腺病毒介导的突变型人胰岛素原基因转染人脐带间充质干细胞
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:目前糖尿病已成为仅次于心脑血管病症和癌症的第三大死亡疾病,它是一种影响体内胰岛素和糖含量的疾病,共有两种主要类型,分别为Ⅰ型和Ⅱ型,其共同特征是胰岛β细胞损伤或不能产生足够的胰岛素或机体不能有效的利用胰岛素,所以胰岛素就被作为治疗糖尿病的特效药应用于临床。由于随时需要注射胰岛素,给患者带来了极大的不便,目前国际上对糖尿病患者进行胰岛移植和基因治疗研究成为了热点。但面临的主要问题是供体不足,免疫排斥,胰岛素基因的转染效率和表达调控等。人脐带来源的间充质干细胞可以较易获得和纯化,并且易于基因修饰,可以将外源性基因转染间充质干细胞,建立一种安全的基因治疗的“细胞载体”。研究表明间充质干细胞还有免疫抑制功能,它不但在体外可以抑制T淋巴细胞增殖反应,在体内实验中也表现出了类似免疫抑制剂的作用,所以利用它作为细胞载体可以避免免疫排斥问题。并且我们利用基因重组的方法将胰岛素原基因进行改造,使其可以在非β细胞(间充质干细胞)中高效表达。相信我们的研究可以为Ⅰ型糖尿病的治疗提供一些有力的实验依据。目的:将人胰岛素原基因进行两个部位的突变,通过腺病毒介导将其转染到人脐带间充质干细胞中,研究其表达分泌人胰岛素的能力。方法:应用RT-PCR的方法从健康流产胎儿胰腺组织中扩增pINS的cDNA序列,利用重叠延伸PCR方法对pINS基因在A链-C肽和C肽-B链的连接处进行两个部位的突变,产生Furin蛋白酶酶切位点。采用AdEasy~(TM)系统构建重组腺病毒pAdINS、pAdINS-M2和pAdGFP。分离培养人脐带间充质干细胞,并对其生长特性,免疫表型,分化能力及Furin蛋白酶的表达进行鉴定。pAdINS、pAdINS-M2和pAdGFP感染人脐带间充质干细胞后,利用荧光显微镜和流式细胞仪检测它们的感染效率,并确定最佳的感染复数(multiplicities of infection,MOI)。以感染复数为100的pAdINS、pAdINS-M2或pAdGFP感染人脐带间充质干细胞1、3、5、7、10天后,RT-PCR检测人胰岛素原基因在人脐带间充质干细胞中表达;Western blot检测成熟人胰岛素和人C-肽在人脐带间充质干细胞中的表达;免疫荧光实验检测感染后48小时人胰岛素在人脐带间充质干细胞中的表达:ELISA实验检测感染后1、3、5、7、10天人胰岛素和人C-肽的分泌。结果:自健康流产胎儿胰腺组织中扩增出364 bp的pINS cDNA,连接入穿梭质粒中,构建重组腺病毒。pAdINS-M2经扩增纯化后滴度达到2.57×10~(10) PFU/mL,pAdINS的滴度为1.25×10~(10)PFU/mL,对照病毒AdGFP为4.85×10~9 PFU/mL。成功的从脐带组织中分离培养出间充质干细胞,绘制生长曲线,约3天扩增一代。细胞周期检测,大部分细胞都处于G0-G1期(占94.39%),小部分处于G2-M期(4.15%)和S期(1.45%)。在合适的诱导培养条件下,分离培养的人脐带间充质干细胞能够分化为脂肪细胞和成骨细胞。应用RT-PCR方法在人脐带间充质干细胞中检测到了Furin蛋白酶的存在,表明我们构建的含Furin蛋白酶酶切位点的人胰岛素原基因在此细胞中可以被切割产生成熟的人胰岛素。通过重组腺病毒pAdINS、pAdINS-M2和pAdGFP以不同感染复数感染人脐带间充质干细胞,利用荧光显微镜和流式细胞仪检测感染效率,确定MOI 100为最佳的感染复数。以MOI=100的pAdINS、pAdINS-M2或pAdGFP感染人脐带间充质干细胞1、3、5、7、10天后,RT-PCR方法检测到在pAdINS和pAdINS-M2感染的UC-MSCs中人胰岛素原基因都有表达;Western blot的结果显示pAdINS感染的UC-MSCs表达人胰岛素原,而pAdINS-M2感染的UC-MSCs中检测到了人胰岛素和C.肽,pAdGFP感染的UC-MSCs中两者都没有检测到表达。免疫荧光也检测了pAdINS-M2感染后48小时人胰岛素和C-肽在人脐带间充质干细胞胞浆中表达:ELISA检测感染后1、3、5、7、10天培养上清中人胰岛素和C-肽的浓度。结果显示,自感染后24小时目的基因就开始表达,第3-5天表达量达高峰,一周后表达有所下降。与RT-PCR和Western blot结果一致。结论:成功构建含有Furin蛋白酶切位点的人胰岛素原基因腺病毒重组体(pAdINS-M2);分离培养了人脐带源间充质干细胞,并对其进行了鉴定;重组腺病毒pAdINS-M2感染人脐带间充质干细胞后,表达分泌成熟人胰岛素和C-肽。可以为Ⅰ型糖尿病的治疗提供一些有力的实验依据。
Background:At present,diabetes already has become being the third big death diseases only inferior to the heart blood vessel of brain illness and cancer.It is a disease affecting insulin and sugar content,divided into two main species types:type 1 and type 2.Their common characteristic is the pancreatic beta cells loss or the body can not produce enough insulin or effectively use insulin.Type 1 diabetes is an insulin-dependent,autoimmune disorder in which the insulin producing beta cells of the pancreatic islets are selectively destroyed.Islet transplant is considered as the optimal treatment for typeⅠdiabetes.However,because of the need to provide a large number of donor islet sufficient to achieve the purpose of clinical diabetes,after transplantation at the same time,also has the immune rejection problems,these to some extent have hindered its development.Objective:Our study was based on the characteristics of diabetes,using human umbilical cord-derived mesenchymal stem cell characteristics,mutative human proinsulin gene transfected into human umbilical cord-derived mesenchymal stem cells,caused it to express the mature human insulin. Methods and Results:A novel approach to produce insulin-secreting cell products using human umbilical cord-derived mesenchymal stem cells(UC-MSCs) carrying a human proinsulin gene was developed in the present study.In this study,we first constructed an adenovirus vector with a mutated human proinsulin gene and then transfected UC-MSCs with the vector.The transfected UC-MSCs were analyzed for their biological characteristics including the immune phenotype,the ability of differentiation and the expression of furin protease in comparison with normal UC-MSCs.Transcription and expression of the proinsulin gene in transfected UC-MSCs were detected by RT-PCR,western blot and immunofluorescence.And the secretion of mature insulin and C-peptide was examined by ELISA.Conclusion:We generated the human proinsulin gene containing the recognition site of the furin protease,and then constructed it to the adenovirus vector system(pAdINS-M2).After pAdINS-M2 infected the UC-MSCs,human mature insulin and C-peptide were express.It may be provide some powerful experiment basis for the treatment of typeⅠdiabetes.
引文
[1] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science, 1999,284 (5411):143-147.
    [2] Richards M,Huibregtse BA,Caplan AI,et al. Marrow-derived progenitor cell injections enhance new bone formation during distraction[J].J Orthop Res,1999,17(6):900-908.
    [3] Scuteri A,Cassetti A,Tredici GAdult mesenchymal stem cells rescue dorsal root ganglia neurons from dying[J].Brain Res,2006, 111 6(1 ):75-81.
    [4] Satake K,Lou J,Lenke LGMigration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue[J].Spine,2004,29(18):1971-1979.
    [5] Wynn RF,Hart CA,Corradi-Perini C,et al.A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J].Blood,2004,104(9):2643-2645.
    [6] Silva FH,Nardi NB.From leading role to the backstage:mesenchymal stem cells as packaging cell lines for in situ production of viral vectors[J].Med Hypotheses,2006,67(4):922-925.
    [7] Maitra B,Szekely E,Gjini K,et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells.Bone Marrow Transplant.2004;33:597-604.
    [8] Aggarwal S, Pittenger M.Human mesenchymal stem cells modulate allogeneic immue cell responses.Blood,2005; 105:2214-2219.
    [9] Beyth S,Borovsky Z,Merorach D,et al.Human mesenchymal stem cell alter antigen-presenting unresponsiveness cell maturation and induce T cell .Blood,2005;105:2214-2219.
    [10] Studeny M, Marini FC, Champlin RE, et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumor[J]. Cancer Res,2002,62(13):3603-3608.
    [11] Schwarz EJ,Reger RL,Alexander GM,et al.Rat marrow stromal cells rapidly transduced with a self-inactivating retrovirus synthesize L-DOPA in vitro[J].Gene Ther,2001,8(16):1214-1223.
    [12]Studeny M,Marini FC,Dembinski JL,et al.Mesenchymal stem cells:potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents[J].J Natl Cancer Inst,2004,96(21):1593-1603.
    [13]Tirode F,Laud-Duval K,Prieur A,et al.Mesenchymal stem cell features of Ewing tumors[J].Cancer Cell,2007,11(5):421-429.
    [14]Haddada H,Cordier L,Perricaudet M.Gene therapy using adenovirus vectors.Curr Top Microbiol Immunol.1995;199(3):297-306.
    [15]Saudek F.Gene therapy in the treatment of diabetes mellitus.Cas Lek Cesk 2003;142(90):523-527
    [16]Chan L,Fujimiya M,Kojima H.In vivo gene therapy for diabetes mellitus.Trends Mol Med 2003;9(10):430-435
    [17]吴文君,邹大进.糖尿病基因治疗的研究进展[J].中国临床康复,2003,7(24):3356-3357
    [18]Oka K,Chan L.Liver-directed gene therapy for dyslipidemia and diabetes.Curr Atheroscler Rep 2004;6(3):203-206
    [19]Song S,Goudy K,Campbell-Thompson M,et al.Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type Ⅰ diabetes in NOD mice.Gene Ther 2004;11(2):181-186
    [20]Ajamian F,Titok T,Suhorada E,et al.Hepatic expression of the human insulin gene reduces glucose levels in vivo in diabetic mice model.Diabetes Metab 2003;29(4):424-429
    [21]Kolodka TM,Finegole M,Moss L,et al.Gene therapy for diabetes mellitus in rats by hepatic expression of insulin.Proc Natl Acad Sci USA 1995;92:3293-3297
    [22]Stewart C,Taylor NA,Green IC,et al.Insulin-releasing pituitary ceils as a model for somatic cell gene therapy in diabetes mellitus.J Endocrinol 1994;142(2):339-343
    [23]Docherty K,Clark AR,Scott V,et al.Metabolic control of insulin gene expression and biosynthesis.Proc Nutr Soc 1991;50(3):553-558
    [24]Yuhua Lu,Zhiwei Wang,Mingyan Zhu.Human Bone Marrow Mesenchymal Stem Cells Transfected with Human Insulin Genes Can Secrete Insulin Stably.Annals of Clinical & Laboratory Science 2006; 36:127-136
    [25] Imler JL. Adenovirus vectors as recombinant viral vaccines. Vaccine. 1995; 13:1143-51.
    [26] Ketner G, Spencer F, Tugendreich S, et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone.Proc Natl Acad Sci U S A. 1994; 91:6186-90.
    [27] Bert AJ, Haddara W, Prevec L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3.Proc Natl Acad Sci U S A. 1994; 91:8802-6.
    [28] He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adeno viruses. Proc Natl Acad Sci U S A. 1998; 95:2509-14.
    [29] Zeng M, Smith SK, Siegel F, et al. AdEasy system made easier by selecting the viral backbone plasmid preceding homologous recombination. Biotechniques. 2001; 31:260-2.
    [30]Bloomgarden ZT. New approaches to insulin treatment and glucose monitoring [J]. Diabetes Care .1999, 22 (12): 2078 - 2082.
    [31] Halban PA , Kahn SE , Lernmark A et al. Gene and cell replacement therapy in the treatment of type 1 diabetes [J]. Diabetes. 2001, 50 (10):2181 - 2191.
    [32] Jeong Hwan Kim, Si-Nae Park, and Hwal Suh. Generation of insulin-producing human mesenchyma stem cells using recombinant adeno-associated virus. Yonsei Medicla Journal. 2007, 48(1): 109-119.
    [33] Sib SR, Mohua M, Samir B et al . A new cell secreting insulin [J]. Endocrinology , 2003 , 144 (4) : 1585 - 1593.
    [34] Lee HC, Kim SJ, Kim KS, et al. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature.2000; 408:483—488
    [35] Shah R, Jindal RM. Reversal of diabetes in the rat by injection of hematopoietic stem cells infected with recombinant adeno-associated virus containing the preproinsulin II gene. Pancreatology. 2003; 3:422-428
    [36] Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Scienc 2004;303:1198-1201.
    [37]Pittenger MF,Martin BJ.Mesenchymal stem cells and their potential as cardiac therapeutics.Circ Res 2004;95:9-20
    [38]Bruder SP,Jaiswal N,Haynesworth SE.Growth kinetics,self-renewal,and the osteogential of purified human mesenchymal stem cells during extensive subculativtion and following cryopre servation[J].J Cell Biochem,1997,64(2):278.
    [39]付文玉,路艳蒙,朴英杰.人骨髓间充质干细胞的分化与端粒酶活性[J].第一军医大学学报,2001,21(11):801.
    [40]Lu LL,Liu YJ,Yang SG,Zhao QJ,Wang X,Gong W,et al.Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials.Haematologica 2006;91:1017-1026.
    [41]Song L,Chau L,Sakamoto Y,Nakashima J,Koide M,Tuan RS.Electric field-induced molecular vibration for noninvasive,high-efficiency DNA transfection.Mol Ther 2004;9:607-616.
    [42]Schwarz EJ,Alexander GM,Prockop DJ et al.Multipotential marrow stromal cells transduced to produce L-DOPA:engraftment in a rat model of Parkinson disease.Hum Gene Ther 1999;10:2539-2549.
    [43]Lee K,Majumdar MK,Buyaner D et al.Human mesenchymal stem cells maintain transgene expression during expansion and differentiation.Mol Ther 2001;3:857-866.
    [44]Allay JA,Dennis JE,Haynesworth SE et al.LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors.Hum Gene Ther 1997;8:1417-1427.
    [45]Flanagan JR,Becker KG,Ennist DL,et al.Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus.Mol Cell Biol.1992;12:38-44.
    [46]Challita PM,Kohn DB.Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo.Proc Natl Acad Sci U S A.1994;91:2567-71.
    [47] Haas DL, Lutzko C, Logan AC et al. The Moloney murine leukemia virus repressor binding site represses expression in murine and human hematopoietic stem cells. J Virol. 2003; 77:9439-50.
    [48] Smith KT, Shepherd AJ, Boyd JE, et al. Gene delivery systems for use in gene therapy: an overview of quality assurance and safety issues. Gene Ther. 1996; 3:190-200.
    [49] Otto E, Jones-Trower A, Vanin EF, Stambaugh K et al. Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum Gene Ther. 1994; 5:567-75.
    [50] Kintsurashvili E, Zhou D, Wheeler MB, et al. Geneticengineering of glucose-stimulated insulin secretion in Chinesehamster ovary cells. Artif Cells Blood Substit Immobil Biotechno.1998; 126:329- 340
    [51] Xin-Yu QIN, Kun-Tang SHEN, Lu-Jun SONG, Xin ZHANG, and Ze-Guang HAN. Regulated production of mature insulin in rat hepatoma Cells: insulin production is up-regulated by dexamethasone and down-regulated by insulin. Acta Biochim Biophys Sin .2006; 38: 89-94
    [1] American Diabetes Association: Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.Diabetes Care 1997, 20, 1183-1197.
    [2] Eisenbarth GS: Type I diabetes mellitus:a chronic autoimmune disease. N. Engl. J.Med. 1986,314,1360-1368.
    [3] Bach JF: Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr. Rev. 1994,15,516-542.
    [4] Eizirik DL, Mandrup-Poulsen T: A choice of death: the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia 2001, 44, 2115-2133.
    [5] Mathis D,vence L,Benoist C:B-cell death during progression to diabetes.Nature 2001,414,792-798.
    [6] Dupre J, Kolb H: Cyclosporin-induced remission of IDDM after early intervention - association of 1 yr of cyclosporin treatment with enhancedinsulin secretion. Diabetes 1988,37, 1574-1582.
    [7] Feutren G, Assan R, Karsenty G et al.: Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset - results of a multicenter double-blind trial. Lancet 1986, 2, 119-124.
    [8] Wood JR, Moreland EC, Volkening LK, Svoren BM, Butler DA, Laffel LM:Durability of insulin pump use in pediatric patients with Type 1 diabetes. Diabetes Care 2006, 29, 2355-2360.
    [9] Colino AE, Lopez CM, Alvarez GMA, Alonso BM, Martin FM, Barrio CR: Continuous subcutaneous insulin infusion in pediatric patients with Type 1 diabetes mellitus. An. Pediatr. (Bare) 2006, 64, 21-27.
    [10] Valensi P, Moura 1, Le Magoarou M, Paries J, Perret G, Attali, JR: Short-term effects of continuous subcutaneous insulin infusion treatment on insulin secretion in non-insulin-dependent overweight patients with poor glycaemic control despite maximal oral anti-diabetic treatment. Diabetes Metab. 1997, 23, 51-57.
    [11] Chantelau E, Spraul M, Muhlhauser 1, Gause R, Berger M: Long-term safety, efficacy and side-effects of continuous subcutaneous insulin infusion treatment for Type 1 (insulin-dependent) diabetes mellitus: a one centre experience. Diabetologia 1989,32,421-426.
    [12] Calabrese G, Bueti A, Santeusanio F et al. : Continuous subcutaneous insulin infusion treatment in insulin-dependent diabetic patients: a comparison with conventional optimized treatment in a long-term study.Diabetes Care 1982, 5, 457-465.
    [13] Harrison LC: The prospect of vaccination to prevent Type 1 diabetes. Hum. Faccin. 2005, 1, 143-150.
    [14] Yang LJ: Liver stem cell-derived 0-cell surrogates for treatment of Type 1 diabetes.Autoimmun. Rev. 2006, 5, 409-413.
    [15] Cheung AT, Dayanandan B, Lewis JT et al.: Glucose dependent insulin release from genetically engineered K cells. Science 2000, 290, 1959-1962.
    [16] Ber 1, Shternhall K, Perl S et al.: Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol.Chem. 2003, 278, 31950-31957.
    [17] Lu Y, Wang Z, Zhu M: Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann. Clin. Lab. Sci. 2006, 36, 127-136.
    [18] Janghorbani M, Feskanich D, Willett WC,Hu F: Prospective study of diabetes and risk of hip fracture: the nurses' health study. Diabetes Care 2006, 29, 1573-1578.
    [19] Kawasaki E, Awata T, Ikegami H et al.: Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and Type 1 diabetes in Asian populations. Am.J. Med. Genet. A 2006, 140, 586-593.
    [20] Zheng W, She JX: Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and Type 1 diabetes. Diabetes 2005, 54, 906-908.
    [21] Bottazzo GE Florin -Christensen A, Doniach D: Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 1974, 2, 1279-1283.
    [22] Palmer JP, Asplin CM, Clemons P et al.:Insulin antibodies in insulin-dependent diabetic patients before insulin-treatment.Science 1983, 222, 1337-1339.
    [23] Kuglin B, Gries FA, Kolb H: Evidence of IgG autoantibodies against human proinsulin in patients with IDDM before insulin treatment. Diabetes 1988, 37, 130-132.
    [24] Baekkeskov S, Aanstoot HJ, Christgau Set al.: Identification of the 64 K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990, 347,151-156.
    [25] Baekkeskov S, Nielsen JH, Marner B,Bilde T, Ludvigsson J, Lernmark A:Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 1982, 298,167-169.
    [26] Lan MS, Wasserfall C, Maclaren NK, Notkins AL: IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus.Proc. Natl Acad. Sci. USA 1996, 93, 6367-6370.
    [27] Christie MR, Tun RY, Lo SS et al.: Antibodies to GAD and tryptic fragments of islet 64 K antigen as distinct markers for development of IDDM. Studies with identical twins. Diabetes 1992, 41, 782-787.
    [28] Akashi T, Nagafuchi S, Anzai K et al.:Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int. Immunol. 1997, 9,1159-1164.
    [29] Kolb H, Burkart V, Appels B et al.:Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J. Autoimmun. 1990, 3, 117-120.
    [30] Panagiotopoulos C, Qin H, Tan R,Verchere CB: Identification of a 0-cell-specific HLA class I restricted epitope in Type 1 diabetes. Diabetes 2003, 52, 2647-2651.
    [31] The Diabetes Control and Complications Trial Research Group.The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329: 977-86.
    [32] Wang PH, Lau J, Chalmers TC.Meta-analysis of effects of intensive blood-glucose control on late complications of type-1 diabetes. Lancet. 1993; 341: 1306-9.
    [33] Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy:the Epidemiology of Diabetes Interventions and Complications(EDIC)study.JAMA.2003;290:2159-67.
    [34]Steffes MW,Sibley S,Jackson M,Thomas W.Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial.Diabetes Care.2003;26:832-6.
    [35]Sutherland DE,Gores PF,Farney AC,Wahoff DC,Matas AJ,Dunn DL,Gruessner RW,Najarian JS.Evolution of kidney,pancreas,and islet transplantation for patients with diabetes at the University of Minnesota.Am J Surg.1993;166:456-91.
    [36]Bretzel RG,Browatzki CC,Schultz A,Brandhorst H,Klitscher D,Bollen CC,Raptis G,Friemann S,Ernst W,Rau WS,Hering BJ.Clinical islet transplantation in diabetes mellitus-report of the Islet Transplant Registry and the Giessen Center experience.Diab Stoffw.1993;2:378-390.
    [37]徐刚,袁敏生.胰岛细胞移植的现状与前景[J].中国糖尿病杂志,2001,9:51.
    [38]Scharfmann R.Alternative sources of beta cells for cell therapy of diabetes.Eur J Clin Invest.2003;33:595-600.
    [39]Thule PM,Liu J,Phillips LS.Glucose regulated production of human insulin in rat hepatocytes[J].Gene Ther,2000,7(3):205.
    [40]Ramiya VK,Maraist M,Aofors KE,et al.Reversal of insulin - dependent diabetes using islets generated in vitro from pancreatic stem cells[J].Nat Med,2000,6:278.
    [41]YangL,Li S,Hatch H,et al.In vitro trans - differentiation of adult hepatic stem cells into pancreatic endocrine hormone producing cells[J].Proc Natl Acad SCi USA,2002,99(12):8078.
    [42]Zulewski H,Abraham EJ,Gerlach MJ,et al.Multipotential nestin - positive stem cells isolated from adult pancreatic islets differentiate exvivo into pancreatic endocrine,exocrine,and hepatic phenotypes[J].Diabetes,2001,50(3):521.
    [43]陈立波,姜小兵,王春友,等.骨髓基质干细胞分化为胰岛样细胞的形态学观察[J].中华实验外科杂志,2004,21(2):184.
    [44]Dennis JE,Caplan AI.Porous ceramic vehicles for rat - marrow - derived(Rattus norvegicus) osteogenic cell delivery:effects of pre - treatment with fibronectin or laminin[J].J Oral Implantol,1993,19(2):106.
    [45]Minguell JJ,Erices A,Conget P.Mesenchymal stem cells[J].Exp Biol Med,2001,226(6):507.
    [46]Bruder SP,Jaiswal N,Haynesworth SE.Growth kinetics,self- renewal,and the osteogential of purified human mesenchymal stem cells during extensive subculativtion and following cryopre servation[J].J Cell Biochem,1997,64(2):278.
    [47]付文玉,路艳蒙,朴英杰.人骨髓间充质干细胞的分化与端粒酶活性[J].第一军医大学学报,2001,21(11):801.
    [48]Friedenstein AJ,Shapiro-Piatetzky Ⅱ,Petrakova KV.Osteogenesis in transplants of bone marrow cells.J Embryol Exp Morphol 1966;16:381-390.
    [49]Friedenstein AJ,Chailakhjan RK,Lalykina KS.The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet 1970;3:393-403.
    [50]Owen M.Marrow stromal stem cells.J Cell Sci Suppl 1988;10:63-76.
    [51]Friedenstein AJ,Deriglasova UF,Kulagina NN et al.Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method.Exp Hematol 1974;2:83-92.
    [52]Kuznetsov SA,Friedenstein AJ,Robey PG.Factors required for bone marrow stromal fibroblast colony formation in vitro.Br J Haematol 1997;97:561-570.
    [53]Gronthos S,Simmons PJ.The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro.Blood 1995;85:929-940.
    [54]Kuznetsov SA,Krebsbach PH,Satomura K et al.Singlecolony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo.J Bone Miner Res 1997;12:1335-1347.
    [55]Simmons PJ,Torok-Storb B.Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody,STRO-1.Blood.1991;78:55-62.
    [56]Simmons PJ,Gronthos S,Zannettino A,Ohta S,Graves SE.Isolation,characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Prog Clin Biol Res. 1994; 389: 271-80.
    [57] Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood. 1991; 78: 2848-53.
    [58] Barry FP, Boynton RE, Haynesworth S, Murphy JM, Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun. 1999; 265: 134-9.
    [59]Barry F, Boynton R, Murphy M, Haynesworth S, Zaia J. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun. 2001; 289: 519-24.
    [60] Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, Mosca JD. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 2003; 10: 228-41.
    [61] Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (mesenchymal stem cells) and stromal cells. J Cell Physiol. 1998; 176: 57-66.
    [62] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284: 143-7.
    [63] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999; 181: 67-73.
    [64] Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000; 28: 875-84.
    [65]De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett. 2003; 89: 267-70.
    [66] Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003; 31: 890-6.
    [67] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411): 143-147.
    [68] Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998; 16: 155-62.
    [69] Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001; 98: 2615-25.
    [70] Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic - adherent cells from human bone marrow [J] . Proc Natl Acad Sci USA, 2000, 97: 3213.
    [71] Vogel W, Grunerach F, Messam CA, et al. Heterogeneity among human bonemarrow derive mesenchymal stem cells and neural progenitor cells [J] .Haematologica, 2003, 88:126.
    [72] Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM, Liu B, Han ZB, Han ZC. Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant. 2005, 14: 311-21.
    [73] Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006; 91: 1017-26.
    [74] Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003; 33: 919-26.
    [75]Kassem M, Ankersen L, Eriksen EF,Clark BF, Rattan SI. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int. 1997; 7: 514-24.
    [76] Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG, Kassem M. Telomerase expression extends the Proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002; 20: 592-6.
    [77] Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM. Lack of telomerase activity in human mesenchymal stem cells. Leukemia. 2003; 17: 1146-9.
    [78] Rattan SIS. Aging outside the body: usefulness of the Hayflick system. In: Kaul SC, Wadwha R, editors. Aging of cells in and outside the body. London: Kluwer Academic Publishers; 2003. p. 1-8.
    [79] Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG, Wang CY. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol. 2002; 20: 587-91.
    [80] Kobune M, Kawano Y, Ito Y, Chiba H, Nakamura K, Tsuda H, Sasaki K, Dehari H, Uchida H, Honmou O, Takahashi S, Bizen A, Takimoto R, Matsunaga T, Kato J, Kato K, Houkin K, Niitsu Y, Hamada H. Telomerized human multipotent mesenchymal cells can differentiate into haematopoietic and cobblestone area-supporting cells. Exp Hematol. 2003; 31: 715-22.
    [81] Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T, Kassem M. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene. 2004; 23: 5095-98.
    [82] Friedenstein AJ, Latzinik NW, Grosheva AG et al. Marrowmicroenvironment transfer by heterotopic transplantation offreshly isolated and cultured cells in porous sponges. ExpHematol 1982; 10: 217-227.
    [83] Herbertson A, Aubin JE. Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures. Bone1997; 21: 491-500.
    [84] Berry L, Grant ME, McClure J et al. Bone-marrow-derived chondrogenesis in vitro. J Cell Sci 1992; 101: 333-342.
    [85] Bruder SP, Caplan AL Discrete stages within the osteogenic lineage are revealed by alterations in the cell surface architecture of embryonic bone cells. Connect Tissue Res 1989; 20: 73-79.
    [86] Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991; 78: 55-62.
    [87] Haynesworth SE, Baber MA, Caplan Al. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992;13:69-80.
    [88]Joyner CJ,Bennett A,Triffitt JT.Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies.Bone 1997;21:1-6.
    [89]Rochop DJ.Marrow stromal cells as stem cells for nonhemato - poietic tissues [J].Science,1997,276(5309):71.
    [90]傅文玉,路艳蒙,朴英杰.入骨髓间充质干细胞的培养及多能性研究[J].中华血液学杂志,2002,23(4):202.
    [91]Sekiya I,Larson BL,Vuoristo,JT,et al.In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis[J].ProcNatl Acad Sci USA,2002,99(7):4397.
    [92]Young RG,Butler DL,Weber W,et al.Use of mesenchymal stem ceils in acollegan matrix for Achilles tendon repair[J].J Orthop Res,1998,16(4):406.
    [93]Kopen GC,Prockop DJ,Phinney DG.Marrow stromal cells migratethroughout forebrain and cerebellum,and they differentiate into astrocytesafter injection into neonatal mouse brains[J].Proc Natl Acad Sci USA,1999,96:10711.
    [94]项鹏,夏文杰,张丽蓉,等。成人骨髓间质干细胞定向诱导为神经元样细胞的研究[J].中国病理生理杂志,2001,17(5):385.
    [95]Mel Tohill,Cristina Mantovani,Mikael Wiberg,et al.Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration.Neuroscience Letters,2004;362:200-203
    [96]Reyes M,Verfaillie CM.Characterization of multipotent adult progenitorcells,a subpopulation of mesenchymal stem cells[J].Ann Ny Acad Sci,2001,938:231.
    [97]Joachim Oswald,Sabine Boxberger,et al.Mesenchymal stem cells can be differentiated into endothelial cells in vitro stem cells.Stem Cells,2004;22:377-384
    [98]Oh SH,Miyazaki M,Kouchi H,et al.Hepatocyte growth factor inducesdifferentiation of adult rat bone marrow cells into a hepatocyte lineage invitro[J].Biochem Biophys Res Commun,2000,279(2):500.
    [99]John M.Luk,P.Ping Wang,Carol K.Lee,J.H.Wang.Hepatic potential of bone marrow stromal cells:Development of in vitro co-culture and intra-portal transplantation models.Journal of immunological methods,2005;305:39-47
    [100] Maitra B,Szekely E,Gjini K,et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells.Bone Marrow Transplant.2004;33:597-604
    [101] Aggarwal S,Pittenger M.Human mesenchymal stem cells modulate allogeneic immue cell responses.Blood,2005; 105:2214-2219
    [102] Beyth S,Borovsky Z,Merorach D,et al.Human mesenchymal stem cell alter antigen-presenting unresponsiveness cell maturation and induce T cell .Blood,2005;105:2214-2219
    [103] Farida D,Pascale P,Claire B,et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood,2003;102(10):3837-3844
    [104] Le Blanc k,Rasmusson I,GOtherstrOm C,et al.Mesenchymal stem cell inhibit the expression of IL-2 receptor(CD25) and CD38 on phytohemagglutinin activated lymphocytes. Scand J Immunol,2004;60:307-315
    [105] Margaret E. Groh, Basabi Maitra, Emese Szekely, and Omer N. Koc. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 2005; 33:928-934
    [106] Mauro K,Sarah G, Julian D,et al.Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their congnate peptide.Blood,2003;101(9):3722-3729
    [107] Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003; 101: 3722-3729
    [108] Di Nicola M,Carlo-stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood,2002;99:3838-3843
    [109] Tse WT,Pendleton JD,Beyer WM,Egalka MC,Guinan EC.Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation.Transplantation,2003;75:389-397
    [110] Meisel R,Zibert A,Laryea M,Gobel U,et al.Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine.Blood,2004; 103:4619-4621
    [111] Margaret E.Groh,Basabi Maitra , Emese Szekely, Omer N.Koc. Human mesenchymal stem cell require monocyte-mediate activation to suppress alloreactive T cells.Experimental Hematology,2005;33:928-934
    [112] Bartholomer A,Sturgeon CSiatskas M,et al.Mesenchyaml stem cell suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.Exp Hematol,2002;30:42-48
    [113] Le Blanc K,Rasmusson I,Sundberg B,et al.Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchyaml stem cells.Lancet,2004;363:1439-1441
    [114] Segev H, Fishman B, Ziskind A, Shuhnan M,Itskovitz-Eldor J: Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 2004, 22, 265-274.
    [115] Bongso A, Fong CY, Ng SC, Ratnam S:Isolation and culture of inner cell mass cells from human blastocysts. Hum. Reprod. 1994, 9, 2110-2117.
    [116] Reubinoff BE, Pera ME Fong CY,Trounson A, Bongso A: Embryonic stem cell lines fmm human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 2000, 18,399-404.
    [117] Thomson JA, Itskovitz-Eldor J, Shapiro SS et al.: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145-1147.
    [118] Thomson JA, Kalishman J, Golos TG et al.isolation of a primate embryonic stem cell line. Proc. NatlAcad Sci. USA 1995, 92, 7844-7848.
    [119] Fujikawa T, Oh SH, Pi L, Hatch HM,Shupe T, Petersen BE: Teratoma formation leads to failure oftreatment for Type I diabetes using embryonic stem cell-derived insulin-producing cells. Am. J. Pathol. 2005, 166, 1781-1791.
    [120] Dean SK, Yulyana Y, Williams G, Sidhu KS, Tuch BE: Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation.2006, 82,1175-1184.
    [121] Hess D, Li L, Martin M et al.: Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol. 2003, 21, 763-770.
    [122] Hori Y, Gu X, Xie X, Kim SK: Differentiation of insulin-producing cells from human neural progenitor cells. PLoSMed. 2005, 2, E103.
    [123] Burns CJ, Minger SL, Hall S et al.: The in vitro differentiation of rat neural stem cells into an insulin-expressing phenotype. Biochem. Biophys. Res. Commun. 2005, 326, 570-577.
    [124] Korbling M, Robinson S, Estrov Z,Champlin R, Shpall E: Umbilical cord blood-derived cells for tissue repair. Cytotherapy. 2005, 7, 258-261.
    [125] Zhao Y, Wang H, Mazzone T: Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp. Cell Res. 2006, 312,2454-2464.
    [126] Tayaramma T, Ma B, Rhode M, Mayer H:Chromatin-remodeling factors allow differentiation of bone marrow cells into insulin-producing cells. Stem Cells 2006, 24, 2858-2867.
    [127] Todorov 1, Nair 1, Ferreri K et al.:Multipotent progenitor cells isolated from adult human pancreatic tissue. Transplant Proc. 2005, 37, 3420-3421.
    [128] Tian C, Bagley J, Cretin N, Seth N,Wucherpfennig KW, Tacomini J: Prevention of Type 1 diabetes by gene therapy. J. Clin. Invest. 2004, 114, 969-978.
    [129] Siatskas C, Chan J, Field J et al.: Gene therapy strategies towards immune tolerance to treat the autoimmune diseases. Curr. Gene Ther. 2006, 6, 45-58.
    [130] Bonner-Weir S, Taneja M, Weir GC et al.: In vitro cultivation of human islets from expanded ductal tissue. Proc. NatlAcad. Sci. USA 2000, 97, 7999-8004.
    [131] Assady S, Maor G, Am it M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M: Insulin production by human embryonic stem cells. Diabetes 2001, 50, 1691-1697.
    [132] Yang L, Li S, Hatch H et al.: In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl Acad. Sci. USA 2002, 99, 8078-8083.
    [133] Bernard C, Berthault ME Saulnier C, Ktorza A: Neogenesis vs. apoptosis as main components of pancreatic p cell mass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 1999, 13, 1195-1205.
    [134] Friday RP, Trucco M, Pietropaolo M: Genetics of Type 1 diabetes mellitus. Diabetes Nutr. Metab. 1999, 12, 3-26.
    [135] Pociot F, McDermott MF: Genetics of Type 1 diabetes mellitus. Genes Immun. 2002, 3, 235-249.
    [136] Hyoty H, Taylor KW: The role of viruses in human diabetes. Diabetologia 2002, 45,1353-1361.
    [137] Gale EA: A missing link in the hygiene hypothesis? Diabetologia.2002, 45, 588-594.
    [138] Ellis TM, Atkinson MA: Early infant diets and insulin-dependent diabetes. Lancet. 1996, 347, 1464-1465.
    [139] Dahlquist GG, Patterson C, Soltesz G: Infections and vaccinations as risk factors for childhood Type 1 (insulin-dependent) diabetes mellitus: a multicentre case control investigation. EURODIAB substudy 2 study group. Diabetologia 2000, 43, 47-53.
    [140] Pasquali L, Fan Y, Trucco M, Ringquist S: Rehabilitation of adaptive immunity and regeneration of Pcells. Trends Biotechnol. 2006, 24, 516-522.
    [141] Trucco M: Is facilitating pancreaticPcell regeneration a valid option for clinical therapy? Cell Transplant. 2006, 15, S75 S84.
    [142] Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC: Sustained [3 cell apoptosis in patients with long-standing Type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005, 48, 2221-2228.
    [143] Meier JJ, Lin JC, Butler AE, Galasso R, Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC: Direct evidence of attempted Pcell regeneration in an 89-year-old patient with recent-onset Type 1 diabetes.Diabetologia 2006, 49, 1838-1844.
    [144] Sordi V, Malosio ML, Marehesi F et al.:Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Blood 2005, 106,419-427.
    [145] Campbell S: Request for applications: islet cell replacement in Type 1 diabetes. Cell Biochem. Biophys. 2004, 40, 23-24.
    [1]Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61:64.
    [2]Fu YS,Cheng YC,Lin MY,et al.Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro:potential therapeutic application for Parkinsonism[J].Stem Cells,2006,24(1):115-124.
    [3]Weiss ML,Troyer DL.Stem cells in the umbilical cord[J].Stem Cell Rev,2006,2(2):155-162.
    [4]El-Badri NS,Hakki A,Saporta S,et al.Cord blood mesenchymal stem cells:Potential use in neurological disorders[J].Stem Cells Dev,2006,15(4):497-506.
    [5]Lu FZ,Fujino M,Kitazawa Y,et al.Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood[J].J Lab Clin Med,2005,146(5):271-278.
    [6]Wang HS,Hung SC,Peng ST,et al.Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord[J].Stem Cells,2004,22(7):1330-1337.
    [7]Lee J,Kuroda S,Shichinohe H,et al.Migration and differentiation of nuclear fluorescence labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice[J].Neuropathology,2003,23:169-180.
    [8]Tondreau T,Meuleman N,Delforge A,et al.Mesenchymal stem cells derive from CD133 positive cells in mobilized peripheral blood and cord:proliferation,Oct-4expression and plasticity[J].Stem cells,2005,23(8):1105-1112.
    [9]Horiguchi S,Takahashi J,Kishi Y,et al.Neural precursor cells derived from human embryonic brain retain regional specificity[J].J Neurosci Res,2004,75:81.
    [10]Erices AA,Allers CI,Conget PA,et al.Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion[J].Cell Transplant,2003,12(6):555-561.
    [11]Goodwin HS,Grunzinger LM,Regan DM,et al.Long term cryostorage of UC blood units:ability of the integral segment to confirm both identity and hematopoietic potential[J].Cytotherapy,2003,5(1):80-86.
    [12]Young JC,Lin K,Hansteen G,et al.CD34+ cells from mobilized peripheral blood retain fetal bone marrow repopulating capacity within the Thy-1+ subset following cell division exvivo[J].Experimental Hematology,27(6):994-1003.
    [13]Mitchell KE,Weiss ML,Mitchell BM,et al.Matrix cells from Wharton's jelly form neurons and glia[J].Stem Cells,2003,21(1):50-60.
    [14]Kim TE,Lee HS,Lee YB,et al.Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotypes in the Nurr1-overexpressing neural stem cell[J].Biochem Biophys Res Commun,2003,305(4):1040-1048.
    [15]袁源,王媛丽,杨树源.人脐带间充质干细胞分离纯化及基本生物学特性研究[J].青岛大学医学院学报,2006,42(2):120-122.
    [16]范存刚,张庆俊,韩忠朝.人脐带间充质干细胞向神经细胞分化的研究[J].中华神经外科杂志,2005,21(7):388-392.
    [17]Fukushima N,Yokouchi K,Kawagishi K.Differential neurogenesis and gliogenesis by local and migrating neural stem cells in the olfactory bulb[J].Neurosci Res,2002,44(4):467-473.
    [18]Mareschi K,Ferrero I,Rustichelli D. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow[J].J Cell Biochem,2006,97(4):744-754.
    [19]Bedard A,Levesque M,Bernier PJ.The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2[J].Eur J Neurosci,2002,16(10): 1917-1924.
    [20]Weiss ML,Mitchell KE,Hix JE,et al.Transplantation of porcine umbilical cord matrix cells into the rat brain[J].Exp Neurol,2003,182:288-299.
    [21]Ma L,Feng XY,Cui BL,et al.Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells[J].Chin Med J(Engl),2005, 118(23): 1987-1993.
    [22]Tse WT,Pendleton JD,Beyer WM,et al.Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implication in transplantation[J].Transplantation,2003,75:389-397.
    [23]Akiyama Y,Radtke C,Kocsis JD.Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells[J].J Neurosci,2002,22:662-663.
    [24]Hofstetter CP,Schwarz EJ,Hess D,et al.Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery[J].Proc Natl Acad Sci USA,2002,99(4):2199-2204.
    [25]Dezawa M,Hoshino M.Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons. Expert Opin Biol Ther,2005,5(4):427-435.
    [26]Cuevas P,Carceller F,Dujovny M,et al. Peripheral nerve regeneration by bone marrow stromal cells[J].Neurol Res,2002,24:634-638.
    [27]Mimura T,Dezawa M,Kanno H,et al.Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats[J].Neurosurg,2004,101(5):806-812.
    [28]Tohill MP,Mann DJ,Mantovani CM,et al.Green fluorescent protein is a stable morphological marker for schwann cell transplants in bioengineered nerve conduits[J]. Tissue Eng, 2004, 10(9-10): 1359-1367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700