内皮保护剂治疗川崎病的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨通过耳缘静脉重复注射异种动物蛋白诱导幼兔产生冠状动脉炎,验证其与川崎病冠状动脉病变的相似性,为研究川崎病提供实验模型。
     方法:
     20只4-6周龄的日本大耳幼兔随机分为模型组和对照组。两组分别给予10%牛血清白蛋白和生理盐水,第1天、第14天各重复注射一次。在首次注射后的第六周,两组幼兔分别行冠脉造影,并在造影结束后一小时之内显微镜下分离冠状动脉行组织病理学检测和超微结构的电镜观察,并留取肝脏、肾脏、肺脏及脾脏行组织病理学检查。
     结果:
     (1)冠脉造影:仅模型组发现3只兔的冠状动脉出现不同程度的扩张或狭窄(3/10);(2)组织病理学:模型组所有幼兔冠状动脉均出现内皮增厚、炎性细胞浸润,不连续的冠脉内皮;肺组织、肾脏组织呈现肉芽肿样改变主要由单核细胞组成,且肺组织病变部位小血管腔几乎完全被阻塞,部分肺泡塌陷,肺泡水肿不明显;肝脏组织出现点状坏死,单核细胞聚集;(3)透射电镜结果:模型组兔冠状动脉部分内弹力膜断裂,内皮不连续,伴有内皮细胞脱落和中层平滑肌细胞肿胀变性。
     结论:
     本研究证实牛血清白蛋白诱导产生的兔免疫性冠状动脉炎,类似川崎病冠状动脉炎改变,可作为模拟川崎病冠状动脉损伤的实验模型。
     目的:
     内皮细胞保护剂尚未作为川崎病的常规治疗手段,本研究拟在川崎病幼兔模型上,给予内皮保护剂辛伐他汀干预后,观察其对川崎病的发病、病理改变及对内皮功能的影响,并探讨其中的机制,从而为从内皮细胞保护的角度防治川崎病提供初步的实验依据。
     方法:
     1.实验分组:将30只日本大耳幼兔随机分为模型组、辛伐他汀干预组、对照组三组。模型组及辛伐他汀干预组均予耳缘静脉注射牛血清白蛋白(10%,3ml/kg),对照组给予生理盐水(3ml/kg),第1天、第14天各重复注射一次。辛伐他汀干预组于第2次注射后连续三周每天予辛伐他汀干预(5mg/kg.d)灌胃;三组分别于第2次注射后第7、14、21天(即急性期、亚急性期、恢复期)分别采血一次。
     2.检测方法:
     (1)评价建模成功的方法:①组织病理学检测各组幼兔的心肌及冠脉组织改变情况;②各组幼兔行冠状动脉造影检查;
     (2)ELISA法检测血浆内皮型一氧化氮合成酶(eNOS)的表达;
     (3)流式细胞仪计数法测定各组幼兔血浆内皮微颗粒(CD62E+EMPs、CD105+EMPs、CD144+/CD42b-EMPs)的表达水平;
     结果:
     1.组织病理学结果:模型组和辛伐他汀干预组均出现不同程度的炎症浸润。模型组可见血管内膜局部明显增厚,冠脉内皮不连续;而辛伐他汀干预组幼兔冠状动脉炎性细胞浸润较轻,内膜增厚不明显;对照组冠脉内皮光滑连续。
     2. eNOS水平:辛伐他汀干预组eNOS表达水平低于模型组,P<0.05,差异有统计学意义;辛伐他汀干预组eNOS表达水平与对照组相比,P>0.05,差异无统计学意义。
     3.辛伐他汀干预组KD幼兔急性期、亚急性期、恢复期血浆EMPs表达水平与模型组和对照组的比较:
     (1)辛伐他汀干预组及模型组三种表型的EMPs表达水平均高于对照组,P<0.01,差异有显著的统计学意义;
     (2)辛伐他汀干预组与模型组进行比较:①CD62E+EMPs、CD105+EMPs水平比较:辛伐他汀干预组表达均低于模型组,P<0.01,差异有显著的统计学意义;②CD144+/CD42b-EMPs:急性期辛伐他汀干预组表达低于模型组(P=0.001)P<0.01,差异有显著的统计学意义;而亚急性期(P=0.199)恢复期(P=0.096)辛伐他汀干预组EMPs表达低于模型组,但差异无统计学意义。
     4.模型组幼兔血浆EMPs表达水平:
     (1) CD62E+EMPs:急性期明显高于亚急性期、恢复期(P均<0.05)差异有统计学意义;亚急性期与恢复期比较,P>0.05,差异无统计学意义;
     (2) CD105+EMPs:急性期高于恢复期(P<0.05)差异有统计学意义;急性期与亚急性期比较及亚急性期与恢复期比较,P均>0.05,差异无统计学意义;
     (3) CD144+/CD42b-EMPs:恢复期表达高于急性期和亚急性期,亚急性期表达高于急性期,P均<0.05,差异有统计学意义。
     结论:
     1.辛伐他汀可以降低内皮微颗粒的释放量、改善血管内皮功能障碍,推测辛伐他汀可能通过改善eNOS表达的稳定性,增加一氧化氮的生物利用度来改善内皮功能,eNOS参与了其发挥这一保护作用的机制,为KD血管内皮的保护提供依据。
     2. KD兔模型组EMPs持续增高或降低缓慢提示KD恢复期内皮损伤持续存在;EMPs水平的监测尤其是CD144+/CD42b-EMPs可用于KD长期预后评估。
Objective:
     To observe the histopathologic characteristics and the Ultrastructure pathologicalfeatures of Coronary Artery vasculitis in rabbit caused by repeated injections of the BovineSerum Albumin(BSA).
     Methods:
     Twenty weanling rabbits were randomly and equally divided into treatment groups forBSA or normal saline (NS), and administered the respective treatment by intravenousinjection at day1, day14for two cycles. Six weeks after the first treatment, rabbitsunderwent coronary angiography and coronary arteries were removed within one hour.Histopathological examination was performed by light, scanning electron, andtransmission electron microscopy.
     Result:
     Coronary arteriography revealed that3rabbits in the BSA group had various levels ofdilation and narrowing of the left coronary arteries while, histological examination showedthat10rabbits had infiltration of the coronary arteries by inflammatory cells. Incompleteendothelium, breakage of elastic fiber, and intimal thickening was also observed in theBSA group. Granuloma changes, spotty necrosis composed of mononuclear cells wasobserved in the Lung tissue, kidney tissue and liver of BSA group.Ultrastructurally,3rabbits in the BSA group leukocyte migration, shedding of endothelial microparticles fromthe plasma membranes, abscission of endothelial cells, breakage of the internal elasticlamina (IEL), degeneration of smooth muscle cells in the medial membrane were detected.By contrast, the IEL of the NS control group was continuous and of uniform thickness.
     Conclusion:
     This rabbit model of coronary arteritis displayed histopathological and ultrastructuralfeatures similar to those of Kawasaki disease in humans. Breakage of the IEL, a key factorin aneurysm formation, was observed in the coronary arteries. Therefore weanling rabbitsmay serve as an experimental model for immune complex vasculitis involving coronaryarteries that mimics Kawasaki disease.
     Objective:
     To study the effects and mechanism of simvastatin on pathological damage and therelease of endothelial microparticles in the rabbit model of Kawasaki disease, in order toprovide scientific basis for protecting the endothelial cell to prevent and cure Kawasakidisease.
     Methods:
     Experimental groups:30weanling rabbits were randomly and equally divided intomodel group, simvastatin group, saline control group for BSA or normal saline (NS), andadministered the respective treatment by intravenous injection at day1, day14for twocycles.(model group and simvastatin group for BSA; saline control group for NS)
     The simvastatin group, administered intragastrically with (5mg/kg.bw.d) leadsimvastatin for three weeks after the second injection; and at day7,day14and day21afterthe second injection (ie, acute period, sub-acute phase and recovery phase) blood sampleswere collected.
     Testing methods:
     (1) Examination of modeling method:①Histopathological examination of rabbitsmyocardium and coronary organization;②coronary angiography;
     (2) ELISA assay foe plasma endothelial nitric oxide synthase (eNOS);
     (3) Flow cytometry method for the determination plasma endothelial microparticles(EMPs:CD62E+EMPs, CD105+EMPs, CD144+/CD42b-EMPs) expression levels.
     Result:
     1. Histological examination showed that10rabbits (10/10) had infiltration of thecoronary arteries by inflammatory cells. Incomplete endothelium, and intimal thickeningwas also observed in the BSA group and heavier than the simvastatin group; complete andsmooth coronary endothelial was observed in saline control group;
     2. eNOS levels: the expression level in simvastatin group level was significantly (P<0.05)lower than the model group; the simvastatin group compared to the saline control group,P>0.05, the difference was not statistically significance.
     3. The comparison of plasma EMPs (acute, sub-acute phase and recovery phase)
     (1)The EMPs expression level: the model group, simvastatin group was significantly(P <0.01)higher than and the saline group;
     (2)The comparison of model group and simvastatin:①CD62E+EMPs andCD105+EMPs(acute phase, sub-acute phase and recovery phase): the model group wassignificantly (P<0.01) higher than and the simvastatin group;.②CD144+/CD42b-EMPs:model group was significantly (P=0.001, P<0.01) higher than and the simvastatin groupinthe acute phase; subacute phase (P=0.199) recovery period (P=0.096) higher than thesimvastatin group, but the difference was not statistically significant;
     4. Pairwise comparison of model group plasma EMPs expression levels:
     (1) CD62E+EMPs: acute phase was significantly (P<0.05) higher than the sub-acutephase and convalescence.
     (2) CD105+EMPs: acute phase was significantly (P<0.05) higher the recovery period;
     (3) CD144+/CD42b-EMPs: recovery period was higher than the acute phase,sub-acute phase, and sub-acute phase was higher than the acute phase, and the differencewas statistically significant.
     Conclusion:
     1.Simvastatin can reduce the release of endothelial microparticles and improveendothelial dysfunction, simvastatin can increase the bioavailability of nitric oxide toimprove endothelial function by improving the stability of eNOS expression, eNOS isinvolved in the mechanism of protection, provide the basis for KD coronary endothelialprotection.
     2.CD144+/CD42b-EMPs sustained increases in convalescent prompted endothelialdamage persists in KD. Three phenotypic EMPs, especially CD144+/CD42b-EMPs isavailable for KD long-term prognosis.
引文
1. Brown TJ,Crawford SE,Cornwall ML,Garcia F,Shulman ST,Rowley AH.CD8Tlymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasakidisease. J Infect Dis.2001;184(7):940-3.
    2. Rowley AH, Eckerley CA, J ck HM, Shulman ST, Baker SC. IgA plasma cells invascular tissue of patients with Kawasaki syndrome. J Immunol.1997;159:5946-55.
    3. Murata H. Experimental candida induced arteritis in mice Relation to arteritis in themucocutaneous lymphnode syndrome. Microbiol Immunol.1979;23(9):825-831.
    4. Ishida-Okawara A, Oharaseki T, Takahashi K, Hashimoto Y, Aratani Y, Koyama H,Maeda N, Naoe S, Suzuki K.Contribution of myeloperoxidase to coronary arteryvasculitis associated with MPO-ANCA production. Inflammation.2001;25(6):381-387.
    5. Takahashi K, Oharaseki T, Wakayama M, Yokouchi Y, Naoe S, Murata H.Histopathological features of murine systemic vasculitis caused by Candida albicansextract an animal model of Kawasaki disease. Inflamm Res.2004;53(2):72-77.
    6. Ohno N. Murine model of Kawasaki disease induced by marmoprotein-beta-glucancomplex,CAWS,obtained from Candida albicans. Jpn J Infect Dis.2004;57(5):S9-S10.
    7. Lehman TJ, Mahnovski V. Animal models of vasculitis. Lessons we can learn toimprove our understanding of Kawasaki disease. Rheum Dis Clin North Am.1988;14(2):479-487.
    8. Onouchi Z, Ikuta K, Nagamatsu K, et al. Coronary artery aneurysms develop inweanling rabbit s with serum sickness but not in mature rabbits. An experimentalmodel for Kawasaki disease in humans. Angidogy.1995;46(8):679-687.
    9.韦卫中陈绍军王宏伟等,免疫性血管炎致冠状动脉扩张的实验研究,中华儿科杂志,2003;41(3):227-228.
    10. Philip S, Lee WC, Liu SK, Wu MH, Lue HC. A swine model of horse serum-inducedcoronary vasculitis:an implication for Kawasaki disease. Pediatr Res.2004;55(2):211-219.
    11. Mori M, Imagawa T, Yasui K, Kanaya A, Yokota S. Predictors of coronary arterylesions after intravenous gamma-globulin treatment in Kawasaki disease.JPediatr.2000;137(2):177-180.
    12. Gavin PJ, Crawford SE, Shulman ST, Garcia FL, Rowley AH. Systemic arterialexpression of matrix metalloproteinases2and9in acute Kawasaki disease.Arterioscler Thromb Vasc Biol.2003;23(4):576-81.
    13. Huang SM, Weng KP, Chang JS, Lee WY, Huang SH, Hsieh KS. Effects of statintherapy in children complicated with coronary arterial abnormality late afterKawasaki disease: a pilot study. Circ J.2008;72:1583-7.
    14. Blankier S, McCrindle BW, Ito S, Yeung RS. The role of atorvastatin in regulatingthe immune response leading to vascular damage in a model of Kawasaki disease.Clin Exp Immunol.2011;164:193-201.
    1. Kawasaki T. Acute febrile muco-cutaneous lymph node syndrome in young childrenwith unique digital desquamation. Jpn J Allergol.1967;16:178-222.
    2. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. New infantile acutefebrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics.1974;54:271-276.
    3. Mouthon L.Causes and mechanisms of systemic vasculitides. Rev Prat.2008;Mar15;58(5):487-91.
    4. Mason WH, Jordan SC, Sakai R, Takahashi M, Bernstein B. Circulating immunecomplexes in Kawasaki syndrome. Pediatr Infect Dis.1985;4:48-51.
    5. Alqahtani M, Mukundan D. Current understanding of fever and host immunity. CurrOpin Pediatr.2011;23(1):115-20.
    6. Rowley AH, Miura M. Immunoglobulin A deficiency and Kawasaki disease. PediatrInt.2010;52(2):330.
    7. Keren G, Wolman M. Can Pseudomonas infection in experimental animals mimicKawasaki disease? J Infect.1984;9:22-29.
    8. Murata H. Experimental Candida-induced arteritis in mice: relation to arteritis in themucocutaneous lymph node syndrome. Microbiol Immunol.1970;23:825-831.
    9. Cromartie WJ, Craddock JG. Rheumatic-like cardiac lesion in mice. Science1966;154:283-284.
    10. Felsburg PJ, HogenEsch H, Somberg RL, Snyder PW, Glickman LT. Immunologicabnormalities in canine juvenile polyarteritis syndrome: a naturally occurring animalmodel of Kawasaki disease. Clin Immunol Immunopathol.1992;65:110-118.
    11. Onouchi Z, Ikuta K, Nagamatsu K, Tamiya H, Sakakibara Y, Ando M. Coronaryartery aneurysms develop in weanling rabbit s with serum sickness but not in maturerabbits. An experimental model for Kawasaki disease in humans. Angidogy.1995;46(8):679-687.
    12. Philip S, Lee WC, Liu SK, Wu MH, Lue HC. A swine model of horse serum-inducedcoronary vasculitis:an implication for Kawasaki disease. Pediatr Res.2004;55(2):211-219
    13. Murata, H. Experimental candida-induced arteritis in mice. Relation to arteritis in themucocutaneous lymph node syndrome. Microbiol Immunol.1979;23:825-831.
    14. Takahashi K, Oharaseki T, Yokouchi Y, Miura NN, Ohno N, Okawara AI, Murata H,Naoe S, Suzuki K. Administration of human immunoglobulin suppressesdevelopment of murine systemic vasculitis induced with Candida albicanswater-soluble fraction: an animal model of Kawasaki disease. Mod Rheumatol.2010;20(2):160-7.
    15. Takahashi K, Oharaseki T, Wakayama M, Yokouchi Y, Naoe S, Murata H.Histopathological features of murine systemic vasculitis caused by Candida albicansextract an animal model of Kawasaki disease. Inflamm Res.2004;53(2):72-77.
    16. Schulte DJ, Yilmaz A, Shimada K, Fishbein MC, Lowe EL, Chen S, Wong M,Doherty TM, Lehman T, Crother TR, Sorrentino R, Arditi M.Involvement of innateand adaptive immunity in a murine model of coronary arteritis mimicking Kawasakidisease. J Immunol.2009;183(8):5311-8.
    17. Ishiguro N, Kawashima M.Cutaneous polyarteritis nodosa: a report of16cases withclinical and histopathological analysis and a review of the published work. J Dermatol.2010;37(1):85-93.
    18. Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M, et al. Three LinkedVasculopathic Processes Characterize Kawasaki Disease: A Light and TransmissionElectron Microscopic Study.PLoS ONE.2012;7(6):e38998.
    19. Naoe S, Takahashi K, Masuda H, Tanaka N. Kawasaki disease. With particularemphasis on arterial lesions. Acta Pathol Jpn.1991;41:785-797.
    20. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, ShulmanST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME,Pallasch TJ, Falace DA, Taubert KA.Diagnosis,treatment, and long-term managementof Kawasaki disease:a statement for health professionals from the Committee onrheumatic fever, endocarditis and kawasaki disease, Council on cardiovasculardisease in the young. American Heart Association. Circulation.2004;110:2747-71.
    21. Kurihara K, Shingo Y, Miura NN, Horie S, Usui Y, Adachi Y, Yadomae T, OhnoN.Effect of CAWS, a mannoprotein-beta-glucan complex of Candida albicans, onleukocyte, endothelial cell, and platelet functions in vitro. Biol Pharm Bull.2003;26(2):233-40.
    22. Tanaskovi I, Mladenovi-Mihailovi A, Usaj-Knezevi S, Stankovi V, Aleksi A,Kastratovi T, Aleksi A, Lazi Z, Mladenovi-Bogdanovi Z.Histochemical andimmunohistochemical analysis of ruptured atherosclerotic abdominal aortic aneurysmwall. Vojnosanit Pregl.2010;67(12):959-64.
    1. Liang CD, Kuo HC, Yang KD, Wang CL, Ko SF. Coronary artery fistula associatedwith Kawasaki disease. Am Heart J.2009;157:584-8.
    2. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, ShulmanST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME,Pallasch TJ, Falace DA, Taubert KA.Diagnosis,treatment, and long-term managementof Kawasaki disease:a statement for health professionals from the Committee onrheumatic fever, endocarditis and kawasaki disease, Council on cardiovasculardisease in the young, American Heart Association. Circulation.2004;110:2747-71.
    3. Kuo HC, Yang KD, Chang WC, Ger LP, Hsieh KS. Kawasaki Disease: An Update onDiagnosis and Treatment. Pediatrics and Neonatology.2012;53,4-11.
    4. Senzaki H, Chen CH, Ishido H, Masutani S, Matsunaga T, Taketazu M, Kobayashi T,Sasaki N, Kyo S, Yokote Y. Arterial hemodynamics in patients after Kawasakidisease. Circulation.2005;111:2119-25.
    5. Borzutzky A, Gutiérrez M, Talesnik E, Godoy I, Kraus J, Hoyos R, Arnaiz P,Acevedo M. High sensitivity C-reactive protein and endothelial function in Chileanpatients with history of Kawasaki disease. Clin Rheumatol.2008;27:845-50.
    6. Rodenburg J, Vissers MN, Wiegman A, Trip MD, Bakker HD, Kastelein JJ. Familialhypercholesterolemia in children. Curr Opin Lipidol2004;15:405-117Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: fromprotein prenylation to immunomodulation. Nat Rev Immunol2006.6:358-370
    8. Palinski, W. New evidence for beneficial effects of statins unrelated to lipid lowering.Arterioscler Thromb Vasc Biol.2001;21:3-5.
    9. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation2000;101:207-13.
    10. Huang SM, Weng KP, Chang JS, Lee WY, Huang SH, Hsieh KS. Effects of statintherapy in children complicated with coronary arterial abnormality late afterKawasaki disease: a pilot study. Circ J.2008;72:1583-7.
    11. Blankier S, McCrindle BW, Ito S, Yeung RS. The role of atorvastatin in regulatingthe immune response leading to vascular damage in a model of Kawasaki disease.Clin Exp Immunol.2011;164:193-201.
    12. Mitani Y, Sawada H, Hayakawa H, Aoki K, Ohashi H, Matsumura M, Kuroe K,Shimpo H, Nakano M, Komada Y. Elevated levels of high-sensitivity C-reactiveprotein and serum amyloid-A late after Kawasaki disease: association betweeninflammation and late coronary sequelae in Kawasaki disease. Circulation2005;111:38-43.
    13.于明华,小儿川崎病的研究现状和展望,广东医学,2002;23:661.
    14. Erdbruegger U, Grossheim M, Hertel B, Wyss K, Kirsch T, Woywodt A, Haller H,Haubitz M.Diagnostic role of endothelial microparticles in vasculitis. Rheumatology(Oxford)2008;47:1820-5.
    15. Woywodt A, Streiber F, de Groot K, Regelsberger H, Haller H, Haubitz M.Circulating endothelial cells as markers for ANCA associated small-vessel vasculitis.Lancet2003;361:206-10.
    16. Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulatingendothelial cells, microparticles and progenitors: key players towards the definition ofvascular competence. J Cell Mol Med2009;13:454-71.
    17. Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS,Hebbel RP. Sickle blood contains tissue factor-positive microparticles derived fromendothelial cells and monocytes. Blood,2003;102(7):2678-2683.
    18. Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC, Tang AL, Lou ZF, Tao J.C-Reactive protein-induced endothelial micro-particle generation in HUVECs isrelated to BH4-dependent NO formation. J Vasc Res,2007;44:241–248.
    19. Vestweber D. VE-cadherin: the major endothelial adhesion molecule controllingcellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol.2008;28:223-232
    20. Bernard S, Loffroy R, Sérusclat A, Boussel L, Bonnefoy E, Thévenon C, Rabilloud M,Revel D, Moulin P, Douek P. Increased levels of endothelial microparticles CD144(VE-Cadherin) positives Mediators of Inflammation in type2diabetic patients withcoronary noncalcified plaques evaluated by multidetector computed tomography(MDCT). Atherosclerosis.2009;429-435.
    21. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, TedguiA.Endothelial microparticles in diseases. Cell Tissue Res.2009;143-151.
    22. Meigs JB, Hu FB, Perhanidis JS, Hunter D, Rifai N, Manson JE.E-selectin genotypesand risk of type2diabetes in women. Obesity Research,2005;513–518,.
    23. Vo MN, Evans M, Leitzel K, Ali SM, Wilson M, Demers L, Evans DB, LiptonA.Elevated plasma endoglin (CD105) predicts decreased response and survival in ametastatic breast cancer trial of hormone therapy. Breast Cancer Res Treat.,2010;119(3):767-71.
    24. Clarke LA, Hong Y, Eleftheriou D, Shah V, Arrigoni F, Klein NJ, Brogan PA..Endothelial injury and repair in systemic vasculitis of the young. Arthritis&Rheumatism,2010,62(6):1770-1780.
    25. Gilles NC, Alain S, Chantal MB, et al. Circulating microparticles may infuence earlycarotid artery remodeling. Journal of Hypertension.2010;28:789-796.
    26. Bulut D, Maier K, Bulut-Streich N, B rgel J, Hanefeld C, Mügge A. Circulatingendothelial microparticles correlate inversely with endothelial function in patientswith ischemic left ventricular dysfunction. J Card Fait,2008;14(4):336-340.
    27. Densmore JC, Signorino PR, Ou J, Hatoum OA, Rowe JJ, Shi Y, Kaul S, Jones DW,Sabina RE, Pritchard KA Jr, Guice KS, Oldham KT..Endothelium-derivedmicroparticles induce endothelial dysfunction and acute lung injury. Shock,2006;26(5):464-71.
    28. Bian K, Murad F. Nitric oxide (NO)--biogeneration, regulation, and relevance tohuman diseases. Front Biosci,2003;8:264-78.
    29. Bonini MG,Stadler K,Silva SO,Corbett J,Dore M,Petranka J,Fernandes DC,TanakaLY,Duma D,Laurindo FR,Mason RP.Constitutive nitric oxide synthase activation is asignificant route for nitroglycerin-mediatedvasodilation. Proc Natl AcadSci,2008;24;105(25):8569-74.
    30. Liao, J.K. Beyond lipid lowering: the role of statins in vascular protection.Int. J.Cardiol.2002;86:5–18.
    31. Wagner AH, K hler T, Rückschloss U, Just I, Hecker M.Improvement of nitricoxide-dependent vasodilatation by HMG-CoA reductase inhibitors throughattenuation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc.Biol,2002;20,61-69.
    32. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K.The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt andpromotes angiogenesis in normocholesterolemic animals. Nat. Med,2000;6,1004-1010.
    33. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K,Zeiher AM, Dimmeler S.Essential role of endothelial nitric oxide synthase formobilization of stem and progenitor cells.Nat Med,.2003;9:1370-1376.
    34. Predescu D, Predescu S, Shimizu J, Miyawaki-Shimizu K, Malik AB.ConstitutiveeNOS-derived nitric oxide is a determinant of endothelial junctional integrity. Am JPhysiol Lung Cell Mol Physiol.2005;289:L371-81.
    1. Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharon JL,Machado RA.Endothelial dysfunction: a comprehensive appraisal.Cardiovasc Diabetol2006;5:4.
    2. Chhabra N. Endothelial dysfunction-A predictor of atherosclerosis. Internet J MedUpdate2009;4(1):33–41.
    3. Strijdom H, Lochner A. Cardiac endothelium: More than just a barrier! SA Heart2009;6(3):174–185.
    4. Strijdom H, Chamane N, Lochner A. Nitric oxide in the cardiovascular system: asimple molecule with complex actions. Cardiovasc J Afr2009;20:303–310.
    5. Bruckdorfer R. The basics about nitric oxide. Mol Aspect Med2005;26:3–31.
    6. Moncada S, Palmer RM, Higgs EA. The discovery of nitric oxide as the endogenousnitrovasodilator. Hypertension1988;12:365–372.
    7. Balligand J-L, Cannon PJ. Nitric oxide synthases and cardiac muscle:autocrine andparacrine influences. Arterioscler Thromb Vasc Biol1997;17:1846–1858.
    8. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway andtargets for drug development. Front Biosci2009;14:1–18.
    9. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, functionand inhibition. Biochem J2001;357:593–615.
    10. Dudzinski D, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res2007;75(2):247–260.
    11. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: frommarvel to menace. Circulation2006;113:1708–1714.
    12. Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxideproduction in human diabetes mellitus, role of NAD(P)H oxidase and endothelialnitric oxide synthase. Circulation2002;105:1656–1662.
    13. Puranik R, Celermajer DS. Smoking and endothelial function. Progr Cardiovasc Dis2003;45:443–458.
    14. Pennathur S, Heinecke JW. Oxidative stress and endothelial dysfunction in vasculardisease. Curr Diabetes Rep2007;7:257–264.
    15. Landmesser U, Harrison DG, Drexler H. Oxidant stress–a major cause of reducedendothelial nitric oxide availability in cardiovascular disease. Eur J Clin Pharmacol2006;63:13–19.
    16. Yokoyama M. Oxidant stress and atherosclerosis. Curr Opin Pharmacol2004;4:110–115.
    17. Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction.CurrHypertens Rep2003;5:473–480.
    18. Kuzkaya N, Weissmann N, Harrison DG, et al. Interaction of peroxynitrite,tetrahydrobiopterin, ascorbic acid, and thiols. J Biol Chem2003;278:22546–22554.
    19. Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role?Am J Physiol Heart Circ Physiol2001;281:981–986.
    20. Zou M-H, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncouplingof endothelial nitric oxide synthase by peroxynitrite. J Clin Invest2002;109:817–826.
    21. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis.Circulation2002;150:1135–1143.
    22. Osto E, Cosentino F. The role of oxidative stress in endothelial dysfunction andvascular inflammation. In: Ignarro LJ (ed). Nitric Oxide:Biology and Pathobiology.2nd edn. London: Academic Press2010:705–754.
    23. Szmitko PE, Wang C-H, Weisel RD, et al. New markers of inflammation andendothelial cell activation, part1. Circulation2003;108:1917–1923.
    24. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease.Arterioscler Thromb Vasc Biol2005;25:29–38.
    25. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation.Circ Res2001;89:763–771.
    26. Balakumar P, Kaur T, Singh M. Potential target sites to modulate vascular endothelialdysfunction: current perspectives and future directions.Toxicology2008;245(1–2):49–64.
    27. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testingand clinical relevance. Circulation2007;115:1285–1295.
    28. Munzel T, Sinning C, Post F, et al. Pathophysiology, diagnosis and prognosticimplication of endothelial dysfunction. Ann Med2008;40:180–196.
    29. Green DJ, Jones H, Thijssen D, Cable NT, Atkinson G. Flow-mediated dilation andcardiovascular event prediction: does nitric oxide matter? Hypertension2011;57(3):363–369.
    30. Kim F, Gallis B, Corson MA. TNF-alpha inhibits flow and insulin signaling leadingto NO production in aortic endothelial cells. Am J Physiol Cell Physiol2001;280(5):C1057–1065.
    31. Bove K, Neumann P, Gertzberg N, Johnson A. Role of ecNOS-derived NO inmediating TNF-induced endothelial barrier dysfunction. Am J Physiol Lung Cell MolPhysiol2001;280(5): L914–922
    32. Xia Z, Luo T, Liu HM, Wang F, Xia ZY, Irwin MG, Vanhoutte PM. L-arginineenhances nitrative stress and exacerbates tumor necrosis factor-alpha toxicity tohuman endothelial cells in culture: prevention by propofol. J Cardiovasc Pharmacol2010;55(4):358–367.
    33. Goodwin BL, Pendleton LC, Levy MM, Solomonson LP, Eichler DC. Tumor necrosisfactor-alpha reduces argininosuccinate synthase expression and nitric oxideproduction in aortic endothelial cells. Am J Physiol Heart Circ Physiol2007;293(2):H1115–1121.
    34. Boger RH, Vallance P, Cooke JP. Asymmetric dimethlyarginine (ADMA): a keyregulator of nitric oxide synthase. Atherosclerosis Suppl2003;4:1–3
    35. Landim MBP, Filho AC, Chagas ACP. Asymmetric dimethylarginine (ADMA) andendothelial dysfunction: implications for atherogenesis. Clinics2009;64:471–478.
    36. Sydow K, Munzel T. ADMA and oxidative stress. Atherosclerosis Suppl2003;4:41–51.
    37. Krempl TK, Maas R, Sydow K, Meinertz T, Boger RH, Kahler J.Elevation ofasymmetric dimethylarginine in patients with unstable angina and recurrentcardiovascular events. Eur Heart J2005;26(18):1846–1851.
    38. Boger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, et al.Plasma asymmetric dimethylarginine and incidence of cardiovascular disease anddeath in the community. Circulation2009;119(12):1592–1600.
    39. Erdbruegger U, Haubitz M, Woywodt A. Circulating endothelial cells: a novel markerof endothelial damage. Clin Chim Acta2006;373:17–26.
    40. Boos CJ, Lip GYH, Blann AD. Circulating endothelial cells in cardiovascular disease.J Am Coll Cardiol2006;48:1538–1547.
    41. Clarke LA, Hong Y, Eleftheriou D,et al. Endothelial injury and repair in systemicvasculitis of the young. Arthritis&Rheumatism.2010,62(6):1770-1780.
    42. Gilles NC, Alain S, Chantal MB, et al.Circulating microparticles may influence earlycarotid artery remodeling. Journal of Hypertension.2010,28(4):789-796.
    43. Bulut D, Maier K, Bulut-Streich N, et al. Circulating endothelial microparticlescorrelate inversely with endothelial function in patients with ischemic left ventriculardysfunction.J Card Fait.2008,14(4):336-340.
    44. Tramontano AF, O’Leary J, Black AD, et a1. Statin decreases endothelialmicroparticle release from human coronary artery endothelial cells: implication forthe Rho-kinase pathway. Biochem Biophys Res Commun2004;320:34-8.
    45. Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium.Am J Med2004;117:109–117.
    46. Widlansky ME, Gokce N, Keaney JF, et al. The clinical implications of endothelialdysfunction. J Am Coll Cardiol2003;42:1149–1160.
    47. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis.Circulation2004;109:27–32.
    48. John S, Schlaich M, Langefelm M, et al. Increased bioavailability of nitric oxide afterlipid lowering therapy in hypercholesterolemic patients: a randomized,placebo-controlled, double blind study.Circulation1998;98:211–216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700