不同常规实验操作和饲育环境对Wistar大鼠的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research on the Effects of Different Routine Experimental Procedures and Rearing Environment on Wistar Rats
  • 作者:吴剑平
  • 论文级别:硕士
  • 学科专业名称:动物学
  • 学位年度:2011
  • 导师:杨斐
  • 学科代码:071002
  • 学位授予单位:复旦大学
  • 论文提交日期:2011-04-01
摘要
目的:
     环境因素与实验动物的福利水平密切相关。常规实验操作和饲育环境是可能影响动物福利的环境因素中最重要的两种因素。评价这些环境因素对动物的影响将有助于提高实验动物的福利水平。但目前有关这方面的系统研究均很少见。本研究即通过观察不同的常规实验操作(腹腔注射、肌肉注射、灌胃、剪尾采血、尾静脉切割采血、硬固定和软固定)和饲育环境(屏障环境中采用普通开放饲养笼饲育、屏障环境中采用独立通风笼具(IVC)饲育、普通环境中采用IVC饲育)对Wistar大鼠生理稳态的影响,初步分析这些环境因素对Wistar大鼠福利的影响及对相关实验研究可能会造成的背景性干扰。
     方法:
     1.将Wistar大鼠按给药操作类别进行分组,分别对各组动物进行腹腔注射、肌肉注射、灌胃3种操作,连续处理7天,测定这些操作对Wistar大鼠神经内分泌指标[皮质酮(CORT)、β-内啡肽(β-EP)]、免疫指标[白介素-2(IL-2)、白介素-4(IL-4)、γ-干扰素(IFN-γ)、γ-干扰素/白介素-4(IFN-γ/IL-4)]、白细胞相关指标[白细胞总数(WBC)、中性粒细胞比例(WLCR)、淋巴细胞比例(WSCR)]、红细胞相关指标[红细胞总数(RBC)、血红蛋白含量(HGB)、红细胞压积(HCT)]和应激蛋白[C-反应蛋白(CRP)]与应激分子(hsp72mRNA表达量)的影响,并评价动物福利状态。
     2.将Wistar大鼠按采血操作类别进行分组,分别对各组动物进行剪尾采血和尾静脉切割采血,连续处理7天,同样测定这些操作对Wistar大鼠神经内分泌指标、免疫指标、白细胞相关指标、红细胞相关指标、应激蛋白和应激分子的影响,评价动物福利状态。
     3.将Wistar大鼠按固定操作类别进行分组,分别对各组动物进行硬固定和软固定操作,连续处理7天,同样测定这些操作对Wistar大鼠神经内分泌指标、免疫指标、白细胞相关指标、红细胞相关指标、应激蛋白和应激分子的影响,评价动物福利状态。
     4.将Wistar大鼠按不同的饲育环境进行分组,动物分别饲养在屏障环境设施内的普通开放饲养笼中、屏障环境设施内的IVC中和普通环境设施内的IVC中,各组均饲养45天,之后测定各组Wistar大鼠神经内分泌指标(CORT、β-EP)、免疫指标[白介素-1α(IL-1α)、白介素-1β(IL-1β)、IL-2、IL-4、白介素-10(IL-10)、白介素-13(IL-13)、IFN-γ、IFN-γ/IL-4、单核细胞趋化因子-1(MCP-1)、肿瘤坏死因子-α(TNF-α)、Fractalkine]、白细胞相关指标(WBC、WLCR、WSCR)、红细胞相关指标(RBC、HGB、HCT)、生化指标[总蛋白(TP)、白蛋白(ALB)、白球比(A/G)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、肌酐(CREA)、血尿素氮(BUN)、尿酸(UA)、钙(Ca)、磷(P)、钾(K)、钠(Na)、氯(Cl)]的水平,分析不同的饲育环境对动物福利的影响。
     结果:
     1.与对照组比较,腹腔注射操作造成Wistar大鼠CORT、IFN-γ、IFN-γ/IL-4、WSCR和肝脏hsp72mRNA表达量的升高,β-EP、CRP、IL-2、WBC和WLCR的降低;肌肉注射造成Wistar大鼠CORT、FN-γ、IFN-γ/IL-4、WSCR、RBC、HGB和hsp72mRNA表达量的升高,β-EP、CRP、IL-2、WBC和WLCR的降低;灌胃操作造成Wistar大鼠CORT、IFN-γ、IFN-γ/IL-4和hsp72mRNA表达量的升高,β-EP、CRP、IL-2、WBC、WLCR和HCT的降低,且差异均有显著性(P<0.01或P<0.05)。三种给药操作之间的比较显示,腹腔注射组的CORT、IL-2和hsp72mRNA表达量高于肌肉注射组;腹腔注射组的IFN-γ/IL-4低于灌胃组;肌肉注射组的RBC、HGB和HCT高于灌胃组,其IL-2低于灌胃组,且差异均有显著性(P<0.01或P<0.05)。
     2.与对照组比较,剪尾采血组的CORT、IFN-γ、IFN-γ/IL-4.WLCR和hsp72mRNA表达量升高,(3-EP、CRP、IL-2、WSCR、HGB和HCT降低;尾静脉切割采血组的CORT、IFN-γ、IFN-γ/IL-4和hsp72mRNA表达量升高,β-EP、WBCWSCR、HGB和HCT降低,且差异均有显著性(P<0.01或P<0.05)。两个采血组之间比较显示,剪尾采血组的IFN-γ/IL-4、WLCR和hsp72mRNA相对表达量高于尾静脉切割采血组;其CRP、IL-4和WSCR低于尾静脉切割采血组,且差异均有显著性(P<0.01或P<0.05)。
     3.与对照组比较,硬固定组的CORT、CRP、IL-2、IFN-γ/IL-4、RBC、HGB、HCT和hsp72mRNA表达量升高,β-EP、IL-4和WBC降低;软固定组的CRP、IL-2、IFN-γ/IL-4、RBC、HGB、HCT和hsp72mRNA表达量升高,β-EP、IL-4和WBC降低,且差异均有显著性(P<0.01或P<0.05)。两固定组之间比较显示,硬固定组的CORT、CRP IFN-γ、IFN-γ/IL-4、RBC、HGB、HCT和hsp72mRNA表达量均高于软固定组,其WBC水平低于软固定组,且差异均有显著性(P<0.01或P<0.05)。
     4.屏障环境中采用IVC饲育组(简称屏障环境+IVC组)与屏障环境中采用普通开放饲养笼饲育组(简称屏障环境组)比较,屏障环境+IVC组的IL-1β、Fractalkine、BUN、Ca和Ca/P高于屏障环境组,其CORT、IL-1α、IL-2、TNF-α、LIX、WBC和CREA(?)低于屏障环境组,且差异均有显著性(P<0.01或P<0.05)。普通环境中采用IVC饲育组(简称普通环境+IVC组)与屏障环境组比较,普通环境+IVC组的IL-lα、Fractalkine、RBC、HGB、HCT、TP、ALB、UA、Ca、Ca/P、K和CO2高于屏障环境组,其CORT、MCP-1、TNF-α、LIX、GLU和CREA低于屏障环境组,且差异均有显著性(P<0.01或P<0.05)。屏障环境+IVC组与普通环境+IVC组比较,屏障环境+IVC组的IL-1β、IL-10、MCP-1、RBC、HGB、HCT和BUN高于普通环境+IVC组,屏障环境+IVC组的IL-1a、WBC、ALB、ALT、UA和K低于普通环境+IVC组,且差异均有显著性(P<0.01或P<0.05)。
     结论:
     本研究表明,各种常规实验操作和不同的饲育环境对Wistar大鼠神经内分泌、免疫、血液生理等指标均有不同程度的影响。其中各种常规实验操作均使Wistar大鼠神经内分泌功能出现紊乱,免疫功能不同程度受抑,增加了动物对相关疾病的易感性,采血和固定操作还会破坏大鼠红细胞的生理平衡。可见,各种常规实验操作均会对Wistar大鼠的福利产生不利影响。比较同类实验操作对动物福利的影响程度发现,尾静脉切割采血优于剪尾采血,软固定优于硬固定。三种不同的饲育环境对Wistar大鼠福利的影响程度也不一致。采用屏障环境开放饲养笼饲育,大鼠容易受到各种室内环境因素的干扰,使动物健康受到潜在威胁。普通环境中采用IVC饲育,容易造成动物的缺氧,并会使动物的红细胞相关指标和肝、肾等器官的代谢功能出现异常。屏障环境中采用IVC饲育,对大鼠肾脏的代谢指标有一定影响。综合比较这三种饲育环境,屏障环境中采用IVC饲育为最佳动物饲育方式,屏障环境中采用开放饲养笼次之,普通环境中采用IVC对动物福利的损害最大,不推荐使用。此外,各种常规实验操作和饲育环境的不同所造成的Wistar大鼠各系统指标的变化,均可能会对相关实验研究产生一定的背景性干扰。本研究中采用的神经内分泌、免疫、血液生理生化指标、应激蛋白和应激分子能够反映动物的整体福利状况,可作为实验动物福利水平评价指标体系的一部分。
Objective:
     There is a close relationship between environmental factors and laboratory animal welfare. Routine experimental procedures and rearing environment are two of the more important environmental factors that may affect laboratory animal welfare. Evaluating the effects of these environmental factors on laboratory animal will help to improve animal welfare. However, at present systemic research on these aspects are very rare. The research observed the influences of different routine experimental procedures and rearing environment on the physiological homeostasis of Wistar rats, and preliminarily analyzed these environmental factors on the welfare of Wistar rats and the background-interference which may be induced to related research.
     Methods:
     1. Wistar rats were divided into three groups by the type of dosing procedures, then the procedures of Intraperitoneal injection (group Inl), intramuscular injections (group In2) and intragastric injection (group In3) were separately executed to each group of the animals. After continuously handled for seven days, the neuroendocrine parameters(CORT, (3-EP), immune parameters (IL-2, IL-4, IFN-y, IFN-γ/IL-4),white blood cell index (WBC, WLCR, WSCR), red blood cell index (RBC, HGB, HCT),stress protein (CRP) and stress molecules(hsp72 mRNA expression) were measured to analyze the effects of these procedures on the welfare of Wistar rats.
     2. Wistar rats were divided into two groups by the type of blood sampling, then the procedures of blood sampling by tail tip cutting(group Bsl) and blood sampling by tail vein incision(group Bs2) were separately executed to each group of the animals. After continuously handled for seven days, the neuroendocrine parameters, immune parameters, white blood cell index, red blood cell index, stress protein and stress molecules were measured to analyze the effects of these procedures on the welfare of Wistar rats.
     3. Wistar rats were divided into two groups by the type of restraint, then the procedures of hard restraint (group Rel) and soft restraint (group Re2) were separately executed to each group of the animals. After continuously handled for seven days, the neuroendocrine parameters, immune parameters, white blood cell index, red blood cell index, stress protein and stress molecules were measured to analyze the effects of these procedures on the welfare of Wistar rats.
     4. Wistar rats were divided into three groups by the type of rearing environment. Then the animals were separately raised by ordinary breeding cage in barrier environment (group P), individually ventilated cage (IVC) in barrier environment (group PI) and IVC in conventional environment (group TI). After raised for forty-five days, the neuroendocrine parameters(CORT,β-EP), immune parameters(IL-la, IL-1(3, IL-2, IL-4, IL-10, IL-13, IFN-γ, IFN-γ/IL-4, MCP-1, TNF-a, Fractalkine, LIX),white blood cell index(WBC, WLCR, WSCR),red blood cell index(RBC, HGB, HCT) and biochemical parameters (TP, ALB, A/G, ALT, AST, CREA, BUN, UA, Ca, P, K, Na, Cl)were measured to analyze the effects of different rearing environment on the welfare of Wistar rats.
     Results:
     1. Compared with control group, the level of CORT, IFN-γ, IFN-γ/IL-4, WSCR, hsp72 mRNA expression significantly increased and the level of P-EP, CRP, IL-2, WBC, WLCR significantly decreased in group Inl. Compared with control group, the level of CORT, IFN-γ, IFN-γ/IL-4, WSCR, RBC, HGB, hsp72 mRNA expression significantly increased and the level ofβ-EP, CRP, IL-2, WBC, WLCR significantly decreased in group In2. Compared with control group, the level of CORT, IFN-y, IFN-γ/IL-4, hsp72 mRNA expression significantly increased and the level ofβ-EP, CRP, IL-2, WBC, WLCR, HCT significantly decreased in group In3. Compared with group In2, group Inl showed higher levels of CORT, IL-2 and hsp72 mRNA expression. Compared with group In3, group In1 showed lower levels of IFN-y/IL-4. Compared with group In3, group In2 showed higher levels of RBC, HGB and HCT, lower levels of IL-2. All the differences in this research were significant.
     2. Compared with control group, the level of CORT, IFN-y, IFN-y/IL-4, WLCR, hsp72 mRNA expression significantly increased and the level ofβ-EP, CRP, IL-2, WSCR, HGB, HCT significantly decreased in group Bsl. Compared with control group, the level of CORT, IFN-y, IFN-γ/IL-4 and hsp72 mRNA expression expression significantly increased and the level ofβ-EP, WBC, WSCR, HGB, HCT significantly decreased in group Bs2. Compared with group Bs2, group Bsl showed higher levels of IFN-y/IL-4, WLCR and hsp72 mRNA expression, lower levels of CRP, IL-4 and WSCR. All the differences in this research were significant.
     3. Compared with control group, the level of CORT, CRP, IL-2, IFN-y/IL-4, RBC, HGB, HCT, hsp72 mRNA expression significantly increased and the level ofβ-EP, IL-4 and WBC significantly decreased in group Rel. Compared with control group, the level of CRP, IL-2, IFN-y/IL-4, RBC, HGB, HCT and hsp72 mRNA expression significantly increased and the level ofβ-EP, IL-4 and WBC significantly decreased in group Re2. Compared with group Re2, group Rel showed higher levels of CORT, CRP IFN-y, IFN-γ/IL-4, RBC, HGB, HCT and hsp72 mRNA expression, lower levels of WBC. All the differences in this research were significant.
     4. Compared with group P, group PI showed higher levels of IL-1β, Fractalkine, BUN, Ca and Ca/P, lower levels of CORT, IL-la, IL-2, TNF-a, LIX, WBC and CREA. Compared with group P, group TI showed higher levels of IL-la, Fractalkine, RBC, HGB, HCT, TP, ALB, UA, Ca, Ca/P, K and CO2, lower levels of CORT, MCP-1, TNF-a, LIX, GLU and CREA. Compared with group TI, group PI showed higher levels of IL-1β, IL-10, MCP-1, RBC, HGB, HCT and BUN, lower levels of IL-la, WBC, ALB, ALB, UA and K. All the differences in this research were significant.
     Conclusion: The studies showed that the neuroendocrine, immune and blood physical indexes of Wistar rats were varyingly affected by these routine experimental procedures and different rearing environments. All the routine experimental procedures have induced neuroendocrine disorder and immune suppression in Wistar rats, and increased susceptibility to diseases in the animals. Furthermore, the red blood physiological homeostasis of the rats was destroyed by blood sampling and restraint procedures. These results indicate that routine experimental procedures could induce negative influence on the welfare of Wistar rats. Comparing the same type of the procedures on the effects of animal welfare, blood sampling by tail vein incision is better than blood sampling by tail tip cutting, soft restraint is better than hard restraint. The three different rearing environments also differently affected the welfare of Wistar rats. The rats reared in the breeding cage in barrier environment easily interfered by different kinds of external environmental factors that may make potential threats to their health. The rats reared in IVC in conventional environment prone to anoxia and may induce abnormal of the anabolic function of their liver, kidney and other organs. The rats reared in IVC in barrier environment made little influence on their metabolic function. Comparing the three different kinds of rearing environment, rearing animal in IVC in barrier environment is the best rearing method, rearing animal in ordinary breeding cage in barrier environment is the second choice, rearing animal in IVC in conventional environment is not recommended. Furthermore, these changes may induce background-interference on some experimental results. The neuroendocrine, immune, blood physiological and biochemical indexes, stress protein and stress molecules that involved in the experiments can be used to evaluate the welfare of laboratory animals.
引文
[1]李卫华,于丽萍,黄保续,等.国际动物福利现状及分析[J].中国家禽.2004,26(17):3.
    [2]王禄增,于洪涛,董婉维,等.实验动物福利立法的必要性和可行性[J].中国比较医学杂志.2004,14(5):2.
    [3]Spangenberg EM, Augustsson H, Dahlborn K, et al. Housing-related activity in rats:effects on body weight, urinary corticosterone levels, muscle properties and performance[J]. Lab Anim.2005,39(1):45-57.
    [4]Reinhardt V. Common husbandry-related variables in biomedical research with animals[J]. Lab Anim.2004,38(3):213-235.
    [5]Hurst JL, Barnard CJ, Tolladay U, et al. Housing and welfare in laboratory rats: effects of cage stocking density and behavioural predictors of welfare[J]. Anim Behav. 1999,58(3):563-586.
    [6]Jp B, Nd B, C S. Laboratory Routines Cause Animal Stress[Z].2004:43,42-51.
    [7]Gartner K, Buttner D, Dohler K, et al. Stress response of rats to handling and experimental procedures [J]. Lab Anim,1980,14(3):267-274.
    [8]Saibaba P, Sales GD, Stodulski G, et al. Behaviour of rats in their home cages: daytime variations and effects of routine husbandry procedures analysed by time sampling techniques[J]. Lab Anim,1996,30(1):13-21.
    [9]刘云会.应激的概念[J].日本医学介绍,2001,22(12):3.
    [10]織田敏彦.应激与神经内分泌系统[J],日本医学介绍.2001,22(12):3.
    [11]侯静,杨军平.心理应激与下丘脑-垂体-肾上腺-免疫轴功能关系的研究进展[J].实用临床医学,2006,7(11):3.
    [12]林钟婷,朱静,翁银标,等.热休克蛋白70的研究进展[J].中国畜牧兽医,2007,34(3):67-70.
    [13]任宝波,王玉艳,王纯净,等.HSP70家族的分类及基因结构与功能[J].动物医学进展,2005,26(1):4.
    [14]Campisi J, Leem T H, Fleshner M. Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system[J]. Cell Stress Chaperones,2003,8(3):272-286.
    [15]Garcia A, Marti O, Valles A, et al. Recovery of the hypothalamic-pituitary-adrenal response to stress. Effect of stress intensity, stress duration and previous stress exposure[J]. Neuroendocrinology,2000,72(2):114-125.
    [16]陈家旭,杨建新,赵歆,等.慢性束缚应激大鼠下丘脑β-内啡肽变化及中药复方对其的影响[J].中国医药学报,2004,19(2):3.
    [17]Rhodes B, Furnrohr BG, Vyse TJ. C-reactive protein in rheumatology:biology and genetics [J]. Nat Rev Rheumato,2011.
    [18]周光炎,主编.免疫学原理[Z].上海:上海科学技术出版社,2007:87.
    [19]徐唯,黄彬.运动与IFN-γ和IL-4[J].中国医疗前沿(上半月),2008,3(9):2.
    [20]刘加洪,王英年,赵云峰,等.Th1-Th2平衡失调与人类疾病关系及其相关治疗研究现状[J].青岛大学医学院学报,2002,38(4):3.
    [21]袁芳,刘继文,连玉龙,等.应激对大鼠免疫功能的影响[J].中国职业医学,2005,32(6):3.
    [22]邵枫,林文娟.应激对免疫作用机制的研究进展[J].心理学动态,1999(3):1.
    [23]张媛,黄文英.应激与免疫[J].中国临床康复,2006,10(26):3.
    [24]张缨.β-内啡肽的免疫调节作用与运动[J].中国运动医学杂志,2003,22(6):4.
    [25]颜军,毛文忠,翟一飞,等.中小负荷运动对心理应激大鼠beta-内啡肽和皮质酮的影响[J].中国心理卫生杂志,2007,21(4):4.
    [26]李俭春.C反应蛋白:心血管病的预报因素还是致病因子?[C].乌鲁木齐:2006.
    [27]Morton DB, Jennings M, Buckwell A, et al. Refining procedures for the administration of substances [J]. Lab Anim,2001,35(1):1-41.
    [28]Diehl KH, Hull R, Morton D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes [J]. JOURNAL OF APPLIED TOXICOLOGY,2001,21(1):15-23.
    [29]Fitzner TM, Petersen MH, Dragsted N, et al. The impact of different blood sampling methods on laboratory rats under different types of anaesthesia[J]. Lab Anim,2006,40(3):261-274.
    [30]Nahas K, Provost JP, Baneux P, et al. Effects of acute blood removal via the sublingual vein on haematological and clinical parameters in Sprague-Dawley rats[J]. Lab Anim,2000,34(4):362-371.
    [31]Christensen SD, Mikkelsen LF, Fels J J, et al. Quality of plasma sampled by different methods for multiple blood sampling in mice[J]. Lab Anim,2009,43(1): 65-71.
    [32]Van den Berg CL, Lamberts RR, Wolterink G, et al. Emotional and footshock stimuli induce differential long-lasting behavioural effects in rats; involvement of opioids[J]. Brain Res,1998,799(1):6-15.
    [33]田小芸,恽时锋,胡玉红,等.独立通风笼盒(IVC)的工作原理及国内外研究进展[J].实验动物科学,2007,24(4):4.
    [34]Castelhano-Carlos MJ, Baumans V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats[J]. Lab Anim,2009,43(4): 311-327.
    [35]金花,莫雷.应激对免疫功能的影响及其调控手段[J].中国运动医学杂志,2004,23(1):5.
    [36]肖春梅,尹玲.中小负荷运动及慢性情绪应激对免疫机能的影响[J].北京体育大学学报,2007,30(7):3.
    [37]Bartchewsky WJ, Martini MR, Masiero M, et al. Effect of Helicobacter pylori infection on IL-8, IL-lbeta and COX-2 expression in patients with chronic gastritis and gastric cancer[J]. Scand J Gastroenterol,2009,44(2):153-161.
    [38]Moorchung N, Srivastava AN, Gupta NK, et al. The role of mast cells and eosinophils in chronic gastritis[J]. Clin Exp Med,2006,6(3):107-114.
    [39]张锋.046一种新的趋化因子—Fractalkine[J].国外医学(免疫学分册),2002,25(3):4.
    [40]游天禄,朱妙珍.Fractalkine及其临床意义[J1.国外医学(泌尿系统分册),2001,21(5):3.
    [41]李政,孙子林Fractalkine与肾脏疾病[J].国际内科学杂志,2007,34(11):4.
    [42]Krohn TC, Hansen AK. Mice prefer draught-free housing[J]. Lab Anim,2010, 44(4):370-372.
    [43]Lipman NS, Corning BF, Saifuddin M. Evaluation of isolator caging systems for protection of mice against challenge with mouse hepatitis virus [J]. Lab Anim,1993, 27(2):134-140.
    [44]Valzelli L. The "isolation syndrome" in mice[J]. Psychopharmacologia,1973, 31(4):305-320.
    [45]谭力,缪洪明,卢忠燕,等.单核细胞趋化蛋白-1在糖尿病肾病中的作用[J].生命的化学,2008,28(6):4.
    [46]高继东,林伟.高原地区老年糖尿病患者红细胞改变分析[J].青海医学院学报,2005,26(2):3.
    [47]潘新福,白永泽.宁夏健康成人红细胞值和血红蛋白含量调查[J].实用医技杂志,2007,14(3):2.
    [48]田小芸,颜培实,恽时锋,等.IVC-B型独立通风笼盒系统运行时的微环境 分析[J].中国比较医学杂志,2006,16(9):4.
    [49]周青,徐如祥,张世忠,等.高温高湿环境下运动后人体血红蛋白和红细胞比容的改变[J].中华神经医学杂志,2005,4(3):3.
    [50]李顺英,何智坚,陈素柔,等.妊高征患者血钙尿素氮肌酐水平及尿素氮/肌酐比值的变化[J].中国实用妇科与产科杂志,2003,19(1):2.
    [51]陈文彬,潘祥林,主编.诊断学[Z].北京:人民卫生出版社,2005:380.
    [52]刘薇薇.慢性心衰血尿酸、尿素氮、肌酐水平及尿素氮/肌酐比值变化[J].华夏医学,2006,19(2):2.
    [53]涂宏海,张汝学,贾正平,等.三康胶囊对缺氧小鼠糖代谢和HPA轴功能的影响[J].解放军药学学报,2009,25(3):5.
    [55]刘明林,武亚昆.环境因素对实验动物造成的影响[C].广州:2007.
    [56]冷扬.几种环境因素对实验动物的影响[C].海口:2005.
    [57]王艳蓉,孙淑华,杨旭,等.实验动物的环境与福利[J].中国比较医学杂志,2009,19(2):4.
    [58]甄瑞峰,唐灵.FKN与疾病的研究进展[J].医学综述,2009,15(20):4.
    [54]鲍彰,郑敏. Fractalkine及其受体与皮肤病[J].国外医学(皮肤性病学分册),2002,28(6):3.
    [59]李锋,王作仁. Fractalkine与肿瘤[J].现代肿瘤医学,2009,17(5):3.
    [60]潘迪光,李志梁,刘映峰,等.趋化因子Fractalkine与心肌细胞缺血再灌注损伤[J].中华高血压杂志,2007,15(9):4.
    [61]唐灵,甄瑞峰,刘树娇,等.血清fractalkine因子与2型糖尿病肾病的相关性研究[J].中国全科医学,2010,13(33).
    [62]董怡,张卓莉.白细胞介素-1家族在类风湿关节炎和骨关节炎中的作用[J].中华风湿病学杂志,2004,8(5):2.
    [63]张玲,余绍祖,吴国祥,等.大鼠脑缺血再灌注后TNF-α、IL-β及细胞间粘附分子-1 mRNA的表达[J].卒中与神经疾病,2001,8(2):3.
    [64]厉小梅,李向培,汪国生,等.关节炎患者血清肿瘤坏死因子α的检测及意义[J].安徽医学,2002,23(6):2.
    [65]蒋志坚,曹文涛,石巍.溃疡性结肠炎患者血清TNF-α、IL-1β的临床意义[J].中国现代医生,2009,47(16):2.
    [66]唐剑,张康,莫丕立,等.老年急性心肌梗死患者血液γ-干扰素水平变化的研究[J].广西医学,2007,29(11):3.
    [67]谢辉,杨亦荣,黄慧聪,等.慢性前列腺炎组织中IL-1β、TNF-α和NGF的表达[J].中国男科学杂志,2009,23(5):3.
    [68]李晓辉,周敏,徐酉华,等.免疫性血管炎时IL-1β、IL-6、TNF-α与血小板变化的研究[J].临床儿科杂志,2009,27(8):5.
    [69]林杨,叶山东.单核细胞趋化蛋白-1与糖尿病动脉粥样硬化的关系[J].国际内科学杂志,2007,34(7):5.
    [70]张东军,孙志坚,马志俊,等.肾综合征出血热血清单核细胞趋化蛋白-1、E-选择素、细胞间黏附分子-1、γ-干扰素、白细胞介素-10变化的临床意义[J].中华实用诊断与治疗杂志,2010,24(1):4.
    [71]胡艳,吕安林,温俊娜,等.单核细胞趋化蛋白-1与急性冠状动脉综合征的相关性[J].中国临床保健杂志,2008,11(3):2.
    [72]Clough G, Wallace J, Gamble MR, et al. A positive, individually ventilated caging system:a local barrier system to protect both animals and personnel[J]. Lab Anim,1995,29(2):139-151.
    [73]Renstrom A, Bjoring G, Hoglund AU. Evaluation of individually ventilated cage systems for laboratory rodents:occupational health aspects[J]. Lab Anim,2001,35(1): 42-50.
    [74]Reeb-Whitaker CK, Paigen B, Beamer WG, et al. The impact of reduced frequency of cage changes on the health of mice housed in ventilated cages [J]. Lab Anim,2001,35(1):58-73.
    [75]Burn CC, Peters A, Day MJ, et al. Long-term effects of cage-cleaning frequency and bedding type on laboratory rat health, welfare, and handleability:a cross-laboratory study[J]. Lab Anim,2006,40(4):353-370.
    [76]Renstrom A, Bjoring G, Hoglund AU. Evaluation of individually ventilated cage systems for laboratory rodents:occupational health aspects[J]. Lab Anim,2001,35(1): 42-50.
    [77]王洪宝,战大伟,江其辉,等.IVC与屏障级设施检测探讨[J].实验动物科学,2007,24(1):3.
    [78]纪素玲,田发益,米玛顿珠.缺氧对大鼠脑线粒体能量代谢的影响[J].中国兽医杂志,2006,42(5):2.
    [79]徐丽君.缺氧性肝病的研究进展[J].同济大学学报(医学版),2010,31(5):118-120.
    [80]陈平圣,李静.缺氧与肝纤维化[J].中华肝脏病杂志,2010,18(8):569-571.
    [81]施正良,仲晓萍,饶江宁.IVC应用研究初报[J].上海实验动物科学,2004,24(2):2.
    [1]Olsson IAS, Dahlborn K.Improving housing conditions for laboratory mice:a review of'environmental enrichment'[J]. Laboratory Animals,2002,36:243-270.
    [2]Eric H, Anne A, Sue VW. Environmental Enrichment for Laboratory Rodents[J]. ILAR Journal,2005,46(2):148-161.
    [3]Spangenberg EMF, Augustsson H, Dahlborn K, et al. Housing-related activity in rats:effects on body weight, urinary corticosterone levels, muscle properties and performance[J]. Laboratory Animals,2005,39:45-57.
    [4]Kasanen IHE, Inhila KJ, Nevalainen JI, et al. A novel dietary restriction method for group-housed rats:weight gain and clinical chemistry characterization[J]. Laboratory Animals,2009,43:138-148.
    [5]Joint Working Group on Refinement. Refinements in rabbit husbandry[J]. Laboratory Animals,1993,27:301-329.
    [6]Rooney N, Gaines S, Hiby E. A practitioner's guide to working dog welfare[J]. Journal of Veterinary Behavior,2009,4:127-134.
    [7]Hannah MBS, Malcolm RG, Mauvis G, et al. Refinements in husbandry, care and common procedures for non-human primates[J]. Laboratory Animals,2009, 43 (Supplement 1):1-47.
    [8]Williams TD, ReadmanGD, Owen SF. Key issues concerning environmental enrichment for laboratory-held fish species[J]. Laboratory Animals 2009; 43: 107-120.
    [9]杨斐,胡樱,许兰文.小鼠福利受损模型的建立及营养干预作用的研究[J].实验动物与比较医学,2008,2(2):74-79.
    [10]胡樱,许兰文,杨斐,等.音乐、色彩干预对制动小鼠福利的影响[J].实验动物与比较医学,2007,27(2):71-76.
    [11]Rushen J. Some issues in the interpretation of behavioural responses to stress. In:Biology of Animal Stress:Implications for Animal Welfare(Moberg GP, Mench JA, eds). Oxon:CAB International,2000:23-42.
    [12]Balcombe JP, Barnard ND, Sandusky C. Laboratory Routines Cause Animal Stress[J]. Laboratory Animal Science,2004,43 (6):42-51.
    [13]MICHEL C, CABANAC M. Opposite Effects of Gentle Handling on Body Temperature and Body Weight in Rats[J]. Physiology & Behavior,1999,67: 617-622.
    [14]Reeb-Whitaker CK, Paigen B, Beamer WG, et al. The impact of reduced frequency of cage changes on the health of mice housed in ventilated cages[J]. Laboratory Animals,2001,35:58-73.
    [15]LABORATORY ANIMAL BREEDERS ASSOCIATION OF GREAT BRITAIN LIMITED (LABA) and LABORATORY ANIMAL SCIENCE ASSOCIATION (LASA). Guidelines for the care of laboratory animals in transit[J]. Laboratory Animals,1993,27:93-107.
    [16]Report of the Transport Working Group established by the Laboratory Animal Science Association (LASA). Guidance on the transport of laboratory animals [J]. Laboratory Animals,2005,39:1-39.
    [17]Capdevila S, Giral M, Ruiz JL, et al. Acclimatization of rats after ground transportation to a new animal facility[J]. Laboratory Animals,2007,41:255-261.
    [18]杨斐,胡樱.短途运输应激对Wistar大鼠的影响[J].中国实验动物学报,2009,17:279-283.
    [19]Reinhardt V. Common husbandry-related variables in biomedical research with animals[J]. Laboratory Animals,2004,38:213-235.
    [20]FIRST REPORT OF THE BVA/FRAME/RSPCA/UFAW JOINT WORKING GROUP ON REFINEMENT. Removal of blood from laboratory mammals and birds [J]. Laboratory Animals,1993,27:1-22.
    [21]Morton DB, Jennings M, Buckwell A, et al. Refining procedures for the administration of substances [J]. Laboratory Animals,2001,35:1-41.
    [22]Diehl KH, Hull R, Morton D, et al. A Good Practice Guide to the Administration of Substances and Removal of Blood, Including Routes and Volumes[J]. JOURNAL OF APPLIED TOXICOLOGY,2001,21:15-23.
    [23]Durschlag M, Wurbel H, Stauffacher M, et al. Repeated Blood Collection in the Laboratory Mouse by Tail Incision—Modification of an Old Technique[J]. Physiology & Behavior,1996,60:1565-1568.
    [24]Fluttert M, Dalm S, Oitzl MS. A refined method for sequential blood sampling by tail incision in rats. Laboratory Animals[J],2000,34:372-378.
    [25]Lepschy M, Touma C, Hruby R, et al. Non-invasive measurement of adrenocortical activity in male and female rats[J]. Laboratory Animals,2007,41: 372-387.
    [26]Thanos PK, Cavigelli SA, Michaelides M, et al. A Non-Invasive Method for Detecting the Metabolic Stress Response in Rodents:Characterization and Disruption of the Circadian Corticosterone Rhythm[J]. Physiological Research,2009, 58:219-228.
    [27]Flecknell PA. Refinement of animal use-assessment and alleviation of pain and distress[J]. Laboratory Animals,1994,28:222-231.
    [28]Hawkins P. Recognizing and assessing pain, suffering and distress in laboratory animals:a survey of current practice in the UK with recommendation[J]. Laboratory Animals,2002,36:378-395.
    [29]Kort WJ, Hekking-Weijma JM, TenKate MT, et al. A microchip implant system as a method to determine body temperature of terminally ill rats and mice[J]. Laboratory Animals,1998,32:260-269.
    [30]Farah 10, Kariuki TM, King CL, et al. An overview of animal models in experimental schistosomiasis and refinements in the use of non-human primates[J]. Laboratory Animals,2001,35:205-212.
    [31]Seabra R, Bhogal N.Hospital infections, animal models and alternatives[J]. Eur J Clin Microbiol Infect Dis,2009,28:561-568.
    [32]http://news.bbc.co.uk/2/hi/uk_news/england/norfolk/8435062.stm.
    [33]邹明进.“3R”福利与实验动物[J].检验检疫科学,2007,17:70-72.
    [34]OECD. OECD Guideline for Testing of Chemicals. Draft Proposal for a New Test Guideline 436:Acute Inhalation Toxicity-Acute Toxic Class (ATC) Method[EB].2008, November:1-29.
    [35]OECD. OECD Guideline for Testing of Chemicals. Draft Proposal for a New Test Guideline 433:Acute Inhalation Toxicity-Fixed Concentration Procedure[EB]. DRAFT GUIDELINE,8 June,2004 (2nd Version):1-24.
    [36]ECVAM. ESAC statement on the OECD adopted test guidelines for acute oral toxicity testing[EB]. October,2007:1-4.
    [37]NICEATM-ICCVAM. Up-and-down procedure for acute oral toxicity[EB].2008.
    [38]OECD. OECD Guideline for Testing of Chemicals. Test No.425:Acute oral toxicity-up-and-down-procedure[EB].2006.
    [39]ICCVAM. Validation study of in vitro cytotoxicity test methods[EB].2006.
    [40]ICCVAM. Recommendations and agency responses[EB].2009.
    [41]OECD. Guidance Document on Acute Oral Toxicity. Environmental Health and Safety Monograph Series on Testing and Assessment No.24 [EB]. ENV/JM/MONO,2001,4:1-24.
    [42]OECD. OECD Guideline for Testing of Chemicals. Test No.420:Acute Oral Toxicity-Fixed Dose Procedure [EB].2001.
    [43]Heuvel MJ, Clark DG, Fielder RJ, et al. The international validat ion of a fixed-dose procedure as an alternative to the classical LD50 test[J]. Food Chemistry & Toxicology,1990,28:469-482.
    [44]DienerW, Schlede E. Acute Toxic Class Methods:Alternatives to LD/LC50 Tests[J]. ALTEX,1999,16:129-134.
    [45]OECD. OECD Guideline for Testing of Chemicals. Test No.423:Acute Oral Toxicity-Acute Toxic Class Method[EB].2001.
    [46]Schlede E, Mischke U, Diener W. The international validat ion study of the acute class method (oral) [J]. Archives of Toxicology,1995,69:659-670.
    [47]EPA. Integrated Summary Report for Validation of a Test Method for Assessment of Pubertal Development and Thyroid Function in Juvenile Male Rats as a Potential Screen in the Endocrine Disruptor Screening Program Tier-1 Battery[EB]. September, 2007:1-128.
    [48]EPA. Integrated Summary Report for Validation of 15-day Intact Adult Male Rat Assay as a Potential Screen in the Endocrine Disruptor Screening Program Tier-1 Battery [EB]. August 29,2007:1-223.
    [49]EPA. Integrated Summary Report for the Validation of an Androgen Receptor Binding Assay as a Potential Screen in the Endocrine Disruptor Screening Program[EB]. November7,2007:1-236.
    [50]ICCVAM. Background Review Document-Current Status of Test Methods for Detecting Endocrine Disruptors:In VitroAndrogen Receptor Binding Assays[EB]. April,2002:1-7.
    [51]ICCVAM. Addendum to ICCVAM Evaluation of In Vitro Test Methods for Detecting Potential Endocrine Dirsruptors:Estrogen Receptor and Androgen Receptor Binding and Transcriptional Activation Assays[EB].2006.
    [52]CERI. Draft pre-validation report of TA assay using HeLa-hER-9903 to detect estrogenic activity[EB]. version, October06,2006:1-188.
    [53]ICCVAM. Validation of Xenobiotic Detection Systems, Inc. LUMI-CELL assay of estrogenic activity[EB].2008.
    [54]Hecker M, Timm G, Giesy JP. Development and prevalidation of a H295R cell line screening test to evaluation toxicantinduced effects on steroidogenesis[EB].1-58.
    [55]OECD. OECD Guideline for the Testing of Chemicals TG 428:Skin Absorption: in vitro Method[EB].2004.
    [56]ECVAM. ESAC Statement on the validity of in vitro tests for skin irritation[EB].2007.
    [57]OECD. OECD Guideline for Testing of Chemicals. Draft proposal for a New Guideline:In Vitro Skin Irritation:Reconstructed Human Epidermis (RhE) Test (Version 6) [EB].2009.
    [58]ECVAM. ESAC statement on the scientific validity of in vitro tests for skin irritation testing[EB].2008.
    [59]ECVAM. ESAC statement on the conclusions of the ICCVAM retrospective study on organotypic in vitro assays as screening tests to identify potential ocular corrosives and severe irritants as determined by US EPA, EU(R41) and UN GHS classifications in a tiered testing strategy, as part of a weight of evidence approach[EB].2007.
    [60]NICE. TM-ICCVAM. In vitro test methods for detecting ocular corrosives and severe irritants[EB].2008.
    [61]NICEATM. Current status of in vitro test methods for identifying ocular corrosives and severe irritants:Bovine Corneal Opacity and Permeability test method (background review document) [EB].2006.
    [62]NICEATM. ICCVAM test method evaluation report:in vitro ocular toxicity test methods for identifying severe irritants and corrosives[EB].2006.
    [63]OECD. OECD Guideline for Testing of Chemicals. Draft Proposal for a New Guideline:The Bovine Corneal Opacity and Permeability (BCOP) Test Method for Identifying Ocular Corrosives and Severe Irritants[EB]. (version 2),2008.
    [64]Adriaens E, Bytheway H, Wever B. Successful prevalidat ion of the slug mucosal irritation test to assess the eye irritation potency of chemicals [J]. Toxicology in Vitro, 2008,22:1285-1296.
    [65]Gaines DRE, Heath AB, Martin H. Validation of in vitro assays for botulinum toxin:a case study [J]. Developments in Biological Standardization,1999,101: 267-276.
    [66]ICCVAM. Report on the ICCVAM-NICEATM/ECVAM Scientific Workshop on Alternative Methods to Refine, Reduce or Replace the Mouse LD50 Assay for Botulinum Toxin Testing[EB]. Bethesda MD:NIH.2008.
    [67]Sesardic D, Jones RG, Leung T, et al. Detection of antibodies against botulinum toxins[J]. Movement Disorders,2004,19:S85-S91.
    [68]ICCVAM. Report on the ICCVAM-NICEATM/ECVAM Scientific Workshop on Alternative Methods to Refine, Reduce or Replace the Mouse LD50 Assay for Botulinum Toxin Testing[EB]. Bethesda MD:NIH.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700