱性粒细胞脱颗粒,同时具有良好的抗炎作用。实验采用了博莱霉素所致小鼠肺纤维化模型和SiO2所致大鼠矽肺模型对卢帕他定的抗纤维化作用进行评价,并使用吡菲尼酮作为对照药物。此外我们还比较了卢帕他定与H1受体抑制剂氯雷他定和PAF受体抑制剂CV-3988的抗纤维化作用。实验结果显示,卢帕他定能提高博莱霉素所致肺纤维化小鼠生存率,降低肺部胶原沉积,减少上皮间充质转化的发生,逆转肺纤维化。同时证明其能有效控制肺部炎症,抑制炎性细胞和多种炎性细胞因子浸润,但同时保留Th1型细胞因子的表达。卢帕他定还可调节多种核因子的表达,达到打破免疫抑制的作用,此外还能将巨噬细胞M2极化方向逆转为M1极化方向。并且实验证明卢帕他定的抗纤维化效果优于氯雷他定和CV-3988。在大鼠矽肺模型上我们也取得了良好的卢帕他定抗纤维化终点。因此得出结论,卢帕他定是一种安全有效地,通过调节机体免疫反应抗纤维化的药物。这对临床治疗有着重要的提示意义。
Pulmonary fibrosis is a chronic inflammatory lung disease that is characterized histopathologically by the presence of usual interstitial pneumonia. The prevalence rate of pulmonary fibrosis increased with age, and it has a Five-Year survival rate under 30% after diagnosis. There are no effective therapeutic strategies to this disease till now. The approach in the medical treatment of pulmonary fibrosis is merely adequate, so the discovery of anti-fibrosis drug is extremely urgent. The immune regulation plays an important role in the development of pulmonary fibrosis, and there is a Th2-dominant microenvironment in the advanced stage of this disease with limited Thl-type immune responses which has stimulant and protective effect. In our opinion the strategy to treat pulmonary fibrosis is breaking the immune suppress induced by Th2-type immune responses and more importantly is reserving moderate Thl-type immune responses. This theory also illustrated why the anti-inflammation drug has less effect on pulmonary fibrosis. Allergic diseases also were regulated by the immune response and allergic cells. It has been confirmed that Th2-type immune responses created by mast cell, eosinophil and basophil, can participate the development of allergy by inducing immune suppress, however, Thl-type immune responses can down regulate the immune suppress. Due to these phenomena and the allergic cells have closely associated with pulmonary fibrosis, we gave a hypothesis that using an anti-allergy drug can attenuate pulmonary fibrosis by regulation of the immune responses. In the first review, we summarize the general overview of pulmonary fibrosis include of pathogenesis, diagnosis principle, treatment and the medicine used to treat this disease in clinic as well as in clinical trials. In second review, we summarize the relationship between allergy and fibrosis include of asthma and fibrosis, the role of eosinophil, basophil and mast cell in pulmonary fibrosis. Based on previous theory, we chose Rupatadine as candidate drug to treat pulmonary fibrosis, it is a new generation dual inhibitor of H1 and PAF receptors used to treat allergies, which had been discovered by Uriach and launched in 2003 in Span. Previous pharmacology studies have shown that, Rupatadine can inhibit the degranulation of mast cells and the release of biochemical mediators from allergic cells. We used bleomycin-induced mice pulmonary fibrosis model and SiO2 induced silicosis model to test the hypothesis that Rupatadine may attenuate this chronic lung disease through its immune modulation property. Meanwhile, we compared the anti-fibrosis effects of Rupatadine with Histamine H1 receptor antagonist loratadine and PAF receptor antagonist CV-3988 at same dosage. Our results demonstrated that treatment with Rupatadine attenuated bleomycin-induced pulmonary fibrosis, reduced the mortality of fibrosis mouse, ameliorated the inflammatory responses, reversed the immunosuppressive Th2-dominant microenvironment, reserved a moderate Thl-type immune response in fibrosis mice and inhibited Epithelial-mesenchymal transition after bleomycin-instilled, in addition, rupatadine can reverse the M2 polarization to M1 after bleomycin injured. We found that single usage of Loratadine or CV-3988 had fewer effects of anti-inflammation and anti-fibrosis compared with rupatadine. We also demonstrated the anti-fibrosis effect of rupatadine on SiO2 induced silicosis model. So we have the conclusion that, rupatadine is a useful drug against pulmonary fibrosis with good safety. It can attenuate fibrosis through its immune regulation effect and this finding provides directive significance for clinical therapy.
引文
[1]American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This Joint Statement of the American Thoracic; Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS Board of Directors, June 2001 and by The ERS Executive Committee, June 2001 [J]. Am. J. Respir. Crit. Care Med.,2002,165 (2),277-304.
    [2]Frankel, S. K.& Schwarz, M. I. Update in idiopathic pulmonary fibrosis [J]. Current Opinion in Pulmonary Medicine,2009,15 (5),463-469
    [3]Kim, D. S., Collard, H. R.& King, T. E., Jr. Classification and Natural History of the Idiopathic Interstitial Pneumonias [J]. Proc Am Thorac Soc,2006,3 (4), 285-292.
    [4]Misumi, S.& Lynch, D. A. Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia:Imaging Diagnosis, Spectrum of Abnormalities, and Temporal Progression [J]. Proc Am Thorac Soc,2006,3 (4),307-314.
    [5]Visscher, D. W.& Myers, J. L. Histologic Spectrum of Idiopathic Interstitial Pneumonias [J]. Proc Am Thorac Soc,2006,3 (4),322-329.
    [6]Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm [J]. Nat Rev Immunol, 2004,4 (8),583-594.
    [7]Bargagli, E. et al. Oxidative stress in the pathogenesis of diffuse lung diseases:A review [J]. Respiratory medicine,2009,103 (9),1245-1256.
    [8]Verma, S.& Slutsky, A. S. Idiopathic Pulmonary Fibrosis-New Insights [J]. New England Journal of Medicine,2007,356 (13),1370-1372.
    [9]Harari, S.& Caminati, A. IPF:new insight on pathogenesis and treatment [J]. Allergy,65 (5),537-553.
    [10]Selman, M.& Pardo, A. Role of Epithelial Cells in Idiopathic Pulmonary Fibrosis: From Innocent Targets to Serial Killers [J]. Proc Am Thorac Soc,2006,3 (4), 364-372.
    [11]Zhang, H.-Y.& Phan, S. H. Inhibition of Myofibroblast Apoptosis by Transforming Growth Factor beta 1 [J]. Am. J. Respir. Cell Mol. Biol.,1999,21 (6),658-665.
    [12]Thannickal, V. J.& Horowitz, J. C. Evolving Concepts of Apoptosis in Idiopathic Pulmonary Fibrosis [J]. Proc Am Thorac Soc,2006,3 (4),350-356.
    [13]Armanios, M. Y. et al. Telomerase Mutations in Families with Idiopathic Pulmonary Fibrosis [J]. New England Journal of Medicine,2007,356 (13), 1317-1326.
    [14]Fernandez Perez. ER, Daniels CE, Schroeder DR. et al. Incidence, Prevalence, and Clinical Course of Idiopathic Pulmonary Fibrosis [J]. Chest,137 (1), 129-137.
    [15]Raghu, G. et al. A Placebo-Controlled Trial of Interferon Gamma-lb in Patients with Idiopathic Pulmonary Fibrosis [J]. New England Journal of Medicine,2004, 350 (2),125-133.
    [16]Raghu, G., Weycker, D., Edelsberg, J., Bradford, W. Z.& Oster, G. Incidence and Prevalence of Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med., 2006,174 (7),810-816.
    [17]Nogee, L. M. et al. Mutations in the Surfactant Protein C Gene Associated With Interstitial Lung Disease* [J]. Chest,2002,121 (3 suppl),20S-21S.
    [18]Rosas, I. O. et al. MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis [J]. PLoS Med,2008,5 (4), e93.
    [19]Selman, M., King, T. E.& Pardo, A. Idiopathic Pulmonary Fibrosis:Prevailing and Evolving Hypotheses about Its Pathogenesis and Implications for Therapy [J]. Annals of Internal Medicine,2001,134(2),136-151.
    [20]du Bois, R. M. Strategies for treating idiopathic pulmonary fibrosis [J]. Nat Rev Drug Discov,9 (2),129-140.
    [21]Iwai, K., Mori, T., Yamada, N., Yamaguchi, M.& Y, H. Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure [J]. Am J Respir Crit Care Med,1994 150 (3),670-5.
    [22]Steele, M. P. et al. Clinical and Pathologic Features of Familial Interstitial Pneumonia [J]. Am. J. Respir. Crit. Care Med.,2005,172 (9),1146-1152.
    [23]Raghu, G., Yang, S. T. Y., Spada, C, Hayes, J.& Pellegrini, C. A. Sole Treatment of Acid Gastroesophageal Reflux in Idiopathic Pulmonary Fibrosis* [J]. Chest, 2006,129 (3),794-800.
    [24]Chambers, R. C. Procoagulant signalling mechanisms in lung inflammation and fibrosis:novel opportunities for pharmacological intervention? [J]. British Journal of Pharmacology,2008,153 (S1), S367-S378.
    [25]Thomas, A. Q. et al. Heterozygosity for a Surfactant Protein C Gene Mutation Associated with Usual Interstitial Pneumonitis and Cellular Nonspecific Interstitial Pneumonitis in One Kindred [J]. Am. J. Respir. Crit. Care Med.,2002, 165 (9),1322-1328.
    [26]Wang, Y. et al. Genetic Defects in Surfactant Protein A2 Are Associated with Pulmonary Fibrosis and Lung Cancer [J]. American journal of human genetics, 2009,84 (1),52-59.
    [27]Kaser, A.& Blumberg, R. S. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease [J]. Seminars in Immunology,2009, 21 (3),156-163.
    [28]Cronkhite, J. T. et al. Telomere Shortening in Familial and Sporadic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2008,178 (7),729-737.
    [29]du Bois, R. M. Genetic Factors in Pulmonary Fibrotic Disorders [J]. Semin Respir Crit Care Med,2006,27 (06),581,588.
    [30]Laurent, G., Chambers, R., Hill, M.& RJ, M. Regulation of matrix turnover: fibroblasts, forces, factors and fibrosis [J]. Biochem Soc Trans,2007,35 (Pt4), 647-51.
    [31]Kotani, I. et al. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis [J]. Thrombosis Research,1995,77 (6), 493-504.
    [32]Belperio, J. A. et al. The Role of the Th2 CC Chemokine Ligand CCL17 in Pulmonary Fibrosis [J]. The Journal of Immunology,2004,173 (7),4692-4698.
    [33]Keane, M., Arenberg, D., Moore, B., Addison, C.& RM, S. CXC chemokines and angiogenesis/angiostasis [J]. Proc Assoc Am Physicians,1998,110 (4),288-96.
    [34]Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1:a mechanism for regulating pulmonary inflammation and fibrosis. [J]. Cell, 1999,96 (3),319-328.
    [35]Sheppard, D. Integrin-Mediated Activation of Transforming Growth Factor-beta(1) in Pulmonary Fibrosis* [J]. Chest,2001,120 (1 suppl), S49-S53.
    [36]Mercer, P. F. et al. Pulmonary Epithelium Is a Prominent Source of Proteinase-activated Receptor-1-inducible CCL2 in Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2009,179 (5),414-425.
    [37]Martinez, F. J.& Flaherty, K. Pulmonary Function Testing in Idiopathic Interstitial Pneumonias [J]. Proc Am Thorac Soc,2006,3 (4),315-321.
    [38]Tzilas, V., Koti, A., Papandrinopoulou, D.& Tsoukalas, G. Prognostic Factors in Idiopathic Pulmonary Fibrosis [J]. The American Journal of the Medical Sciences, 2009,338 (6),481-485 10.1097/MAJ.0b013e3181ad5984.
    [39]Ohshimo, S. et al. Significance of Bronchoalveolar Lavage for the Diagnosis of Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2009,179 (11), 1043-1047.
    [40]Patel, N. M., Lederer, D. J., Borczuk, A. C.& Kawut, S. M. Pulmonary Hypertension in Idiopathic Pulmonary Fibrosis* [J]. Chest,2007,132 (3), 998-1006.
    [41]Kozower, B. D. et al. The impact of the lung allocation score on short-term transplantation outcomes:A multicenter study [J]. The Journal of thoracic and cardiovascular surgery,2008,135 (1),166-171.
    [42]Orens, J. B. et al. International Guidelines for the Selection of Lung Transplant Candidates:2006 Update--a Consensus Report From the Pulmonary Scientific Council of the International Society for Heart and Lung Transplantation [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2006,25 (7),745-755.
    [43]Behr, J., Kolb, M.& Cox, G. Treating IPF—all or nothing? A PRO-CON debate [J]. Respirology,2009,14 (8),1072-1081.
    [44]Selman, M. et al. Idiopathic pulmonary fibrosis:pathogenesis and therapeutic approaches. [J]. Drugs.,2004,64 (4),405-30.
    [45]Walter, N., Collard, H. R.& King, T. E., Jr. Current Perspectives on the Treatment of Idiopathic Pulmonary Fibrosis [J]. Proc Am Thorac Soc,2006,3 (4),330-338.
    [46]Elenkov, I. J. Glucocorticoids and the Thl/Th2 Balance [J]. Ann NY Acad Sci, 2004,1024(1),138-146.
    [47]Gharaee-Kermani, M.& Phan, S. Molecular mechanisms of and possible treatment strategies for idiopathic pulmonary fibrosis. [J]. Curr Pharm Des,2005, 11(30).
    [48]Bouros, D.& Antoniou, K. M. Current and future therapeutic approaches in idiopathic pulmonary fibrosis [J]. Eur Respir J,2005,26 (4),693-703.
    [49]Demedts, M. et al. High-Dose Acetylcysteine in Idiopathic Pulmonary Fibrosis [J]. New England Journal of Medicine,2005,353 (21),2229-2242.
    [50]Bogdan, C. The function of type I interferons in antimicrobial immunity [J]. Current Opinion in Immunology,2000,12 (4),419-424.
    [51]King, T. E., Jr. et al. BUILD-1:A Randomized Placebo-controlled Trial of Bosentan in Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med., 2008,177(1),75-81.
    [52]Schroll, S. et al. Improvement of bleomycin-induced pulmonary hypertension and pulmonary fibrosis by the endothelin receptor antagonist Bosentan [J]. Respiratory Physiology & Neurobiology,170 (1),32-36.
    [53]Daniels, C. E. et al. Imatinib Treatment for Idiopathic Pulmonary Fibrosis: Randomized Placebo-controlled Trial Results [J]. Am. J. Respir. Crit. Care Med., 181 (6),604-610.
    [54]Douglas, W., Ryu, J. H., Swensen, S.& et.al. Colchicine versus prednisone in the treatment of idiopathic pulmonary fibrosis:a randomized prospective study. Members of the Lung Study Group [J]. Am J Respir Crit Care Med,1998,158 (1), 220-5.
    [55]Antoniu, S. A. Pirfenidone for the treatment of idiopathic pulmonary fibrosis [J]. Expert Opinion on Investigational Drugs,2006,15 (7),823-828.
    [56]Azuma, A. et al. Double-blind, Placebo-controlled Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2005,171 (9),1040-1047.
    [57]Swigris, J.& Fairclough, D. Pirfenidone in idiopathic pulmonary fibrosis [J]. European Respiratory Journal,36 (3),695-696.
    [58]Yang, H.-Z. et al. Targeting TLR2 Attenuates Pulmonary Inflammation and Fibrosis by Reversion of Suppressive Immune Microenvironment [J]. The Journal of Immunology,2009,182 (1),692-702.
    [59]Kuwano, K., Hagimoto, N., Y, N.& Histopathol, H. The role of apoptosis in pulmonary fibrosis. [J].2004,19 (3),867-81.
    [60]Korfei, M. et al. Epithelial Endoplasmic Reticulum Stress and Apoptosis in Sporadic Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2008, 178 (8),838-846.
    [61]Basseri, S., Lhotak S, Sharma, A. M.& Austin, R. C. The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response [J]. Journal of Lipid Research,2009,50 (12),2486-2501.
    [62]Hecker, L. et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury [J]. Nat Med,2009,15 (9),1077-1081.
    [63]Lambeth, J. D. Nox enzymes, ROS, and chronic disease:An example of antagonistic pleiotropy [J]. Free Radical Biology and Medicine,2007,43 (3), 332-347.
    [64]Lambeth, J., Krause, K.-H.& Clark, R. NOX enzymes as novel targets for drug development [J]. Seminars in Immunopathology,2008,30 (3),339-363.
    [1]Naylor, B. The Shedding of the Mucosa of the Bronchial Tree in Asthma [J]. Thorax,1962,17(1),69-72.
    [2]Ordonez, C, Ferrando, R.O. N, Hyde, D. M., Wong, H. H.& Fahy, J. V. Epithelial Desquamation in Asthma. Artifact or Pathology? [J]. Am. J. Respir. Crit. Care Med.,2000,162 (6),2324-2329.
    [3]Bucchieri, F. et al. Asthmatic Bronchial Epithelium Is More Susceptible to Oxidant-Induced Apoptosis [J]. Am. J. Respir. Cell Mol. Biol.,2002,27 (2), 179-185.
    [4]Trautmann, A. et al. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma [J]. The Journal of allergy and clinical immunology,2002,109 (2),329-337.
    [5]Tschumperlin, D. J.& Drazen, J. M. Mechanical Stimuli to Airway Remodeling [J]. Am. J. Respir. Crit. Care Med,2001,164 (10), S90-94.
    [6]Cookson, W. The immunogenetics of asthma and eczema:a new focus on the epithelium [J]. Nat Rev Immunol,2004,4 (12),978-988.
    [7]Holgate, S. T., Peters-Golden, M., Panettieri, R. A.& Henderson, W. R. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling [J]. Journal of Allergy and Clinical Immunology,2003,111 (1, Supplement 1), S18-S36.
    [8]Roche, W., Beasley, R., Williams, J.& Holgate.ST. Subepithelial fibrosis in the bronchi of asthmatics [J]. Lancet,1989,11(1),520-4.
    [9]Carroll, N., Elliot, J., Morton, A.& A, J. The structure of large and small airways in nonfatal and fatal asthma. [J]. Am Rev Respir Dis,1993,147 (2),405-10.
    [10]Ebina, M., Takahashi, T., Chiba, T.& M, M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study [J]. Am Rev Respir Dis.,1993,148 (3),720-6.
    [11]Ebina, M. et al. Hyperreactive site in the airway tree of asthmatic patients revealed by thickening of bronchial muscles. A morphometric study. [J]. Am Rev Respir Dis.,1990,141 (5 Pt 1),1327-32.
    [12]Thomas, A. Q. et al. Heterozygosity for a Surfactant Protein C Gene Mutation Associated with Usual Interstitial Pneumonitis and Cellular Nonspecific Interstitial Pneumonitis in One Kindred [J]. Am. J. Respir. Crit. Care Med.,2002, 165 (9),1322-1328.
    [13]Martin, J. G.& Ramos-Barbon D. Airway smooth muscle growth from the perspective of animal models [J]. Respiratory Physiology & Neurobiology,2003, 137 (2-3),251-261.
    [14]Schmidt, M., Sun, G., Stacey, M. A., Mori, L.& Mattoli, S. Identification of Circulating Fibrocytes as Precursors of Bronchial Myofibroblasts in Asthma [J]. The Journal of Immunology,2003,171 (1),380-389.
    [15]Beqaj, S., Jakkaraju, S., Mattingly, R. R., Pan, D.& Schuger, L. High RhoA activity maintains the undifferentiated mesenchymal cell phenotype, whereas RhoA down-regulation by laminin-2 induces smooth muscle myogenesis [J]. The Journal of Cell Biology,2002,156 (5),893-903.
    [16]Vancheri, C. et al. Bradykinin differentiates human lung fibroblasts to a myofibroblast phenotype via the B2 receptor [J]. The Journal of allergy and clinical immunology,2005,116 (6),1242-1248.
    [17]Roth, M. et al. Dysfunctional Interaction of C/EBPalpha and the Glucocorticoid Receptor in Asthmatic Bronchial Smooth-Muscle Cells [J]. New England Journal of Medicine,2004,351 (6),560-574.
    [18]Benayoun, L., Druilhe, A., Dombret, M.-C, Aubier, M.& Pretolani, M. Airway Structural Alterations Selectively Associated with Severe Asthma [J]. Am. J. Respir. Crit. Care Med.,2003,167 (10),1360-1368.
    [19]Woodruff, P. G. et al. Hyperplasia of Smooth Muscle in Mild to Moderate Asthma without Changes in Cell Size or Gene Expression [J]. Am. J. Respir. Crit. Care Med.,2004,169(9),1001-1006.
    [20]Madison, J. M. Migration of Airway Smooth Muscle Cells [J]. Am. J. Respir. Cell Mol.Biol.,2003,29(1),8-11.
    [21]Howarth, P. H. et al. Synthetic responses in airway smooth muscle [J]. The Journal of allergy and clinical immunology,2004,114 (2), S32-S50.
    [22]Fernandes, D. J. et al. Invited Review:Do inflammatory mediators influence the contribution of airway smooth muscle contraction to airway hyperresponsiveness in asthma? [J]. Journal of Applied Physiology,2003,95 (2),844-853.
    [23]Vermeer, P. D., Harson, R., Einwalter, L. A., Moninger, T.& Zabner, J. Interleukin-9 Induces Goblet Cell Hyperplasia during Repair of Human Airway Epithelia [J]. Am. J. Respir. Cell Mol. Biol.,2003,28 (3),286-295.
    [24]Reader, J. R. et al. Interleukin-9 Induces Mucous Cell Metaplasia Independent of Inflammation [J]. Am. J. Respir. Cell Mol. Biol.,2003,28 (6),664-672.
    [25]Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma [J]. Nat Med,2002,8 (8),885-889.
    [26]Wills-Karp, M.& Chiaramonte, M. Interleukin-13 in asthma [J]. Current Opinion in Pulmonary Medicine,2003,9 (1),21-27.
    [27]Hoshino, M., Takahashi, M.& Aoike, N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis [J]. The Journal of allergy and clinical immunology,2001,107 (2),295-301.
    [28]Yanai, M., Sekizawa, K., Ohrui, T., Sasaki, H.& Takishima, T. Site of airway obstruction in pulmonary disease:direct measurement of intrabronchial pressure [J]. Journal of Applied Physiology,1992,72 (3),1016-1023.
    [29]Black, J. L. Asthma--More Muscle Cells or More Muscular Cells? [J]. Am. J. Respir. Crit. Care Med,2004,169 (9),980-981.
    [30]Wang, Y.-H.& Liu, Y.-J. The IL-17 cytokine family and their role in allergic inflammation [J]. Current Opinion in Immunology,2008,20 (6),697-702.
    [31]Bumbacea, D. et al. Parameters associated with persistent airflow obstruction in chronic severe asthma [J]. European Respiratory Journal,2004,24 (1),122-128.
    [32]Lambert, R. K., Codd, S. L., Alley, M. R.& Pack, R. J. Physical determinants of bronchial mucosal folding [J]. Journal of Applied Physiology,1994,77 (3), 1206-1216.
    [33]Liu, Y.-Y. et al. Bacillus Calmette-Guerin and TLR4 Agonist Prevent Cardiovascular Hypertrophy and Fibrosis by Regulating Immune Microenvironment [J]. The Journal of Immunology,2008,180 (11),7349-7357.
    [34]Wills-Karp, M.& CL, K. Biomedicine. Eosinophils in asthma:remodeling a tangled tale [J]. Science.,2004,17 (305(5691)),1726-9.
    [35]Oettgen, H. C. Regulation of the IgE isotype switch:new insights on cytokine signals and the functions of [var epsilon] germline transcripts [J]. Current Opinion in Immunology,2000,12 (6),618-623.
    [36]Fahy, J. V. Remodeling of the Airway Epithelium in Asthma [J]. Am. J. Respir. Crit. Care Med.,2001,164 (10), S46-51.
    [37]Longphre, M. et al. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells [J]. The Journal of Clinical Investigation,1999,104 (10),1375-1382.
    [38]Bergeron, C. et al. Evidence of remodeling in peripheral airways of patients with mild to moderate asthma:Effect of hydrofluoroalkane-flunisolide [J]. The Journal of allergy and clinical immunology,2005,116 (5),983-989.
    [39]Barbato, A. et al. Epithelial Damage and Angiogenesis in the Airways of Children with Asthma [J]. Am. J. Respir. Crit. Care Med.,2006,174 (9),975-981.
    [40]Payne, D. N. R. et al. Early Thickening of the Reticular Basement Membrane in Children with Difficult Asthma [J]. Am. J. Respir. Crit. Care Med.,2003,167 (1), 78-82.
    [41]Nelson, H. S. et al. Airway remodeling in asthma:New insights [J]. The Journal of allergy and clinical immunology,2003,111 (2),215-225.
    [42]Grol, M. H. et al. Risk Factors for Growth and Decline of Lung Function in Asthmatic Individuals up to Age 42 years. A 30-year Follow-up Study [J]. Am. J. Respir. Crit. Care Med,1999,160 (6),1830-1837.
    [43]Olsson, I. Venge, P. Spitznagel, J.& RI, L. Arginine-rich cationic proteins of human eosinophil granules:comparison of the constituents of eosinophilic and neutrophilic leukocytes. [J]. Lab Invest,1977,36 (5),493-500.
    [44]M, B. nflammation in the lung in cystic fibrosis Gershwin E, ed [J]. Clinical reviews in allergy, vol 9. Cystic fibrosis. Humana Press,1991,119-42.
    [45]Frigas, E, Loegering, D.& GJ, G. Cytotoxic effects of the guinea pig eosinophil major basic protein on tracheal epithelium. [J]. Lab Invest.,1980,42 (1),35-43.
    [46]Flavahan, N, Slifman, N., Gleich, G.& PM, V. Human eosinophil major basic protein causes hyperreactivity of respiratory smooth muscle. Role of the epithelium [J]. Am Rev Respir Dis,1988,138 (3),685-8.
    [47]Bedrossian, C, Greenberg, S., Singer, D., Hansen, J.& HS, R. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups [J]. Hum Pathol,1976,7 (2),195-204.
    [48]Hill, S. J. et al. International Union of Pharmacology. ⅩⅢ. Classification of Histamine Receptors [J]. Pharmacological Reviews,1997,49 (3),253-278.
    [49]Azzawi, M, Johnston, P, Majumdar, S, Kay, A.& PK, J. T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. [J]. Am Rev Respir Dis,1992,145 (6),1477-82.
    [50]Fujimoto, K., Kubo, K., Yamaguchi, S., Honda, T.& Matsuzawa, Y. Eosinophil Activation in Patients With Pulmonary Fibrosis [J]. Chest,1995,108 (1),48-54.
    [51]Falcone, F. H., Zillikens, D.& Gibbs, B. F. The 21st century renaissance of the basophil? Current insights into its role in allergic responses and innate immunity [J]. Experimental Dermatology,2006,15 (11),855-864.
    [52]Gibbs, B. F. et al. Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation [J]. European Journal of Immunology,1996,26 (10),2493-2498.
    [53]Oh, K., Shen, T., Le Gros, G.& Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils [J]. Blood, 2007,109 (7),2921-2927.
    [54]Khodoun, M. V., Orekhova, T., Potter, C., Morris, S.& Finkelman, F. D. Basophils Initiate IL-4 Production during a Memory T-dependent Response [J]. The Journal of Experimental Medicine,2004,200 (7),857-870.
    [55]Sokol, C. L., Barton, G. M., Farr, A. G.& Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses [J]. Nat Immunol,2008,9 (3),310-318.
    [56]Denzel, A. et al. Basophils enhance immunological memory responses [J]. Nat Immunol,2008,9 (7),733-742.
    [57]Komiya, A. et al. Expression and function of toll-like receptors in human basophils [J]. Int Arch Allergy Immunol.,2006,140 (Suppl 1),23-7.
    [58]Bieneman, A. P., Chichester, K. L., Chen, Y.-H.& Schroeder, J. T. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion [J]. The Journal of allergy and clinical immunology, 2005,115 (2),295-301.
    [59]de Paulis, A. et al. Tat Protein Is an HIV-1-Encoded beta-Chemokine Homolog That Promotes Migration and Up-Regulates CCR3 Expression on Human Fc epsilon RI+Cells [J]. The Journal of Immunology,2000,165 (12),7171-7179.
    [60]Kalesnikoff, J. et al. Monomeric IgE Stimulates Signaling Pathways in Mast Cells that Lead to Cytokine Production and Cell Survival [J]. Immunity,2001,14 (6), 801-811.
    [61]Welle, M. Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase [J]. J Leukoc Biol,1997,61 (3),233-245.
    [62]Irani, A.& LB, S. Human mast cell heterogeneity [J]. Allergy Proc,1994,15 (6), 303-8.
    [63]Castells, M. C., Irani, A. M.& Schwartz, L. B. Evaluation of human peripheral blood leukocytes for mast cell tryptase [J]. J Immunol,1987,138 (7),2184-2189.
    [64]Galli, S. J., Nakae, S.& Tsai, M. Mast cells in the development of adaptive immune responses [J]. Nat Immunol,2005,6 (2),135-142.
    [65]Blank, U.& Rivera, J. The ins and outs of IgE-dependent mast-cell exocytosis [J]. Trends in Immunology,2004,25 (5),266-273.
    [66]Mu, R., Xu DM & ZG, L. Mast cells and fibroblast-like synoviocytes co-culture increases interleukin-6 secretion in rheumatoid arthritis [J]. Zhonghua Yi Xue Za Zhi,2008,88 (17),1202-5.
    [67]Abel, M.& Vliagoftis, H. Mast Cell-Fibroblast Interactions Induce Matrix Metalloproteinase-9 Release from Fibroblasts:Role for IgE-Mediated Mast Cell Activation [J]. J Immunol,2008,180 (5),3543-3550.
    [68]Abe, M. et al. Effect of activated human mast cells and mast cell-derived mediators on proliferation, type I collagen production and glycosaminoglycans synthesis by human dermal fibroblasts [J]. Eur J Dermatol,2002,12 (4),340-6.
    [69]Kohyama, T. et al. Histamine stimulates human lung fibroblast migration [J]. Molecular and Cellular Biochemistry,337 (1),77-81.
    [70]Korfei, M. et al. Epithelial Endoplasmic Reticulum Stress and Apoptosis in Sporadic Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2008, 178 (8),838-846.
    [71]Norifumi, S. et al. Mast cell-derived tryptase inhibits apoptosis of human rheumatoid synovial fibroblasts via rho-mediated signaling [J]. Arthritis & Rheumatism,2010 Apr;62(4):952-9
    [72]Akers, I. A. et al. Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2 [J]. Am J Physiol Lung Cell Mol Physiol,2000, 278(1),L193-201.
    [73]Pesci, A., Bertorelli, G., Gabrielli, M.& Olivieri, D. Mast cells in fibrotic lung disorders [J]. Chest,1993,103 (4),989-996.
    [74]Kopinski, P. et al. Cytoimmunologic changes in material obtained from bronchoalveolar lavage (BAL) in asymptomatic individuals chronically exposed to silica dust [J]. Pneumonol Alergol Pol,2000,68 (3-4),109-19.
    [75]Hamada, H. et al. Mast Cell Basic Fibroblast Growth Factor in Silicosis [J]. Am. J. Respir. Crit. Care Med.,2000,161 (6),2026-2034.
    [76]Broide, D. H., Smith, C. M.& Wasserman, S. I. Mast cells and pulmonary fibrosis. Identification of a histamine releasing factor in bronchoalveolar lavage fluid [J]. J Immunol,1990,145 (6),1838-1844.
    [77]Kazuto, H. et al. Enhanced mast cell chymase expression in human idiopathic interstitial pneumonia [J]. International Journal of Molecular Medicine,2007,19 (4),565-570.
    [78]Inoue, Y., King, T. E., Jr., Tinkle, S. S., Dockstader, K.& Newman, L. S. Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders [J]. Am J Pathol,1996,149 (6),2037-2054.
    [79]Tomimori, Y. et al. Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice [J]. European Journal of Pharmacology,2003,478 (2-3),179-185.
    [80]Brown, K. K.& Raghu, G. Medical treatment for pulmonary fibrosis:current trends, concepts, and prospects [J]. Clinics in chest medicine,2004,25 (4), 759-772.
    [81]Masuda, T. et al. Mast cells play a partial role in allergen-induced subepithelial fibrosis in a murine model of allergic asthma [J]. Clinical & Experimental Allergy, 2003,33 (5),705-713.
    [82]Kondo, S. et al. Role of Mast Cell Tryptase in Renal Interstitial Fibrosis [J]. J Am Soc Nephrol,2001,12 (8),1668-1676.
    [83]Armbrust, T., Batusic, D., Ringe, B.& Ramadori, G. Mast cells distribution in human liver disease and experimental rat liver fibrosis. Indications for mast cell participation in development of liver fibrosis [J]. Journal of Hepatology,1997,26 (5),1042-1054.
    [84]Thompson, H. L., Burbelo, P. D., Gabriel, G., Yamada, Y.& Metcalfe, D. D. Murine mast cells synthesize basement membrane components. A potential role in early fibrosis [J]. The Journal of Clinical Investigation,1991,87 (2),619-623.
    [85]Brito, J. M.& Borojevic, R. Liver granulomas in schistosomiasis:mast cell-dependent induction of SCF expression in hepatic stellate cells is mediated by TNF-alpha [J]. J Leukoc Biol,1997,62 (3),389-396.
    [86]Terada, T.& Matsunaga, Y. Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma [J]. Journal of Hepatology,2000,33 (6), 961-966.
    [87]Azuma, A. et al. Double-blind, Placebo-controlled Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2005,171 (9),1040-1047.
    [88]Satomura, K. et al. Increased Chymase in Livers with Autoimmune Disease: Colocalization with Fibrosis [J]. Journal of Nippon Medical Scool,2003,70 (6), 490-495.
    [89]Ruger, B. et al. Mast cells and type Ⅷ collagen in human diabetic nephropathy [J]. Diabetologia,1996,39 (10),1215-22.
    [90]Ehara, T.& Shigematsu, H. Contribution of mast cells to the tubulointerstitial lesions in IgA nephritis [J]. Kidney Int,1998,54 (5),1675-1683.
    [91]Welker, P. et al. Increased mast cell number in human hypertensive nephropathy [J]. Am J Physiol Renal Physiol,2008,295 (4), F1103-1109.
    [92]Satomura, K. et al. Establishment of an assay method for human mast cell chymase [J]. Hepatology Research,2002,24 (4),361-367.
    [93]Wang, Y. et al. Genetic Defects in Surfactant Protein A2 Are Associated with Pulmonary Fibrosis and Lung Cancer [J]. American journal of human genetics, 2009,84 (1),52-59.
    [94]Levick, S. P. et al. Cardiac Mast Cells Mediate Left Ventricular Fibrosis in the Hypertensive Rat Heart [J]. Hypertension,2009,53 (6),1041-1047.
    [95]Higuchi, H. et al. Mast Cells Play a Critical Role in the Pathogenesis of Viral Myocarditis [J]. Circulation,2008,118 (4),363-372.
    [96]Hanna, M. H. et al. Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation [J]. Journal of Cellular Biochemistry,109 (3),615-623.
    [97]Murota, H., Bae, S., Hamasaki, Y., Maruyama, R.& Katayama, I. Emedastine difumarate inhibits histamine-induced collagen synthesis in dermal fibroblasts [J]. J Investig Allergol Clin Immunol,2008,18 (4),245-52.
    [98]Cronkhite, J. T. et al. Telomere Shortening in Familial and Sporadic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2008,178 (7),729-737.
    [99]Naotaka, S., Eiichi, K., Keiko, S., Tetsuya, T.& Hideki, O. Effect of mast cell chymase inhibitor on the development of scleroderma in tight skin mice [J]. British Journal of Pharmacology,2005,145 (4),424-431.
    [100]Finotto, S. et al. Local administration of antisense phosphorothioate oligonucleotides to the c-kit ligand, stem cell factor, suppresses airway inflammation and IL-4 production in a murine model of asthma [J]. Journal of Allergy and Clinical Immunology,2001,107 (2),279-286.
    [101]Reber, L., Da Silva, C. A.& Frossard, N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases [J]. European Journal of Pharmacology,2006, 533 (1-3),327-340.
    [1]Brown, K. K.& Raghu, G. Medical treatment for pulmonary fibrosis:current trends, concepts, and prospects [J]. Clinics in chest medicine,2004,25 (4), 759-772.
    [2]Antoniou, K. M., Pataka, A., Bouros, D.& Siafakas, N. M. Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis [J]. Pulmonary Pharmacology & Therapeutics,2007,20 (5),453-461.
    [3]Thannickal, V. J., Toews, G B., White, E. S., Lynch Iii, J. P.& Martinez, F. J. Mechanisms of Pulmonary Fibrosis [J]. Annual Review of Medicine,2004,55 (1), 395-417.
    [4]Flavell, R. A., Sanjabi, S., Wrzesinski, S. H.& Licona-Lim贸n, P. The polarization of immune cells in the tumour environment by TGF beta [J]. Nat Rev Immunol,10 (8),554-567.
    [5]Liu, Y.-Y. et al. Bacillus Calmette-Guerin and TLR4 Agonist Prevent Cardiovascular Hypertrophy and Fibrosis by Regulating Immune Microenvironment [J]. The Journal of Immunology,2008,180 (11),7349-7357.
    [6]Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm [J]. Nat Rev Immunol, 2004,4 (8),583-594.
    [7]Kimura, T. et al. Overexpression of the Transcription Factor GATA-3 Enhances the Development of Pulmonary Fibrosis [J]. The American Journal of Pathology, 2006,169(1),96-104.
    [8]Sumida, A. et al. Th1/Th2 Immune Response in Lung Fibroblasts in Interstitial Lung Disease [J]. Archives of medical research,2008,39 (5),503-510.
    [9]Antoniou, K. M., Ferdoutsis, E.& Bouros, D. Interferons and Their Application in the Diseases of the Lung* [J]. Chest,2003,123 (1),209-216.
    [10]Kotsianidis, I. et al. Global Impairment of CD4+CD25+FOXP3+Regulatory T Cells in Idiopathic Pulmonary Fibrosis [J]. Am. J. Respir. Crit. Care Med.,2009, 179(12),1121-1130.
    [11]Simonian, P. L. et al. Th17-Polarized Immune Response in a Murine Model of Hypersensitivity Pneumonitis and Lung Fibrosis [J]. The Journal of Immunology, 2009,182(1),657-665.
    [12]Walter, N., Collard, H. R.& King, T. E., Jr. Current Perspectives on the Treatment of Idiopathic Pulmonary Fibrosis [J]. Proc Am Thorac Soc,2006,3 (4),330-338.
    [13]Iyer, S. N., Margolin, S. B., Hyde, D. M.& Giri, S. N. Lung Fibrosis is Ameliorated by Pirfenidone Fed in Diet After the Second Dose In A Three-Dose Bleomycin-Hamster Model [J]. Experimental Lung Research,1998,24 (1), 119-133.
    [14]Yang, H.-Z. et al. Targeting TLR2 Attenuates Pulmonary Inflammation and Fibrosis by Reversion of Suppressive Immune Microenvironment [J]. The Journal of Immunology,2009,182 (1),692-702.
    [15]Gasse, P. et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice [J]. The Journal of Clinical Investigation,2007,117 (12),3786-3799.
    [16]Le Cras, T. D. et al. Inhibition of PI3K by PX-866 Prevents Transforming Growth Factor-alpha-induced Pulmonary Fibrosis [J]. The American journal of pathology, 176 (2),679-686.
    [17]Romagnani, S. Immunologic influences on allergy and the TH1/TH2 balance [J]. The Journal of allergy and clinical immunology,2004,113 (3),395-400.
    [18]Mello, L. M. d., Bechara, M. I. S., Sol, D.& Rodrigues, V. TH1ATH2 balance in concomitant immediate and delayed-type hypersensitivity diseases [J]. Immunology Letters,2009,124 (2),88-94.
    [19]Maggi, E. et al. Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Thl and Th2 clones [J]. The Journal of Immunology, 1992,148 (7),2142-2147.
    [20]Wang, Y.-H.& Liu, Y.-J. The 1L-17 cytokine family and their role in allergic inflammation [J]. Current Opinion in Immunology,2008,20 (6),697-702.
    [21]Holgate, S. T., Peters-Golden, M., Panettieri, R. A.& Henderson, W. R. Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling [J]. Journal of Allergy and Clinical Immunology,2003,111 (1, Supplement 1), S18-S36.
    [22]M, J., A, D. B., M, T. N., J, B.& J, G. Effect of histamine on proliferation of normal human adult lung fibroblasts [J]. Thorax,1988,43:(7),552-558.
    [23]Kohyama, T. et al. Histamine stimulates human lung fibroblast migration [J]. Molecular and Cellular Biochemistry.
    [24]Lang, Y.-D., Chang, S.-F., Wang, L.-F.& Chen, C.-M. Chymase mediates paraquat-induced collagen production in human lung fibroblasts [J]. Toxicology Letters,193 (1),19-25.
    [25]Broide, D. H., Smith, C. M.& Wasserman, S. I. Mast cells and pulmonary fibrosis. Identification of a histamine releasing factor in bronchoalveolar lavage fluid [J]. J Immunol,1990,145 (6),1838-1844.
    [26]Fujimoto, K., Kubo, K., Yamaguchi, S., Honda, T.& Matsuzawa, Y. Eosinophil Activation in Patients With Pulmonary Fibrosis [J]. Chest,1995,108 (1),48-54.
    [27]Pesci, A., Bertorelli, G., Gabrielli, M.& Olivieri, D. Mast cells in fibrotic lung disorders [J]. Chest,1993,103 (4),989-996.
    [28]Kazuto, H. et al. Enhanced mast cell chymase expression in human idiopathic interstitial pneumonia [J]. International Journal of Molecular Medicine,2007,19 (4),565-570.
    [29]Sun, J. et al. Critical Role of Mast Cell Chymase in Mouse Abdominal Aortic Aneurysm Formation [J]. Circulation,2009,120 (11),973-982.
    [30]Tao, G., Wen Qiang, C., Cheng, Z., Yu Xia, Z.& Yun, Z. Chymase activity is closely related with plaque vulnerability in a hamster model of atherosclerosis [J]. Atherosclerosis,2009,207 (1),59-67.
    [31]Tomimori, Y. et al. Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice [J]. European Journal of Pharmacology,2003,478 (2-3),179-185.
    [32]Katiyar, S.& Prakash, S. Pharmacological profile, efficacy and safety of rupatadine in allergic rhinitis [J]. Primary Care Respiratory Journal,2009,18 (2), 57-68.
    [33]Picado, C. Rupatadine:pharmacological profile and its use in the treatment of allergic disorders [J]. Expert Opinion on Pharmacotherapy,2006,7 (14), 1989-2001.
    [34]Queralt, M., Brazis, P., Merlos, M., de Mora, F.& Puigdemont, A. In vitro inhibitory effect of rupatadine on histamine and TNF-a release from dispersed canine skin mast cells and the human mast cell line HMC-1 [J]. Inflammation Research,2000,49 (7),355-360.
    [35]Chen, Y., Chen, J., Dong, J.& Liu, W. Antifibrotic effect of interferon gamma in silicosis model of rat [J]. Toxicology Letters,2005,155 (3),353-360.
    [36]Reddy, G. K.& Enwemeka, C. S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues [J]. Clinical Biochemistry,1996,29 (3), 225-229.
    [37]Umezawa, H., Ishizuka, M., Maeda, K.& Takeuchi, T. Studies on bleomycin [J]. Cancer,1967,20(5),891-5.
    [38]Umezawa.H. Chemistry and mechanism of action of bleomycin [J]. Fed Proc, 1974,33 (11),2296-302.
    [39]Muggia, F. M., Louie, A. C.& Sikic, B. I. Pulmonary toxicity of antitumor agents [J]. Cancer Treatment Reviews,1983,10 (4),221-243.
    [40]Swigris, J.& Fairclough, D. Pirfenidone in idiopathic pulmonary fibrosis [J]. European Respiratory Journal,36 (3),695-696.
    [41]Cutroneo, K. R. How is Type Ⅰ procollagen synthesis regulated at the gene level during tissue fibrosis [J]. Journal of Cellular Biochemistry,2003,90 (1),1-5.
    [42]Okamoto, T., Amano, T., Wada, T., Harada, M.& Tanaka, T. Experimental pulmonary fibrosis induced by bleomycin [J]. Igaku To Seiibutsugaku,1970,80 (6),299-301.
    [43]Shofer, S. et al. A micro-CT analysis of murine lung recruitment in bleomycin-induced lung injury [J]. Journal of Applied Physiology,2008,105 (2), 669-677.
    [44]Greenburg, G.& Hay, E. D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells [J]. The Journal of Cell Biology,1982,95 (1),333-339.
    [45]Willis, B. C.& Borok, Z. TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology,2007,293 (3), L525-L534.
    [46]Hinz, B. et al. The myofibroblast:one function, multiple origins [J]. Am J Pathol, 2007,170(6),1807-16.
    [47]Thiery, J. P.& Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions [J]. Nat Rev Mol Cell Biol,2006,7 (2), 131-142.
    [48]Medici, D.& Nawshad, A. Type Ⅰ collagen promotes epithelial-mesenchymal transition through ILK-dependent activation of NF-[kappa]B and LEF-1 [J]. Matrix Biology,29 (3),161-165.
    [49]Kaminski, N. et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(4),1778-1783.
    [50]Lovenberg, T. W. et al. Cloning and Functional Expression of the Human Histamine H3 Receptor [J]. Molecular Pharmacology,1999,55 (6),1101-1107.
    [51]Gauldie, J., Bonniaud, P., Sime, P., Ask, K.& Kolb, M. TGF-beta, Smad3 and the process of progressive fibrosis [J]. Biochemical Society Transactions,2007,035 (4),661-664.
    [52]Luo, Y. et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer [J]. The Journal of Clinical Investigation,2006,116 (8),2132-2141.
    [53]Levine, B.& Kroemer, G. Autophagy in the Pathogenesis of Disease [J]. Cell, 2008,132(1),27-42.
    [54]Hamacher-Brady, A. et al. Response to myocardial ischemia//reperfusion injury involves Bnip3 and autophagy [J]. Cell Death Differ,2006,14 (1),146-157.
    [55]Arimura, A.& M, H. Differential effect of a PAF antagonist CV-3988 on active and passive anaphylactic shock in various mouse strains [J]. Lipids,1991,26 (12), 1386-90.
    [56]Castranova, V.& Vallyathan, V. Silicosis and coal workers'pneumoconiosis [J]. Environ Health Perspect,2000,108 Suppl 4,675-84.
    [57]Borges, V. M. et al. Apoptosis underlies immunopathogenic mechanisms in acute silicosis [J]. Am J Respir Cell Mol Biol,2002,27 (1),78-84.
    [58]Hnizdo, E.& Vallyathan, V. Chronic obstructive pulmonary disease due to occupational exposure to silica dust:a review of epidemiological and pathological evidence [J]. Occup Environ Med,2003,60 (4),237-43.
    [59]Humerfelt, S., Eide, G. E.& Gulsvik, A. Association of years of occupational quartz exposure with spirometric airflow limitation in Norwegian men aged 30-46 years [J]. Thorax,1998,53 (8),649-55.
    [60]du Bois, R. M. Strategies for treating idiopathic pulmonary fibrosis [J]. Nat Rev Drug Discov,9 (2),129-140.
    [61]Iyer, S. et al. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters [J]. J Lab Clin Med,1995,125 (6),779-85.
    [62]Vasiadi, M. et al. Rupatadine Inhibits Proinflammatory Mediator Secretion from Human Mast Cells Triggered by Different Stimuli [J]. International Archives of Allergy and Immunology,151 (1),38-45.
    [63]Bacharier, L. B. et al. Diagnosis and treatment of asthma in childhood:a PRACTALL consensus report [J]. Allergy,2008,63 (1),5-34.
    [64]Murota, H., Bae, S., Hamasaki, Y., Maruyama, R.& Katayama, I. Emedastine difumarate inhibits histamine-induced collagen synthesis in dermal fibroblasts [J]. J Investig Allergol Clin Immunol,2008,18 (4),245-52.
    [65]Takato, H. et al. The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice [J]. Experimental Lung Research,0 (0), null.
    [66]Galli, S. J.& Franco, C. B. Basophils Are Back! [J]. Immunity,2008,28 (4), 495-497.
    [67]Oku, H. et al. Antifibrotic action of pirfenidone and prednisolone:Different effects on pulmonary cytokines and growth factors in bleomiycin-induced murine pulmonary fibrosis [J]. European Journal of Pharmacology,2008,590 (1-3), 400-408.
    [68]Ash, A.& Schild.HO. Receptors mediating some actions of histamine [J]. Br J Pharmacol Chemother,1966,27 (2),427-39.
    [69]Soil, A. H.& Walsh, J. H. Regulation of Gastric Acid Secretion [J]. Annual Review of Physiology,1979,41 (1),35-53.
    [70]Nguyen, T. et al. Discovery of a Novel Member of the Histamine Receptor Family [J]. Molecular Pharmacology,2001,59 (3),427-433.
    [71]Thurmond, R. L., Gelfand, E. W.& Dunford, P. J. The role of histamine H1 and H4 receptors in allergic inflammation:the search for new antihistamines [J]. Nat Rev Drug Discov,2008,7 (1),41-53.
    [72]Thurmond, R. L. et al. A Potent and Selective Histamine H4 Receptor Antagonist with Anti-Inflammatory Properties [J]. Journal of Pharmacology and Experimental Therapeutics,2004,309 (1),404-413.
    [73]Bakker, R. A., Schoonus, S. B. J., Smit, M. J., Timmerman, H.& Leurs, R. Histamine HI-Receptor Activation of Nuclear Factor-kappa B:Roles for G beta gamma-and G alpha q/11-Subunits in Constitutive and Agonist-Mediated Signaling [J]. Molecular Pharmacology,2001,60 (5),1133-1142.
    [74]Ahluwalia, P., Anderson, D. F., Wilson, S. J., McGill, J. I.& Church, M. K. Nedocromil sodium and levocabastine reduce the symptoms of conjunctival allergen challenge by different mechanisms [J]. The Journal of allergy and clinical immunology,2001,108 (3),449-454.
    [75]Hill, S. J. et al. International Union of Pharmacology. ⅩⅢ. Classification of Histamine Receptors [J]. Pharmacological Reviews,1997,49 (3),253-278.
    [76]Okamoto, T., Iwata, S., Ohnuma, K., Dang, N. H.& Morimoto, C. Histamine HI-receptor antagonists with immunomodulating activities:potential use for modulating T helper type 1 (Th1)/Th2 cytokine imbalance and inflammatory responses in allergic diseases [J]. Clinical & Experimental Immunology,2009, 157(1),27-34.
    [77]Munakata et al. Specific inhibition of TH2-type cytokine production from human peripheral T cells by terfenadine in vitro [J]. Clinical & Experimental Allergy, 1999,29(9),1281-1286.
    [78]Nori, M. et al. Ebastine inhibits T cell migration, production of Th2-type cytokines and proinflammatory cytokines [J]. Clinical & Experimental Allergy, 2003,33(11),1544-1554.
    [79]Albanesi, Pastore, Fanales, B.& Girolomoni. Cetirizine and hydrocortisone differentially regulate ICAM-1 expression and chemokine release in cultured human keratinocytes [J]. Clinical & Experimental Allergy,1998,28 (1),101-109.
    [80]Iida, H. et al. Regulatory effects of antihistamines on the responses to staphylococcal enterotoxin B of human monocyte-derived dendritic cells and CD4+ T cells [J]. Journal of dermatological science.
    [81]Hung, C.-H. et al. Suppressive effects of ketotifen on Th1- and Th2- related chemokines of monocytes [J]. Pediatric Allergy and Immunology,2007,18 (5), 378-384.
    [82]McCall, C.& O'Flaherty, J. Platelet-activating factor and lung [J]. Pulmonary fibrosis,ed. SH Phan, RS THrall,1995,675-713.
    [83]Pendino, K. J., Gardner, C. R., Laskin, J. D.& Laskin, D. L. Induction of functionally active platelet-activating factor receptors in rat alveolar macrophages [J]. Journal of Biological Chemistry,1993,268 (26),19165-19168.
    [84]Zampeli, E.& Tiligada, E. The role of histamine H4 receptor in immune and inflammatory disorders [J]. British Journal of Pharmacology,2009,157 (1), 24-33.
    [85]Gutzmer, R. et al. The histamine H4 receptor is functionally expressed on TH2 cells [J]. The Journal of allergy and clinical immunology,2009,123 (3),619-625.
    [86]Wu, Z. et al. Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse [J]. Respir Res,2007,8(1).
    [87]Cowden, J., Riley, J., Ma, J., Thurmond, R.& Dunford, P. Histamine H4 receptor antagonism diminishes existing airway inflammation and dysfunction via modulation of Th2 cytokines [J]. Respiratory Research,11 (1),86.
    [88]Dunford, P. J. et al. The Histamine H4 Receptor Mediates Allergic Airway Inflammation by Regulating the Activation of CD4+T Cells [J]. The Journal of Immunology,2006,176 (11),7062-7070.
    [89]Gutzmer, R. et al. Histamine H4 Receptor Stimulation Suppresses IL-12p70 Production and Mediates Chemotaxis in Human Monocyte-Derived Dendritic Cells [J]. The Journal of Immunology,2005,174 (9),5224-5232.
    [90]Gantner, F. et al. Histamine H4 and H2 Receptors Control Histamine-Induced Interleukin-16 Release from Human CD8+T Cells [J]. Journal of Pharmacology and Experimental Therapeutics,2002,303 (1),300-307.
    [91]Dijkstra, D. et al. Histamine downregulates monocyte CCL2 production through the histamine H4 receptor [J]. The Journal of allergy and clinical immunology, 2007,120 (2),300-307.
    [92]Dijkstra, D. et al. Human Inflammatory Dendritic Epidermal Cells Express a Functional Histamine H4 Receptor [J]. J Invest Dermatol,2008,128 (7), 1696-1703.
    [93]Kopinski, P. et al. Cytoimmunologic changes in material obtained from bronchoalveolar lavage (BAL) in asymptomatic individuals chronically exposed to silica dust [J]. Pneumonol Alergol Pol,2000,68 (3-4),109-19.
    [94]Hamada, H. et al. Mast Cell Basic Fibroblast Growth Factor in Silicosis [J]. Am. J. Respir. Crit. Care Med.,2000,161 (6),2026-2034.
    [95]Kazuto, H. et al. Enhanced mast cell chymase expression in human idiopathic interstitial pneumonia [J]. International Journal of Molecular Medicine 2007,19 (4),565-570.
    [96]Inoue, Y., King, T. E., Jr., Tinkle, S. S., Dockstader, K.& Newman, L. S. Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders [J]. Am J Pathol,1996,149 (6),2037-2054.
    [97]Mu, R., Xu DM& ZG., L. Mast cells and fibroblast-like synoviocytes co-culture increases interleukin-6 secretion in rheumatoid arthritis [J]. Zhonghua Yi Xue Za Zhi,2008,88 (17),1202-5.
    [98]Azzawi, M., Johnston, P., Majumdar, S., Kay, A.& PK, J. T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. [J]. Am Rev Respir Dis,1992,145 (6),1477-82.
    [99]Barron, S., Ramis, I., Garcia Rafanell, J.& M, M. Inhibitory activity of rupatadine on pro-inflamatory cytokine production, relationship with binding affinity [J]. Methods Find Clin Pharmacol,2005,27 (161).
    [100]Gibbs, B. F. et al. Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation [J]. European Journal of Immunology,1996,26 (10),2493-2498.
    [101]Oh, K., Shen, T, Le Gros, G.& Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils [J]. Blood, 2007,109 (7),2921-2927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700