骨髓增生异常综合征患者线粒体Mitoferrin-1/-2、ABCB10的表达与其铁超载的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的通过对骨髓增生异常综合征(myelodysplastic syndromes,MDS)患者Mitoferrin-1、Mitoferrin-2和ABCB10在基因水平和蛋白水平的表达研究,揭示MDS患者线粒体铁超载的原因,探讨线粒体铁代谢异常在MDS发病中的作用,为祛铁治疗MDS提供依据。
     研究对象和方法
     1.选择MDS初诊患者(成人23例和儿童8例)为实验组,免疫性血小板减少症(ITP)初诊患者(成人12例和儿童8例)为本实验的近似健康对照组。实验组入选标准参照WHO(2008)MDS诊断分型,且要求未行输注红细胞和祛铁治疗;实验组和对照组均排除其它血液系统疾病、严重感染、甲状腺功能亢进等铁代谢异常的疾病。
     2.用无菌注射器分别抽取实验组和对照组的骨髓液,迅速涂片数张,后再抽取骨髓液各2-4ml,并迅速打入EDTA抗凝管中。
     3.分别抽取实验组和对照组清晨空腹静脉血各3ml,肝素抗凝,送至我院生化室检测血清铁代谢指标。
     4.分别对实验组和对照组骨髓细胞涂片行铁染色,光学显微镜下观察骨髓细胞外铁、内铁的分布,记录并采集图像保存。
     5.应用密度梯度离心法分离骨髓单个核细胞,并分装2管分别用于总RNA和蛋白的提取,于-80℃保存。
     6.参照Trizol试剂说明书提取骨髓单个核细胞中总RNA,检测RNA的纯度及完整性;应用Fermentas第一链反转录试剂盒合成cDNA;采用Real-time PCR测定Mitoferrin-1mRNA. Mitoferrin-2mRNA和ABCB10mRNA的表达。
     7.使用RIPA裂解液提取骨髓单个核细胞中总蛋白,应用Western Blot分别测定Mitoferrin-1. Mitoferrin-2和ABCB10蛋白的表达。
     结果
     1.成人MDS患者Mitoferrin-1mRNA、Mitoferrin-2mRNA和ABCB10mRNA的表达与对照组比较均无明显统计学差异(P>0.05)。
     2.(1)成人低危组即MDS-RA、MDS-RARS患者Mitoferrin-1蛋白的表达高于对照组,差异有统计学意义(P<0.001);(2)高危组RAEB患者Mitoferrin-1蛋白的表达与对照组比较,差异无统计学意义(P>0.05);(3)RARS患者Mitoferrin-1蛋白的表达高于RA,差异有统计学意义(P<0.001)(4)MDS患者Mitoferrin-2蛋白的表达与对照组比较,差异无统计学意义(P>0.05);(5)低危组ABCB10蛋白的表达高于对照组,差异有统计学意义(P<0.001);(6)高危组ABCB10蛋白的表达与对照组比较,差异无统计学意义(P>0.05);(7)RARS患者ABCB10蛋白的表达高于RA,差异有统计学意义(P<0.001)。
     3.MDS患儿Mitoferrin-1mRNA. Mitoferrin-2mRNA和ABCB10mRNA的表达与对照组比较均无明显统计学差异(P>0.05)。
     4.(1)2例RA患儿Mitoferrin-1蛋白的表达均高于对照组;(2)RAEB患儿Mitoferrin-1蛋白的表达与对照组相比,差异无统计学意义(P>0.05);(3)MDS患儿Mitoferrin-2蛋白的表达与对照组相比,差异无统计学意义(P>0.05);(4)2例RA患儿ABCB10蛋白的表达均高于对照组;(5)RAEB患儿ABCB10蛋白的表达与对照组相比,差异无统计学意义(P>0.05)。
     结论
     1.MDS患者Mitoferrin-1和ABCB10在基因水平上的表达较对照均无明显增高,但在蛋白水平上的表达呈现出异质性,低危组(RA、RARS)表达高于对照组,高危组(RAEB)与对照组相比无明显增高。
     2.MDS患者Mitoferrin-2在基因和蛋白水平上的表达较对照均无明显增高。
     3.MDS患者Mitoferrin-1的表达可能受转录后的调节,在ABCB10介导下不适当的稳定性的增加可能参与了部分MDS(尤其是RARS)患者线粒体铁超载的发生。
     4. Mitoferrin-2可能与MDS线粒体铁超载的发生无关。
Objective
     The aim is to study the expressions of Mitoferrin-1,Mitoferrin-2and ABCB10at the gene and protein level respectively in patients with myelodysplastic syndromes(MDS),in order to reveal the reasons for mitochondrial iron overload in MDS patients,to explore the role of mitochondrial iron metabolism abnormalities in the pathogenesis of MDS,and to provide the basis for iron chelation therapy.
     Object and Methods
     1. To select newly diagnosed MDS patients (23cases of adults and8cases of children) for the experimental roup,immune thrombocytopenia (ITP) of newly diagnosed patients (12adults and8children) as the similar healthy control group of this experiment. The inclusion criteria of experimental group refered to the2008World Health Organization (WHO) reclassification of myelodysplastic syndromes (MDS). To be enrolled in this study,patients had to be previously untreated with red blood cell transfusions and iron chelating agents.The experimental and control group were excluded from other blood diseases,severe infection,thyroid hyperfunction and others with abnormal iron metabolism.
     2. To extract bone marrow fluid from the experimental group and the control group with sterile syringe,smear a few pieces quickly,extract each2-4ml of bone marrow fluid again and put into EDTA anticoagulant tube fastly.
     3. Each3ml of fasting venous blood was extracted from the experimental and control group in the early morning,anticoagulant with heparin and sent to the biochemistry department of our hospital to detect serum iron metabolism indicators.
     4. Bone marrow smears of the experimental and control group were done with iron staining respectively.To observe the distributions of extracellular iron and intracellular iron,record and capture images to save.
     5. To separate bone marrow mononuclear cells by density gradient centrifugation, distribute into2tubes for the extraction of total RNA and protein,and store them at-80℃.
     6. To extract the total RNA from bone marrow mononuclear cells with reference to the Trizol reagent manual,detect the purity and integrity of the extracted RNA.To synthesize the cDNA by applying Fermentas first strand reverse transcription kit. To detect the expressions of Mitoferrin-1,Mitoferrin-2and ABCB10mRNA by real-time PCR.
     7. To extract the total protein from bone marrow mononuclear cells using RIPA lysis buffer. To detect the expressions of Mitoferrin-1,Mitoferrin-2and ABCB10protein by Western Blot.
     Results
     1. The expressions of Mitoferrin-1mRNA,Mitoferrin-2mRNA and ABCB10mRNA in adult MDS patients compared with the control group showed no statistically significant difference (P>0.05).
     2.(1)The expression of Mitoferrin-1protein in adult low-risk MDS(RA and RARS) was higher than the control group,and the difference was statistically significant (P<0.001);(2) the expression of Mitoferrin-1protein in high-risk MDS(RAEB) compared with the control group showed no statistically significant difference (P>0.05);(3) the expression of Mitoferrin-1protein in RARS was higher than RA,and the difference was statistically significant (P<0.001);(4) the expression of Mitoferrin-2protein in MDS patients compared with the control group showed no statistically significant difference (P>0.05);(5) the expression of ABCB10protein in low-risk MDS was higher than the control group,and the difference was statistically significant (P<0.001);(6) the expression of ABCB10protein in high-risk MDS compared with the control group showed no statistically significant difference (P>0.05).(7) the expression of ABCB10protein in RARS was higher than RA,and the difference was statistically significant (P<0.001).
     3. The expressions of Mitoferrin-1mRNA,Mitoferrin-2mRNA and ABCB10mRNA in MDS children compared with the control group showed no statistically significant difference (P>0.05).
     4.(1)The expression of Mitoferrin-1protein in2cases of RA children was higher than the control group;(2) the expression of Mitoferrin-1protein in RAEB children compared with the control group showed no statistically significant difference (P>0.05);(3) the expression of Mitoferrin-2protein in MDS children compared with the control group showed no statistically significant difference (P>0.05);(4) the expression of ABCB10protein in2cases of RA children was higher than the control group;(5) the expression of ABCB10protein in RAEB children compared with the control group showed no statistically significant difference (P>0.05).
     Conclusion
     1. The expressions of Mitoferrin-1and ABCB10in MDS were not significantly higher than the control at the gene level.The expressions of Mitoferrin-1and ABCB10in MDS showed heterogeneity at the protein level,higher than the control in low-risk group (RA, RARS), no significantly higher than the control in high-risk group(RAEB).
     2. The expression of Mitoferrin-2in MDS was not significantly higher than the control at both gene and protein level.
     3. The expression of Mitoferrin-1in MDS may be regulated by post-transcriptional mechanism.The inappropriate increased stabilization of Mitoferrin-1mediated by ABCB10may be involved in the occurrence of mitochondrial iron overload in some patients of MDS(especially RARS).
     4. Mitoferrin-2may not be responsible for the occurrence of mitochondrial iron overload in MDS.
引文
[1]Passmore SJ, Chessells JM, Kempski H, Hann IM, Brownbill PA, Stiller CA. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK:a population-based study of incidence and survival[J]. Br J Haematol,2003;121(5): 758-67.
    [2]Hasle H, Niemeyer CM, Chessells JM, Baumann I, Bennett JM, Kerndrup G, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases[J]. Leukemia,2003;17(2):277-82.
    [3]Cazzola M, Barosi G, Berzuini C, et al.Quantitative evaluation of erythropoietic activity in dysmyelopoietic syndromes[J]. Br J Haematol.1982;50(1):55-62.
    [4]Greenberg PL, Young NS, Gattermann N. Myelodysplastic syndromes[J]. Hematology Am Soc Hematol Educ Program,2002:136-61.
    [5]Cazzola M, Invernizzi R, Bergamaschi G, et al. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia[J]. Blood.2003;101(5):1996-2000.
    [6]Chen W, Paradkar PN, Li L, et al. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria[J]. Proc NatI Acad Sci U S A.2009;106(38):16263-8.
    [7]Cuijpers ML, Raymakers RA, Mackenzie MA, et al. Recent advances in the understanding of iron overload in sideroblastic myelodysplastic syndrome[J]. Br J Haematol. 2010;149(3):322-33.
    [8]Coftelezzi A, Cattaneo C, Cristiani S,et al.Non-transferrin-bound iron in myelodysplastic syndromes:a marker of ineffective erythropoiesis? [J]. Hematol J.2000; 1(3):153-8.
    [9]Jacobs A. Primary acquired sideroblastic anaemia[J]. Br J Haematol.1986;64(3):415-8.
    [10]Bessho F, Ohnishi H, Tabuchi K, et al. Significance of electron-dense deposits in the mitochondrial matrix of erythroid precursors in aplastic anaemia and myelodysplastic syndrome[J]. BrJ Haematol.1999;105(1):149-54.
    [11]Reddy PL, Shetty VT, Dutt D, et al.Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes[J]. Br J Haematol. 2002;116(3):564-75.
    [12]Grasso JA, Myers TJ, Hines JD, et al. Energy-dispersive X-ray analysis of the mitochondria of sideroblastic anaemia[J]. Br J Haematol.1980;46(1):57-72.
    [13]Steensma DP, Hecksel KA, Porcher JC,et al. Candidate gene mutation analysis in idiopathic acquired sideroblastic anemia (refractory anemia with ringed sideroblasts) [J]. Leuk Res.2007;31(5):623-8.
    [14]Pellagatti A, Cazzola M, Giagounidis AA, et al. Gene expression profiles of CD34+cells in myelodysplastic syndromes:involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype[J]. Blood.2006;108(1):337-45.
    [15]Gattermann N. From sideroblastic anemia to the role of mitochondrial DNA mutations in myelodysplastic syndromes[J]. Leuk Res.2000;24(2):141-51.
    [16]Rodriguez-Manzaneque MT, Tamarit J, Belli G, et al. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes[J]. Mol Biol Cell.2002;13(4):1109-21.
    [17]Wingert RA, Galloway JL, Barut B, et al. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis[J]. Nature.2005;436(7053):1035-39.
    [18]Ye H, Jeong SY, Ghosh MC, et al. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts[J]. J Clin Invest.2010;120(5):1749-61.
    [19]Shimada Y, Okuno S, Kawai A, et al. Cloning and chromosomal mapping of a novel ABC transporter gene (hABC7), a candidate for X-linked sideroblastic anemia with spinocerebellar ataxia[J]. J Hum Genet.1998;43(2):115-22.
    [20]Cavadini P, Biasiotto G, Poli M, et al. RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload[J]. Blood.2007;109(8):3552-9.
    [21]Boultwood J, Pellagatti A, Nikpour M,et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS One.2008;3(4):e1970.
    [22]Lange H, Kispal G, Lill R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria[J]. J Biol Chem.1999;274(27):18989-96.
    [23]Shvartsman M, Kikkeri R, Shanzer A, et al. Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism:biological and clinical implications[J]. Am J Physiol Cell Physiol.2007;293(4):C1383-94.
    [24]Sheftel AD, Zhang AS, Brown C, et al. Direct interorganellar transfer of iron from endosome to mitochondrion[J]. Blood.2007;110(1):125-32.
    [25]Foury F, Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain[J]. J Biol Chem.2002;277(27):24475-83.
    [26]Froschauer EM, Schweyen RJ, Wiesenberger G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane[J]. Biochim Biophys Acta.2009;1788(5):1044-50.
    [27]Paradkar PN, Zumbrennen KB, Paw BH, et al. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2[J]. Mol Cell Biol. 2009;29(4):1007-16.
    [28]Shirihai OS, Gregory T, Yu C,et al. ABC-me:a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation[J].EMBO J.2000;19(11):2492-502.
    [29]Shaw GC, Cope JJ, Li L, et al. Mitoferrin is essential for erythroid iron assimilation[J]. Nature.2006;440(7080):96-100.
    [30]Wang Y, Langer NB, Shaw GC, et al.Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria[J]. Exp Hematol.2011;39(7):784-94.
    [31]Raza A, Gezer S, Mundle S, et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes[J].Blood. 1995;86(1):268-76.
    [32]Hellstrom-Lindberg E, Kanter-Lewensohn L, Ost A. Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin[J]. Leuk Res.1997;21(5):415-25.
    [33]Hellstrom-Lindberg E, Schmidt-Mende J, Forsblom AM, et al. Apoptosis in refractory anaemia with ringed sideroblasts is initiated at the stem cell level and associated with increased activation of caspases[J]. Br J Haematol.2001;112(3):714-26.
    [34]Barrett J, Saunthararajah Y, Molldrem J. Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? [J]. Semin Hematol. 2000;37(1):15-29.
    [35]Tehranchi R, Invernizzi R, Grandien A, et al. Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes[J]. Blood.2005;106(1):247-53.
    [36]Campanella A, Isaya G, O'Neill HA, et al. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast[J]. Hum Mol Genet. 2004;13(19):2279-88.
    [37]Campanella A, Rovelli E, Santambrogio P, et al.Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability:hypothesis for a protective role in Friedreich ataxia[J]. Hum Mol Genet.2009;18(1):1-11.
    [38]Santambrogio P, Erba BG, Campanella A, et al. Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation[J]. Haematologica.2011;96(10):1424-32.
    [1]聂玲,李磷,杨艺红等.骨髓增生异常综合征患者铁代谢状况及其对预后的影响[J].中华血液学杂志,2009,30(1):50-53.
    [2]中华医学会血液学分会/中国医师协会血液科医师分会.铁过载诊断与治疗的中国专家共识[J].中华血液学杂志,2011,32(8):572-574.
    [3]Malcovati L, Della Porta MG, Cazzola M.Predicting survival and leukemic evolution in patients with myelodysplastic syndrome[J]. Haematologica.2006;91(12):1588-90.
    [4]Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes[J]. Br J Haematol.1982 Jun; 51(2):189-99.
    [5]Juneja SK, Imbert M, Sigaux F, et al. Prevalence and distribution of ringed sideroblasts in primary myelodysplastic syndromes[J]. J Clin Pathol.1983 May;36(5):566-9.
    [6]Gattermann N, Aul C, Schneider W. Is acquired idiopathic sideroblastic anemia (AISA) a disorder of mitochondrial DNA? [J]. Leukemia.1993 Dec;7(12):2069-76.
    [7]Greenberg PL, Young NS, Gattermann N. Myelodysplastic syndromes[J].ematology Am Soc Hematol Educ Program,2002:136-61.
    [8]Jacobs A, Bowen DT. Pathogenesis and evolution of refractory anaemia[G]. In:Mufti GJ, Galton DAG, eds. The Myelodysplastic Syndromes. Edinburgh:Churchill Livingstone; 1992:33-53.
    [9]Cartwright GE, Deiss A. Sideroblasts, siderocytes, and sideroblastic anemia[J]. N Engl J Med.1975 Jan 23; 292(4):185-93.
    [10]Jacobs A.Primary acquired sideroblastic anaemia[J].Br J Haematol.1986 Nov;64(3):415-8.
    [11]Bessho F, Ohnishi H, Tabuchi K, et al. Significance of electron-dense deposits in the mitochondrial matrix of erythroid precursors in aplastic anaemia and myelodysplastic syndrome[J]. BrJ Haematol.1999 Apr;105(1):149-54.
    [12]van de Loosdrecht AA, Brada SJ, Blom NR, et al. Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis[J]. Leuk Res.2001 May;25(5):385-93.
    [13]Reddy PL, Shetty VT, Dutt D, et al.Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes[J]. Br J Haematol. 2002 Mar;116(3):564-75.
    [14]Grasso JA, Myers TJ, Hines JD, et al. Energy-dispersive X-ray analysis of the mitochondria of sideroblastic anaemiafJ]. Br J Haematol.1980;46(1):57-72.
    [15]Cazzola M, Invernizzi R, Bergamaschi G, et al. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia[J].Blood.20031; 101(5):1996-2000.
    [16]Sanz GF, Sanz MA, Vallespi T, et al. Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes:a multivariate analysis of prognostic factors in 370 patients[J]. Blood.1989;74(1):395-408.
    [17]Porter JB. Practical management of iron overload[J]. Br J Haematol.2001;115(2):239-52.
    [18]Park S, Grabar S, Kelaidi C, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF:the GFM experience[J]. Blood.200815;111(2):574-82.
    [19]Grootveld M, Bell JD, Halliwell B, et al.Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy[J]. J Biol Chem. 198915;264(8):4417-22.
    [20]Breuer W, Greenberg E, Cabantchik ZI. Newly delivered transferrin iron and oxidative cell injury[J]. FEBS Lett.1997 17;403(2):213-9.
    [21]Herbison CE, Thorstensen K, Chua AC, et al.The role of transferrin receptor 1 and 2 in transferrin-bound iron uptake in human hepatoma cells[J]. Am J Physiol Cell Physiol. 2009;297(6):C1567-75.
    [22]Liuzzi JP, Aydemir F, Nam H,et al.Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells[J]. Proc Natl Acad Sci U S A.2006;103(37):13612-7.
    [23]Koury MJ, Ponka P. New insights into erythropoiesis:the roles of folate,vitamin B12, and iron[J]. Annu Rev Nutr.2004;24:105-31.
    [24]Smith DW. The molecular biology of mammalian hemoglobin synthesis[J]. Ann Clin Lab Sci.1980 Mar-Apr; 10(2):116-22.
    [25]Miller JL, Njoroge JM, Gubin AN, et al. Prospective identification of erythroid elements in cultured peripheral blood[J]. Exp Hematol.1999 Apr;27(4):624-9.
    [26]Hemmaplardh D, Morgan EH. The role of endocytosis in transferrin uptake by reticulocytes and bone marrow cells[J]. Br J Haematol.1977 May;36(1):85-96.
    [27]Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling[J]. Nat Rev Mol Cell Biol.2009 Sep;10(9):597-608.
    [28]Schranzhofer M, Schifrer M, Cabrera JA, et al.Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis[J]. Blood. 2006 May 15;107(10):4159-67.
    [29]Ahn J, Johnstone RM. Origin of a soluble truncated transferrin receptor[J].Blood.1993 May 1;81(9):2442-51.
    [30]Cortelezzi A, Cattaneo C, Cristiani S,et al.Non-transferrin-bound iron in myelodysplastic syndromes:a marker of ineffective erythropoiesis? [J]. Hematol J.2000;1(3):153-8.
    [31]Cazzola M, Barosi G, Berzuini C, et al.Quantitative evaluation of erythropoietic activity in dysmyelopoietic syndromes[J]. Br J Haematol.1982;50(1):55-62.
    [32]Lacombe C, Da Silva JL, Bruneval P, et al. Erythropoietin:sites of synthesis and regulation of secretion[J]. Am J Kidney Dis.1991 Oct;18(4 Suppl 1):14-9.
    [33]Semenza GL. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis[J]. Blood.2009 Sep 3;114(10):2015-9.
    [34]Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation[J]. J Clin Invest.2002 Oct;110(7):1037-44.
    [35]Munoz M, Villar I, Garcia-Erce JA. An update on iron physiology [J]. World J Gastroenterol.2009 Oct 7;15(37):4617-26.
    [36]Di Matteo R, Liuzza F, Manicone PF, et al. Bone and maxillofacial abnormalities in thalassemia:a review of the literature[J]. J Biol Regul Homeost Agents.2008 Oct-Dec;22(4):211-6.
    [37]Aizawa S, Kohdera U, Hiramoto M, et al. Ineffective erythropoiesis in the spleen of a patient with pyruvate kinase deficiency[J]. Am J Hematol.2003 Sep;74(1):68-72.
    [38]Peslova G, Petrak J, Kuzelova K, et al.Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood[J]. Blood.2009 11;113(24):6225-36.
    [39]Krause A, Neitz S, Magert HJ,et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity[J]. FEBS Lett.2000 1;480(2-3):147-50.
    [40]Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem.200116;276(11):7806-10.
    [41]Nicolas G, Bennoun M, Devaux I, et al.Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice[J]. Proc Natl Acad Sci U S A.200117;98(15):8780-5. Epub 2001 Jul 10.
    [42]Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis[J]. Nat Genet.2003;33(1):21-2.
    [43]Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science.2004 17;306(5704):2090-3.
    [44]De Domenico I, Ward DM, Nemeth E, et al. The molecular basis of ferroportin-linked hemochromatosis[J]. Proc Natl Acad Sci U S A.2005 21;102(25):8955-60.
    [45]De Domenico I, Ward DM, Langelier C, et al. The molecular mechanism of hepcidin-mediated ferroportin down-regulation[J]. Mol Biol Cell.2007;18(7):2569-78.
    [46]Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango:regulation of Mammalian iron metabolism[J]. Cell.2010 9;142(1):24-38.
    [47]Ganz T, Nemeth E. Hepcidin and disorders of iron metabolism[J]. Annu Rev Med.2011;62:347-60.
    [48]Kroot JJ, Kemna EH, Bansal SS, et al. Results of the first international round robin for the quantification of urinary and plasma hepcidin assays:need for standardization[J].Haematologica.2009;94(12):1748-52.
    [49]Castagna A, Campostrini N, Zaninotto F, et al. Hepcidin assay in serum by SELDI-TOF-MS and other approaches[J]. J Proteomics.2010 3;73(3):527-36.
    [50]Winder A, Lefkowitz R, Ghoti H, et al.Urinary hepcidin excretion in patients with myelodysplastic syndrome and myelofibrosis[J]. Br J Haematol.2008;142(4):669-71.
    [51]Murphy PT, Mitra S, Gleeson M, et al. Urinary hepcidin excretion in patients with low grade myelodysplastic syndrome[J]. Br J Haematol.2009;144(3):451-2.
    [52]Santini V, Girelli D, Sanna A, et al. Hepcidin levels and their determinants in different types of myelodysplastic syndromes[J]. PLoS One.2011;6(8):e23109.
    [53]Swinkels DW, Girelli D, Laarakkers C, et al. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry[J]. PLoS One.2008 16;3(7):e2706.
    [54]Campostrini N, Castagna A, Zaninotto F,et al. Evaluation of hepcidin isoforms in hemodialysis patients by a proteomic approach based on SELDI-TOF MS[J]. J Biomed Biotechnol.2010;2010:329646.
    [55]Mariani R, Pelucchi S, Pozzi M, et al. Reduced expression of hepcidin in patients with myelodysplastic syndrome and myelofibrosis:the causes might be more heterogeneous than in thalassaemia[J]. Br J Haematol.2008;143(5):746-7.
    [56]Lawton LN, Bonaldo MF, Jelenc PC, et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta[J]. Gene1997;203:17-26.
    [57]Tan M, Wang Y, Guan K, et al. PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway[J]. Proc Natl Acad Sci U S A.2000 4;97(1):109-14.
    [58]Whitman M. Smads and early developmental signaling by the TGFbeta superfamily[J].Genes Dev.1998 Aug 15;12(16):2445-62.
    [59]Bauskin AR, Brown DA, Junankar S,et al. The propeptide mediates formation of stromal stores of PROMIC-1:role in determining prostate cancer outcome[J]. Cancer Res.2005 Mar 15;65(6):2330-6.
    [60]Tanno T, Bhanu NV, Oneal PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin[J]. Nat Med.2007;13(9):1096-101.
    [61]Brown DA, Ward RL, Buckhaults P, et al. MIC-1 serum level and genotype:associations with progress and prognosis of colorectal carcinoma[J].Clin Cancer Res. 2003;9(7):2642-50.
    [62]Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure[J].J Am Coll Cardiol.2007 11;50(11):1054-60.
    [63]Tamary H, Shalev H, Perez-Avraham G,et al. Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I[J]. Blood.2008 15;112(13):5241-4.
    [64]Finkenstedt A, Bianchi P, Theurl I, et al. Regulation of iron metabolism through GDF15 and hepcidin in pyruvate kinase deficiency[J]. BrJ Haematol.2009;144(5):789-93.
    [65]Ramirez JM, Schaad O, Durual S, et al. Growth differentiation factor 15 production is necessary for normal erythroid differentiation and is increased in refractory anaemia with ring-sideroblasts[J]. Br J Haematol.2009; 144(2):251-62.
    [66]Kanda J, Mizumoto C, Kawabata H, et al.Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation[J]. Haematologica.2008;93(10):1550-4.
    [67]Ashby DR, Gale DP, Busbridge M, et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin[J].Haematologica. 2010;95(3):505-8.
    [68]Tanno T, Noel P, Miller JL. Growth differentiation factor 15 in erythroid health and disease[J]. Curr Opin Hematol.2010 May;17(3):184-90.
    [69]Pippard MJ, Callender ST, Warner GT,et al. Iron absorption and loading in beta-thalassaemia intermedia[J]. Lancet.1979 20;2(8147):819-21.
    [70]Kemna EH, Kartikasari AE, van Tits LJ, et al Regulation of hepcidin:insights from biochemical analyses on human serum samples[J]. Blood Cells Mol Dis. 2008;40(3):339-46.
    [71]Santini V, Girelli D, Sanna A, et al. Hepcidin levels and their determinants in different types of myelodysplastic syndromes[J]. PLoS One.2011;6(8):e23109.
    [72]Tanno T, Porayette P, Sripichai O, et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells[J]. Blood.2009 2;114(1):181-6.
    [73]Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis[J]. Nat Genet.1996;13(4):399-408.
    [74]Gao J, Chen J, Kramer M, et al. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression[J]. Cell Metab.2009;9(3):217-27.
    [75]Corradini E, Garuti C, Montosi G, et al. Bone morphogenetic protein signaling is impaired in an HFE knockout mouse model of hemochromatosis[J].Gastroenterology. 2009;137(4):1489-97.
    [76]Yaouanq J, Grosbois B, Jouanolle AM, et al. Haemochromatosis Cys282Tyr mutation in pyridoxine-responsive sideroblastic anaemia[J]. Lancet.199717;349(9063):1475-6.
    [77]Melis MA, Cau M, Deidda F, et al. H63D mutation in the HFE gene increases iron overload in beta-thalassemia carriers[J]. Haematologica.2002;87(3):242-5.
    [78]Varkonyi J, Tarkovacs G, Karadi 1, et al. High incidence of hemochromatosis gene mutations in the myelodysplastic syndrome:the Budapest Study on 50 patients[J]. Acta Haematol.2003;109(2):64-7.
    [79]Nearman ZP, Szpurka H, Serio B, et al. Hemochromatosis-associated gene mutations in patients with myelodysplastic syndromes with refractory anemia with ringed sideroblasts[J]. Am JHematol.2007;82(12):1076-9.
    [80]聂玲,艾晓非,郑以州等.中国健康正常人、骨髓增生异常综合征及再生障碍性贫血患者HFE基因突变的研究[J].中华血液学杂志,2009;30(4):223-228.
    [81]Feeney GP, Carter K, Masters GS, et al. Changes in erythropoiesis in hereditary hemochromatosis are not mediated by HFE expression in nucleated red cells[J]. Haematologica.2005;90(2):180-7.
    [82]Malcovati L, Porta MG, Pascutto C, et al.Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria:a basis for clinical decision making[J]. J Clin Oncol.2005;23(30):7594-603.
    [83]Malcovati L. Impact of transfusion dependency and secondary iron overload on the survival of patients with myelodysplastic syndromes[J]. Leuk Res.2007;31 Suppl 3:S2-6.
    [84]Takatoku M, Uchiyama T, Okamoto S, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality[J]. Eur J Haematol.2007;78(6):487-94.
    [85]Buja LM, Roberts WC. Iron in the heart. Etiology and clinical significance[J]. Am J Med. 1971;51(2):209-21.
    [86]Delea TE, Hagiwara M, Phatak PD. Retrospective study of the association between transfusion frequency and potential complications of iron overload in patients with myelodysplastic syndrome and other acquired hematopoietic disorders[J]. Curr Med Res Opin.2009;25(1):139-47.
    [87]Konen E, Ghoti H, Goitein O,et al. No evidence for myocardial iron overload in multitransfused patients with myelodysplastic syndrome using cardiac magnetic resonance T2 technique[J]. Am J Hematol.2007;82(11):1013-6.
    [88]Di Tucci AA, Matta G, Deplano S, et al. Myocardial iron overload assessment by T2* magnetic resonance imaging in adult transfusion dependent patients with acquired anemias[J].Haematologica.2008;93(9):1385-8.
    [89]Chacko J, Pennell DJ, Tanner MA, et al. Myocardial iron loading by magnetic resonance imaging T2* in good prognostic myelodysplastic syndrome patients on long-term blood transfusions[J]. BrJ Haematol.2007;138(5):587-93.
    [90]Jensen PD, Jensen FT, Christensen T, et al.Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine:indication of close relation between myocardial iron content and chelatable iron pool[J]. Blood. 2003;101(11):4632-9.
    [91]Sanz G, Nomdedeu B, Such E, et al. Independent impact of iron overload and transfusion dependency on survival and leukemic evolution in patients with myelodysplastic syndrome[J]. Blood 2008;112:abstract 640.
    [92]Leitch HA, Wong DHC, Leger CS, et al. Improved leukemia-free and overall survival in patients with myelodysplastic syndrome receiving iron chelation therapy:a subgroup analysis[J]. Blood 2007;110:abstract 1469.
    [93]Naka K, Muraguchi T, Hoshii T, et al. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells[J]. Antioxid Redox Signal.2008;10(11):1883-94.
    [94]Armand P, Kim HT, Cutler CS, et al. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation[J]. Blood. 2007;109(10):4586-8.
    [95]Platzbecker U, Bomhauser M, Germing U, et al. Red blood cell transfusion dependence and outcome after allogeneic peripheral blood stem cell transplantation in patients with de novo myelodysplastic syndrome (MDS) [J]. Biol Blood Marrow Transplant. 2008;14(11):1217-25.
    [96]Pullarkat V, Blanchard S, Tegtmeier B, et al.Iron overload adversely affects outcome of allogeneic hematopoietic cell transplantation[J].Bone Marrow Transplant. 2008;42(12):799-805.
    [97]Rose C, Ernst O, Hecquet B,et al. Quantification by magnetic resonance imaging and liver consequences of post-transfusional iron overload alone in long term survivors after allogeneic hematopoietic stem cell transplantation (HSCT)[J]. Haematologica.2007;92(6):850-3.
    [98]Sahlstedt L, Ebeling F, von Bonsdorff L, et al.Non-transferrin-bound iron during allogeneic stem cell transpIantation[J]. Br J Haematol.2001;113(3):836-8.
    [99]Caroline L, Rosner F, Kozinn PJ. Elevated serum iron, low unbound transferrin and candidiasis in acute leukemia[J]. Blood.1969;34(4):441-51.
    [100]Wiesenberger G, Link TA, von Ahsen U, et al. MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family[J]. J Mol Biol.1991;217(1):23-37.
    [101]Foury F, Roganti T. Deletion of the mitochondrial carrier genes MRS3V and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain[J]. J Biol Chem.2002 5;277(27):24475-83.
    [102]Miihlenhoff U, Stadler JA, Richhardt N, et al. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions[J]. J Biol Chem.2003;278(42):40612-20.
    [103]Froschauer EM, Schweyen RJ, Wiesenberger G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane[J]. Biochim Biophys Acta.2009;1788(5):1044-50.
    [104]Shaw GC, Cope JJ, Li L, et al. Mitoferrin is essential for erythroid iron assimilation[J]. Nature.2006 2;440(7080):96-100.
    [105]Paradkar PN, Zumbrennen KB, Paw BH, et al. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2[J]. Mol Cell Biol. 2009;29(4):1007-16.
    [106]Li FY, Nikali K, Gregan J, et al. Characterization of a novel human putative mitochondrial transporter homologous to the yeast mitochondrial RNA splicing proteins 3 and 4[J]. FEBS Lett.2001;494(1-2):79-84.
    [107]Cuijpers ML, Raymakers RA, Mackenzie MA, et al. Recent advances in the understanding of iron overload in sideroblastic myelodysplastic syndrome[J]. Br J Haematol. 2010;149(3):322-33.
    [108]Wang Y, Langer NB, Shaw GC, Yang G, Li L, Kaplan J, Paw BH, Bloomer JR.Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria[J]. Exp Hematol. 2011;39(7):784-94.
    [109]Troadec MB, Warner D, Wallace J, et al. Targeted deletion of the mouse Mitoferrinl gene: from anemia to protoporphyria[J]. Blood.2011;117(20):5494-502.
    [110]Shirihai OS, Gregory T, Yu C,et al. ABC-me:a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation[J].EMBO J.2000;19(11):2492-502.
    [111]Chen W, Paradkar PN, Li L, et al. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria[J]. Proc Natl Acad Sci U S A.2009;106(38):16263-8.
    [112]Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis:distinct control mechanisms in erythroid cells[J]. Blood.1997;89(1):1-25.
    [113]Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion:novel pathways revealed by disease[J]. Blood.2005 Mar 1;105(5):1867-74.
    [114]Krishnamurthy PC, Du G, Fukuda Y,et al.Identification of a mammalian mitochondrial porphyrin transporter[J]. Nature.2006 5;443(7111):586-9.
    [115]Chen W, Dailey HA, Paw BH. Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis[J].Blood.2010 29;116(4):628-30.
    [116]Lill R, Miihlenhoff U. Maturation of iron-sulfur proteins in eukaryotes:mechanisms, connected processes, and diseases[J]. Annu Rev Biochem.2008;77:669-700.
    [117]Lill R, Dutkiewicz R, Elsasser HP,et al.Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes[J].Biochim Biophys Acta., 2006;1763(7):652-67.
    [118]Johnson DC, Dean DR, Smith AD, et al.Structure, function, and formation of biological iron-sulfur clusters[J]. Annu Rev Biochem.2005;74:247-81.
    [119]Tong WH, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis[J].Cell Metab. 2006;3(3):199-210.
    [120]Rouault TA, Tong WH. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis[J]. Nat Rev Mol Cell Biol.2005;6(4):345-51.
    [121]Hausmann A, Samans B, Lill R,et al. Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis[J]. J Biol Chem.2008 28;283(13):8318-30.
    [122]Rouault TA, Tong WH. Iron-sulfur cluster biogenesis and human disease[J]. Trends Genet. 2008;24(8):398-407.
    [123]Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli[J]. J Biol Chem.199115;266(11):6957-65.
    [124]Levi S, Corsi B, Bosisio M, et al. A human mitochondrial ferritin encoded by an intronless gene[J]. J Biol Chem.20016;276(27):24437-40.
    [125]Santambrogio P, Biasiotto G, Sanvito F, et al.Mitochondrial ferritin expression in adult mouse tissues[J]. J Histochem Cytochem.2007;55(11):1129-37.
    [126]Campanella A, Rovelli E, Santambrogio P, et al.Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability:hypothesis for a protective role in Friedreich ataxia[J]. Hum Mol Genet.2009;18(1):1-11.
    [127]Campanella A, Isaya G, O'Neill HA, et al. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast[J].Hum Mol Genet. 2004;13(19):2279-88.
    [128]Corsi B, Cozzi A, Arosio P, et al. Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism[J].J Biol Chem.2002 21;277(25):22430-7.
    [129]Nie G, Sheftel AD, Kim SF, et al. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis[J]. Blood.2005 1;105(5):2161-7.
    [130]Shi ZH, Nie G, Duan XL, et al. Neuroprotective mechanism of mitochondrial ferritin on 6-hydroxydopamine-induced dopaminergic cell damage:implication for neuroprotection in Parkinson's disease[J].Antioxid Redox Signal.2010;13(6):783-96.
    [131]Zanella I, Derosas M, Corrado M, et al. The effects of frataxin silencing in HeLa cells are rescued by the expression of human mitochondrial ferritin[J]. Biochim Biophys Acta. 2008;1782(2):90-8.
    [132]Tehranchi R, Invernizzi R, Grandien A, et al. Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes[J]. Blood.2005;106(1):247-53.
    [133]Santambrogio P, Erba BG, Campanella A, et al. Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation[J]. Haematologica.2011;96(10):1424-32.
    [134]Mitsuhashi N, Miki T, Senbongi H, et al. MTABC3, a novel mitochondrial ATP-binding cassette protein involved in iron homeostasis[J]. J Biol Chem.2000 9;275(23):17536-40.
    [135]Pondarre C, Antiochos BB, Campagna DR, et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis[J]. Hum Mol Genet.200615;15(6):953-64.
    [136]Allikmets R, Raskind WH, Hutchinson A, et al.Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A) [J]. Hum Mol Genet.1999;8(5):743-9.
    [137]Cavadini P, Biasiotto G, Poli M,et al. RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload[J]. Blood.200715;109(8):3552-9.
    [138]Becker EM, Greer JM, Ponka P, et al. Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells:haracterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinization[J].Blood.2002 15;99(10):3813-22.
    [139]Yoon T, Cowan JA. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis[J]. J Biol Chem.2004 Jun 18;279(25):25943-6.
    [140]Cavadini P, O'Neill HA, Benada O, et al. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia[J]. Hum Mol Genet.2002 1:11(3):217-27.
    [141]Adinolfi S, Iannuzzi C, Prischi F, et al. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS[J]. Nat Struct Mol Biol.2009;16(4):390-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700