结核杆菌Taqman PCR检测方法建立及吉林省鹿结核杆菌MLVA分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹿结核病(Deer TB)是由牛分枝杆菌和人型结核杆菌引起的一种人畜共患传染病。目前全世界人工驯养的鹿大约500万头,鹿结核病的发病率不断上升,给养鹿业带来了巨大的威胁,同时患结核病的鹿也成为人结核病的传染源之一。因此,对鹿结核病的病原检测、基因分型、以及病原耐药性分析对结核病(TB)的防治、公众健康和流行病学研究都非常重要。
     本研究为建立结核分枝杆菌快速鉴别检测方法,根据GENEBANK登录的致病性结核分枝杆菌复合群(MTC1)、人型结核杆菌(M1)和牛分枝杆菌(B1)特有基因序列设计合成引物及探针,构建了pEASE-MTC、pEASE-B1、pEASE-M1三个重组质粒,用于建立Taqman PCR标准曲线,实验结果显示三条标准曲线都具有较高相关性,可在103~108Copies/μL浓度内定量检测临床细菌样本,特异性实验显示建立的荧光PCR快速检测方法对标准质控菌株呈阳性反应,对卡介苗(BCG)及其他微生物样品为阴性反应。对结核分枝杆菌检测灵敏度可达单个菌细胞。对45份PPD试验检测为阳性的临床样本进行荧光定量PCR检测时,36份为阳性;而对PPD检测为阴性的50份临床样本进行检测时,7份为阳性。本研究结果表明,所建立的方法能够用于结核杆菌的鉴别检测,可对由BCG接种或环境中分枝杆菌引起的PPD检测假阳性样本进行鉴别,对TB的快速检测和早期诊断具有重要意义。
     从吉林省养鹿业富有代表性地区的20个鹿场随机采集血清样本1856份作为研究对象,利用结核杆菌Ag85-East6-mpt70抗原多联表达蛋白作为检测抗原,进行酶联免疫检测,调查吉林省鹿结核病流行情况,结果发现吉林省地区鹿群中结核病存在病例,鹿群结核病感染阳性率为17.83%,其中吉林市为23.22%,是吉林省鹿结核病抗体阳性率最高地区,最低地区是松原地区,阳性率仅为11.33%,各地区间阳性率差异显著(p<0.05),不同性别的鹿群结核病的感染率差异显著,除吉林市外其他地区公鹿的阳性率都高于母鹿,不同年龄鹿群结核病的感染率差异显著,仔鹿感染率最低,为12.47%,与育成鹿和成年鹿差异显著,防疫部门应加强防控,防止疫病扩散。采集Taqman PCR检测阳性鹿的组织样本138份,使用斜面培养基进行细菌分离培养,共培养出60株抗酸染色阳性菌,Taqman PCR方法对分离细菌进行鉴定,结果表明,其中48株为致病性结核杆菌,包括牛分枝杆菌43株,人型结核杆菌5株。43株牛分枝杆菌中有5株分离于结核病ELISA检测阴性的样本,5株人型结核杆菌全部分离于ELISA检测阳性的样本,分离培养结果表明,Taqman PCR检测方法的特异性高于ELISA检测。
     评价29个多位点数目可变串联重复序列(MLVA)在吉林省鹿源结核杆菌基因中的多态性,初步建立适合吉林省的MLVA基因分型方法,探讨吉林省地区鹿源结核杆菌的基因型特点。对吉林省鹿群中分离的48株结核分枝杆菌提取基因组DNA。采用PCR方法扩增结核菌基因组中的29个MLVA位点,扩增的产物经毛细管电泳检测后,确定PCR产物片段长度并计算每个菌株不同串联重复位点的拷贝数,评价每个MLVA位点的多态性。利用Hunter-Gaston指数(HGDI)评价不同位点组合对鹿源结核杆菌的分辨能力。MLVA位点多样性(h)分析结果显示:位点QUB3232、QUB11a、QUB18、QUB4156、ETRB、Mtub29和Mtub39无法扩增出稳定的PCR产物,并且在部分菌株中缺失该序列,其余22个位点中,QUB11b位点多态性较好(h≥0.6)。位点ETRA、MIRU4、MIRU23、MIRU31、MIRU39、MIRU40、QUB26、Mtub4、Mtub21为中等多态性(0.6>h>0.3),位点MIRU2、Mtub30和Mtub34多态性较低分别为0.241、0.212和0.037(h≤0.3),其他位点不具有多态性。13个具有多态性的位点与全部22个位点分型能力相同,将48株分离菌分为12个基因型,分型指数H为0.903,多态性超过0.5的6个位点(ETRA、MIRU4、QUB11b. QUB26、Mtub4、Mtub21)将全部菌株分为12个基因型(H=0.903),6个具有多态性的MIRU位点可分为11个基因型(H=0.890), Mtub4、Mtub21、Mtub30和Mtub34位点可将全部菌株分为9个基因型(H=0.857)。实验结果表明,吉林省鹿源结核杆菌与其他国家或地区的结核分枝杆菌在基因分型方面存在差异,应用MLVA分型方法进行鹿结核病分子流行病学研究非常有效,MLVA技术操作简便、重复率高便于普及,可以在鹿结核病流行病学调查研究上发挥重要作用。
     为了解鹿源结核分枝杆菌临床分离菌株对利福平(RFP)、异烟肼(INH)和链霉素(SM)的分子耐药机制,本研究采用Almar Blue微板分析法对分离鉴定的48株鹿源结核分枝杆菌进行药敏分析,筛选出1株耐异烟肼菌株,4株耐链霉素菌株,未发现利福平耐药株,PCR扩增耐药株的rpsL基因片段(830bp)和KatG基因片段(626bp)并测序,通过对耐药基因的测序分析,1株异烟肼耐药菌株在315位点发生碱基突变;耐链霉素菌株中有一株人型结核杆菌未检测到基因突变,其他三株在43位的氨基酸密码子发生突变,密码子由AAG变为AGG。耐药检测结果提示:吉林省鹿群中可能存在一定范围、一定程度的耐药结核分枝杆菌的传播,应加强结核病的耐药监测尤其分子水平的监测,有利于早期发现和预防耐药结核分枝杆菌大规模的扩散,对于控制耐药结核病疫情有重要意义。
Deer tuberculosis (TB) is a chronic bacterial disease of animals and humans caused by Mycobacterium bovis, which is caused by M. tuberculosis and M. bovis. Since the world's population of feeding deer is now up to 5 million, there has been an increasing awareness of the potential threat posed by TB to domesticated deer, and Deer TB is a source of infection for human TB. It is important to identify isolates, genotyping and Drug Resistance of the MTC for epidemiologic and public health considerations and M. tuberculosis to optimize treatment.
     For establishment a method of rapid specific detection TB, the real-time PCR assays for specific detection of pathogenicity Mycobacterium tuberculosis, Mycobacterium tuberculosis hominis and Mycobacterium bovis were developed. The standard recombinant plasmids pEASE-MTC, pEASE-B1, pEASE-M1 were constructed as reference standards used in absolute quantification assaying. The CT values and ln(x) were highly correlated (MTC R2=0.9998, B1 R2=0.997, M1 R2=0.9991). The dynamic range of measurement is 103-108 Copies/μL. The assays have positive result with Standard quality control strains, the detection result of BCG and microorganisms is negative, and the assays could detect single bacterial cells. Upon detecting 45 clinical samples that were positive in PPD test, the results of Taqman-PCR showed 36 to be positive. However, there were 7 positive samples in Taqman-PCR assay of 50 samples, while they showed negative results in PPD test. The result showed a method of rapid specific identification of TB had been successfully established, and this method might be of great significance in the early diagnosis and rapid detection of TB.
     In order to investigate the prevalence of deer Tuberculosis in Jilin province of China, a total of 1856 blood samples from 20 deer farms were examined by ELISA which used Ag85-East6-mpt70 protein as the diagnostic antigen. The result of prevalence survey showed deer tuberculosis exists in Jilin Province at a positive rate of 17.83%, Jilin city had the highest positive rate of 23.22%; the lowest positive rate was 11.33% in the Songyuan region. A significant difference was seen in six geographical areas, different gender and different age groups. The results also showed that prevention and control of the transmission of deer tuberculosis can be enhanced by the efforts of epidemic prevention departments.
     60 strains of acid-fast positive bacilli were cultured from 138 Taqman PCR-detected positive tissue samples by 7H9 medium, including 48 strains of MTBC (43 strains of M.bovis and 5 strains of M.tuberculosis),5 strains of M.bovis which were cultured from ELISA negative samples, and 5 strains of M. tuberculosis which were cultured from ELISA positive samples. The culture result showed Taqman PCR is more specificity than ELISA.
     Let us assess the diversity of 24 MLVA loci in 48 stains of MTBC isolated from deer, and discuss the characteristic of the Mycobacterum tuberculosis from Deer. The genotypic characteristics of MTBC in Jilin province were investigated using MLVA genotyping method. The MLVA loci were amplified by PCR which used extracted genomic DNA of MTBC isolates as template, the amplification products were analysis by CE. The number of copies of tandem repeats of 24 MLVA loci were confirmed based on the length of PCR amplification products. The diversity of 24 MLVA loci was assessed by the number of repeated sequences. The discriminatory power of different MLVA loci complex was assessed by Hunter-Gaston index(HGDI). The results of diversity analysis showed:QUB11b was highly discriminative(h≥0.6), ETRA, MIRU4, MIRU23, MIRU31, MIRU39, MIRU40, QUB26, Mtub4 and Mtub21 loci were moderately discriminative (0.6>h>0.3), MIRU2, Mtub30 and Mtub34 were poorly discriminative(h≤0.3), while the other loci had no diversity.13 diversity loci showed similar discrimination with all 24 MLVA loci, and 7 different genotypes were identified with a genotypic diversity indice of 0.903. The set of the 6 loci with the most polymorphism (h>0.5; ETRA, MIRU4, QUB11b, QUB26, Mtub4, Mtub21) also had the same power as all 24 MLVA loci. The 6 diversity MIRUs loci resolved the 48 isolates into 11 genotypes, with a genotypicdiversity indice of 0.890.4 diversity Mtubs loci resolved the 48 isolates into 9 genotypes, with a genotypicdiversity indice of 0.857. The result of this study indicated that the MTBC from Deer in JiLin province were different from other regions, and MLVA tecnique is very useful for the epidemiological investigation of Deer tuberculosis, so it will exert important function in the epidemiological investigation of Deer tuberculosis.
     A study on Mycobacterium tuberculosis, which clinically isolated the molecular resistance mechanism of RFP, SM and INH, analysed tuberculosis drug susceptibility of 48 strains MTBC by MABA assay. It selected one INH and four SM strains, then amplified and sequenced the rpsL gene fragments(830bp)and KatG gene fragments(626bp) of the 5 strains. The result showed that 1 INH resistant strains eperienced mutation in 315 site of KatG gene(AGC to ACC), while three SM strains had mutation in 43 site of rpsL gene(AAG to AGG) and the other one SM resistant strains did not show any occurrence of mutation. The detection of DR-TB cases indicated that epidemic spreading of DR-TB might exist within a certain scope to some extent in deer farms of Jilin province, so it is necessary to reinforce the surveillance of drug resistance, especially at the molecular level, in order to diagnose the expansion of mycobacterium tuberculosis at an early stage, which is also important to the ability to control the epidemic situation of DR-TB.
引文
I. Dye C, Scheele S, Dolin P, et al.Consensus statement.Global burden of tuberculosis estimated incidence prevalence and mortality by country[J]. WHO obal surveillance and monitoring project. JAMA,1999, 282(7):677-686.
    2. 郭爱珍,陈焕春.牛结核病流行特点及防控措施[J].中国奶牛,2010,11:38-44.
    3. 彭丽,罗永艾.结核病的实验室快速诊断[J].新医学,2005,36(6):359-361.
    4. 端木宏谨.掌握结核病流行趋势指导结核病防治工作[J].中华结核和呼吸杂志,2002,1:1.
    5. Kampmann, B Gaora, V A Snewin, et al. Evaluation of human antimycobacterial immunity using recombinantreporter mycobacteria.[J]. Infect Dis,2000,182:895.
    6. 陈灏珠.实用内科学[M].第12版,北京:人民卫生出版社,2005,534-552.
    7. 刘桂香,邵锡如,田登,等.应用DNA基因诊断白唇鹿结核杆菌的感染[[J].医学动物防制,2002,18(6):293-294.
    8. S Niemann, E Richter, S Rusch-Gerdes. Biochemical and genetic evidence for the transfer of Mycobacterium tuberculosis subsp. caprae Aranaz et al.1999 to the species Mycobacterium bovis Karlson and Lessel 1970 (Approved Lists 1980) as Mycobacterium bovis subsp. caprae comb[[J]. Nov Int J Syst Evol Microbiol,2002,5:52:433.
    9. Jorgensen J B, P Husum, C L Soyrensen. Bovin Tuberculosis on farm [J]. Dansk Vet Tidsk rift,1988, 71:806-808.
    10. Whiting T L, S V Tessario. An Abattoir Study of Tuberculosis in a Herd of Farmed Elk [J]. M Can Vet J, 1994,35:497-501.
    II. Bolske, G L England, H Wahlstroym, et al. Bovine Tuberculosis in Swedish Deer Farms: Epidemiological Investigations and Tracing Using Restriction Fragment Analysis [J]. Vet Rec,1995, 136:414-417
    12. Essey M A. Bovine Tuberculosis in Captive Cervidae in the United States. In:Bovin Tuberculosis in Cervidae Proceedings of a Symposium [J]. Lab Sci,2001,31(3):279-283.
    13. Marion Stermann, Ludwig Sedlacek, Silvia Maass,, et al. A Promoter Mutation Causes Differential Nitrate Reductase Activity of Mycobacterium tuberculosis and Mycobacterium bovis [J]. J Bacteriol, 2004,186:2856-2861.
    14. Goulding J N. Genome-Sequence-Based Fluorescent Amplified-Fragment Length Polymorphism analysis of Mycobacterium tuberculosis [J]. J clinical Microbiology,2000,38(3):1121—1126.
    15. Huebner RE.Schein MF,Bass JB Jr.The tuberculin skin test[J]. Clin Infect Dis,1993,17(6):968-975.
    16. Van Soolingen. Molecular epidemiology of tuberculosis and other mycobacterial infection main methodologies and achievements [J]. Journal of Internal Medicine 2001; 249:1-26.
    17. Van Embden JD.Molecular epidemiology of tuberculosis coming of age.Int [J] Tuberc Lung Dis,2000,4: 285-286.
    18. Torrea G. Evaluation of tuberculosis transmission in a community by 1 year of systematic typing of Mycobacterium tuberculosis clinical isolates [J]. J. Clin. Microbiol 1996; 34:1043-1049.
    19. Pineda-GarciaL, Fcrrcra, A Hoffncr SE. DNA fingerprintin of mycobacterium tuberculosis strains from Patients with pulmonary tuberculosis in Honduras [J]. J Clin Microbiol,1997,35:2393 2397.
    20. Gutierrez M C, Vincent V, Auhcrt D,et al.Molecular fingerprinting of mycobacterium tuberculosis and risk factors for tuberculosis transmission in paris, France, and surrounding area [J]. J Clin Microbiol, 1998,36:486-492.
    21. Wurtz R.Specimen.contamination in Mycobacteriology laboratory detected byPseudo-outbreak of multidrug-resistant tuberculosis analysis epidemiology and confirmation by molecular technique [J]. J. Clin. Microbiol 1996; 34:1017-1019.
    22. T C Victor, R Warren, J L Butt,et al.Genome and MIC stability in Mycobacterium tuberculosis and indications for continuation of use of isoniazid in multidrug-resistant tuberculosis [J]. J Med Microbiol, 1997,46:847.
    23. Animal health division (NEW ZEALAND), Possum research and cattle tuberculosis. Surveillance,1986, 13:18-38.
    24. Corner A L. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk[J]. Vet. Microbiol,2006,112:303-312.
    25. Cousins D V, Bastida R, Cataldi A, et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex:Mycobacterium pinnipedii sp. nov[J]. Int. J. Syst. Evol. Microbio, 2003,53:1305-1314.
    26. Cousins D V. Mycobacterium bovis infection and control in domestic livestock[J]. Rev sci tech,2001, 20:71-85.
    27. Cousins D V, Skuce R A, Kazwala R R,et al. Towards a standardized approach to DNA fingerprinting of Mycobacterium bovis[J]. Int J Tuberc Lung Dis,1998,2:471-478..
    28. De lisle G W, Mackintosh C G, Bengis R G. Mycobacterium bovis in free-living and captive wildlife, including farmed deer[J]. Rev sci tech Off int Epiz,2001,20:86-111.
    29. Morris R S, Pfeiffer D U, Jackson R. The epidemiology of Mycobacterium bovis infections[J]. Vet. Microbiol,1994,40:153-157.
    30. Naranjo V, Gortazar C, Vicente J, et al. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex[J]. Vet. Microbiol,2008,127:1-9.
    31. O'reilly L M, Daborn C J. The epidemiology of Mycobacterium bovis infections in animals and man:a review[J]. Tubercle Lung Dis. (Supple.1),1995,76:1-46.
    32. Prodinger W M, Brandstatter A, Naumann L, et al. Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping[J]. J Clin. Microbiol,2005,43: 4984-4992.
    33. Wilesmith J W. Epidemiological methods for investigating wild animal reservoirs of animal disease[J]. Rev. Sci. tech. Off. int. Epiz,1991,10:205-214.
    34. Cousins D V, Francis B R, Gow B L. Advantages of a new agar medium in the primary isolation of Mycobacterium bovis[J]. Vet Microbiol,1989,20:89-95.
    35.李宗喜,邱美珍,王慧明,牛结核病诊断方法研究进展[J].湖南畜牧兽医,2009,4:1-2.
    36. Espinosa delos monteros L E, Galan J C, Gutierrez M, et al. Allele-specific PCR method based on pncA and oxyR sequences for distinguishing Mycobaclerium bovis from M. tuberculosis:intraspecific M. bovis pncA sequence polymorphism[J]. J Clin Microbiol,1998,36:239-242.
    37. Huard R C, De oliveira lazzarini L C, Butler W R, et al. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions[J]. J Clin Microbiol,2003,41 (4):1637-1650.
    38. Niemann S, Harmsen D, Rusch-gerdes S, et al. Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis[J]. J Clin Microbiol,2000,38 (9): 3231-3234.
    39. Parsons L M, Brosch R, Cole S T, et al. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis[J]. J Clin Microbiol,2002,40 (7): 2339-2345.
    40. Miller J, Jenny A, Payeur J. Polymerase chain reaction detection of Mycobacterium bovis and M. avium organisms in formalin-fixed tissues from culture-negative organisms[J]. Vet. Micro,2002,2328:1-9.
    41. Miller J, Jenny A, Rhgyan J, et al. Detection of Mycobacterium bovis in formalinfixed, paraffin-embedded tissues of cattle and elk by PCR amplification of an IS6110 sequence specific for M. tuberculosis complex organisms[J]. J Vet Diagn. Invest,1997,9:244-249.
    42. Noredhoek G T, Van embden J D A, Kolk A H J. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis:an international collaborative quality control study among 30 laboratories[J]. J Clin Microbiol,1996,34:2522-2525.
    43. Durr P A, Clifton-hadley R S, Hewinson R G. Molecular epidemiology of bovine tuberculosis.11 Applications of genotyping[J]. Rev sci tech Off int Epiz,2000,19:689-701.
    44. Durr P A, Hewinson R G, Clifton-hadley R S. Molecular epidemiology of bovine tuberculosis. Mycobacterium bovis genotyping[J]. Rev sci tech Off int Epiz,2000,19,675-688.
    45. Frothingham R, Meeker-o'connell W A.Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandom[J]. Microbiology,1998,144:1189-1196.
    46. Gamier T, Eiglmeier K, Camus J C, et al. he complete genome sequence of Mycobacterium bovis[J]. Proc. Natl Acad. Sci. USA,2003,100 (13):7877-7882.
    47. O'brian R, Danilowicz B S, Bailey L, et al.Characterisation of the Mycobacterium bovis restriction fragment length polymorphism DNA probe pUCD and performance comparison with standard methods[J]. J Clin Microbiol,2000,38:3362-3369.
    48. Skuce R A, Brittain D, Hughes M S, et al.Differentiation of Mycobacterium bovis isolates from animals by DNA typing[J]. J Clin Microbiol,1996,38:2469-2474.
    49. Supply P, Mazars E, Lesjean S, et al.Variable human minisatellitelike regions in the Mycobacterium tuberculosis genome[J]. Mol Microbiol,2000,36:762-771.
    50.何昭阳.牛结核病研究进展[J].预防兽医学研究展,2001,3(4):34-39
    51.鲁俊鹏,邹潍力,林彦星.牛结核病诊断方法研究进展[J].动物医学进展,2006,27(11):25-28.
    52..王云霞,于三科,翟军军.牛结核病的现状及诊断研究进展[J].动物医学进展,2006,27(6):38-41
    53.匡有吉.梅花鹿结核抗体检测方法的建立和应用[硕士学位论文].武汉,华中农业大学,2008.
    54. Haagsma J. Working Paper on Recent Advances in the Field of Tuberculosis Control and Research. World Health Organization Meeting on Zoonotic Tuberculosis with Particular Reference to Mycobacterium bovis,15 November 1993, Geneva, Switzerland.
    55. Wood P R, Corner L A, Plackett P. Development of a simple, rapid in vitro cellular assay for bovine tuberculosis based on the production of gamma interferon[J]. Res Vet Sci,1990,49:46-49.
    56. Ryan T J, Buddle B M, De lisle G W. An evaluation of the gamma interferon test for detecting bovine tuberculosis in cattle 8 to 28 days after tuberculin skin testing[J]. Res Vet Sci,2000,69:57-61.
    57. Gormley E, Doyle M B, Fitzsimons T, et al. Diagnosis of Mycobacterium bovis infection in cattle by use of the gamma-interferon (Bovigam) assay. [J]. Vet. Microbiol,2006,112 (2-4):171-179.
    58. Coad M, Hewinson R G, Clifford D, et al. Influence of skin testing and blood storage on interferon-gamma production in cattle affected naturally with Mycobacterium bovis[J]. Vet Rec,2007, 160(19):660-662.
    59. Buddle B M, Ryan T J, Pollock J M, et al. Use of ESAT-6 in the interferon-gamma test for diagnosis of bovine tuberculosis following skin testing[J]. Vet Microbiol,2001,80:37-46.
    60. Griffin J F T, Cross J P, Chinn D N, et al. Diagnosis of tuberculosis due to M. bovis in New Zealand red deer (Cervus elaphus) using a composite blood test (BTB) and antibody (ELISA) assays[J]. N Z Vet J, 1994,42:173-179.
    61. Aranaz A, Juan D, BezoL, et al. Assessment of diagnostic tools for eradication of bovine tuberculosis in cattle co-infect with Mycobacterium bovis and M.avium sub Paratubereulosis[J]. VetRes,2006,37: 593-606.
    62.刘增再,彭运潮,胡述光.牛结核病诊断研究进展[J].动物医学进展,2005,26(5):13-16.
    63. Griffin J F T, Hesketh J B, Mackintosh C G, et al.BCG vaccination in deer:distinctions between delayed type hypersensitivity and laboratory parameters of immunity[J]. Immunol Cell Biol,1993,71:559-570.
    64. Lyashchenko K, Whelan A O, Greenwald R, et al.Association of tuberculin-boosted antibody responses with pathology and cell-mediated immunity in cattle vaccinated with Mycobacterium bovis BCG and infected with M. bovis[J]. Infect Immun,2004,72 (5):2462-2467.
    65. Skinner M A, Wedlock D N, Buddle B M. Vaccination of animals against Mycobacterium bovis. Mycobacterial Infections in Domestic and Wild Animals[J]. Rev sci tech Off int Epiz,2001,20.
    66.卫龙兴,成建忠.牛结核病流行病学与诊断技术研究进展[J].现代农业科技,2010,21:345-346.
    67. Cole S T, Brosch R, Parkhill J, et al.Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature,1998,393 (6685):537-544.
    68. Brosch R, Godon S V, Marmiesse M, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex[J]. Proc Natl Acad Sci USA,2002,99:3684-3689.
    69. World health organization (who)/food and agriculture organization of the united nations (fao)/office international des epizooties (OIE) (1994). Report on Consultation on Animal Tuberculosis Vaccines. WHO, Veterinary Public Health Unit, Geneva. WHO/CDS/VPH/94.138.
    70. Buddle B M, Parlane N A, Keen D L, et al. Differentiation between Mycobacterium bovis BCG-vaccinated and M. bovis-infected cattle by using recombinant mycobacterial antigens[J]. Clin. Diagn Lab Immunol,1999,6 (1):1-5.
    71. Cockle P J, Gordon S V, Hewinson R G, et al. Field evaluation of a novel differential diagnostic reagent for detection of Mycobacterium bovis in cattle[J]. Clin. Vaccine Immunol,2006,13 (10):1119-1124.
    72. Sidders B, Pirson C, Hogarth P J, et al. Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex[J]. Infect. Immun,2008,76 (9):3932-3939.
    73. Vordermeier H M, Whelan A, Cockle P J, et al. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle[J]. Clin Diagn Lab Immunol,2001,8 (3):571-578.
    74.王春芳,钱爱东.牛结核病诊断技术的研究进展[J].黑龙江畜牧兽医(科技版),2009,8:25-26.
    75. Fletcher J. Domestication of deer. In The Farming of Deer ed. Agricultural Promotion Associates. Wellington, NZ,1992,45-58.
    76. Giles T R. Deer farming in New Zealand[J]. New Zealand Veterinary Journal,1975,23:39-40.
    77. Griffin J F T, Cross J P, Chinn D N, et al. Diagnosis of tuberculosis due to Mycobacterium bovis in New Zealand red deer (Cervus elaphus) using a composite blood test and antibody assays[J]. New Zealand Veterinary Journal,1994,42:173-79.
    78. O'reilly L M, Daborn C J. The epidemiology of Mycobacterium bovis infections in animals and man:a review[J]. Tubercle and Lung Disease,1995,76:1-46.
    79. Essey M A, Koller M A. tatus of bovine tuberculosis in North America[J]. Veterinary Microbiology, 1994,40:15-22.
    80. Tweddle N E, Livingstone P. Bovine tuberculosis control and eradication programs in Australia and New Zealand[J]. Veterinary Microbiology,1994,40:23-39.
    81. Stuart F A, Manser P A, Mcintosh F G. Tuberculosis in imported red deer (Cervus elaphus) [J]. Veterinary Record,1988,122:508-11.
    82. Bolske G, Englund L, Wahlstrom H., et al. Bovine tuberculosis in Swedish deer farms:epidemiological investigations and tracing using restriction fragment analysis[J]. Veterinary Record,1995,136:414-7.
    83. Stumpff P F. Epidemiological study of an outbreak of bovine tuberculosis in confined elk herds[J]. US Animal Health Association,1982,86:528-37.
    84. Towar D R, Scott R M, Goyings L S. Tuberculosis in a captive deer herd[J]. American Journal of Veterinary Medicine,1965,26:339-46.
    85. Morris R S, Pfeiffer D U, Jackson R. he epidemiology of Mycobacterium bovis infections[J]. Veterinary Microbiology,1994,40:153-77.
    86. Tessaro S V. The existence and potential importance of tuberculosis in Canadian wildlife:a review[J]. Canadian Veterinary Journal,1986,27:119-24.
    87. Rose B. Bovine tuberculosis in deer. Deer 7,78. SAWA, T.R., THOEN, C.O. & NAGAO, W.T. (1974). Mycobacterium bovis infection in wild axis deer in Hawaii[J]. Journal of the American Veterinary Medical Association,1987,165:998-9.
    88. Zomborszky Z, Kormendy B, Tuboly S, et al. The value of immunodiagnostic tests in detecting tuberculosis in an infected red deer herd and in eradication of the disease by selection[J]. Acta Veterinaria Hungaria,1995,43:385-92.
    89. Dodd K. Tuberculosis in free-living deer[J]. Veterinary Record,1984,115:592-3.
    90. Mackintosh C G, Beatson N S. Relationship between diseases of deer and other animals. In Biology of Deer Production[J]. Bulletin, Royal Society of New Zealand, Dunedin,1985,22:77-82.
    91. Levine P P. A report on tuberculosis in wild deer (Odocoileus virginianus) [J]. Cornell Veterinarian, 1934,24:264-266.
    92. Sawa T R, Thoen C O, Nagao W T. Mycobacterium bovis infection in wild axis deer in Hawaii[J]. Journal of the American Veterinary Medical Association,1974,165:998-9.
    93. Wagner B. Risk assessment for Mycobacterium bovis in cervidae[J]. Animal Health Insight Summer, 1993,23:32.
    94. Bouvier G. Observations sur les maladies du gibier, des oiseaux et des poissons faites en 1955 et 1956[J]. Schweiz arch Tierheilkd,1957,99:461-77.
    95. Schmitt S M, Fitzgerald S D, Cooley T M, et al. Bovine tuberculosis in free-ranging whitetailed deer from Michigan[J]. Journal of Wildlife Diseases,1997,33:749-58.
    96. Lugton I W, Wilson P R, MORRIS R S, et al. Natural infection of deer with tuberculosis[J]. New Zealand Veterinary Journal,1997,45:19-26.
    97. De lisle G W, Crews K, De zwart J. Mycobacterium bovis infection in wild ferrets[J]. New Zealand Veterinary Journal,1993,41:148-149.
    98. Ragg J R, Moller H, Waldrup K A. The distribution of gross lesions of tuberculosis caused by Mycobacterium bovis in feral ferrets (Mustelo furo) from Otago, New Zealand[J]. New Zealand Veterinary Journal,1995,43:338-341.
    99. Ekdahl M O, Smith B L, Money D F L. Tuberculosis in some wild and feral animals in New Zealand[J]. New Zealand Veterinary Journal,1970,18:44-45.
    100. De lisle G W, Havill P F. Mycobacteria isolated from deer in New Zealand from 1970-1983[J]. New Zealand Veterinary Journal,1985,33:138-140.
    101. Guilbride P D L, Rollinson D H L, Mcanulty E G, et al. Tuberculosis in free living African (Cape) buffalo (Synercus caffer caffer sparman) [J]. Journal of Comparative Pathology,1963,73:337-348.
    102. Bengis R A, Kriek N P, Keet D F, et al. An outbreak of tuberculosis in free-living African buffalo (Synercus caffersparrman) populations in the Kruger National Park:a preliminary report[J]. Onderdespoort Journal of Veterinary Research,1996,63:15-18.
    103. Munro R. Mycobacterial injections of deer. In Management and Society Diseases of Deer[J]. North Humberside, UK:The Veterinary Deer Society,1986:157-159
    104. Jones D M, Manton V J A, Kavanagh P. uberculosis in a herd of Axis deer (Axis axis) at Whipsnade Park[J]. Veterinary Record,1976,98:525-526.
    105. Mackintosh C G, Webster J, Masters B, et al. An outbreak of avian tuberculosis in red deer[J]. Proceedings of the New Zealand Veterinary Association Deer Branch,1997,14:243-250.
    106. Mackintosh C G, Carter C E. Tuberculosislike lesion at the Deer Slaughter Plant[J]. Proceedings of the New Zealand Veterinary Association Deer Branch,1999,16:127-132.
    107.Nyage J F.C. Pathogenesis of Johne's disease syndrome in deer[J]. Proceedings of the Veterinary Deer Society,1989,3:20-23.
    108. Gilmour N J L. Paratuberculosis. In The management and health of farmed deer. eKluwer Academic Publishers for the Commission of the European Communities.1988, pp:113-22.
    109. Fawcett A R, Goddard P J, Mckelvey, et al.Johne's disease in farmed deer in the UK[J]. Veterinary Record,1995,136:165-69.
    110. Wright S, Lewis P A. Factors in the resistance of guinea pigs to tuberculosis, with especial regard to inbreeding and heredity[J]. American Naturalist,1921,55:20-35.
    111.Lurie M R.. Heredity, constitution and tuberculosis, an experimental study[J]. American Review of Tuberculosis,1941,44:1-125.
    112. Mackintosh C G, De lisle G W. Johne's disease:Current situation in New Zealand deer[J]. Proceedings of the New Zealand Veterinary Association Deer Branch,1998,15:175-82.
    113. Mackintosh C G, Qureshi T, Waldrup K, et al.Genetic resistance to experimental infection with Mycobacterium bovis in red deer (Cervus elaphus) [J]. Infection and Immunity,2000,68:1620-5.
    114. Griffin J F T, Cross J P, Chinn D N, et al.Diagnosis of tuberculosis due to Mycobacterium bovis in New Zealand red deer (Cervus elaphus) using a composite blood test and antibody assays[J]. New Zealand Veterinary Journal,1994,42:173-79.
    115. Griffin J F T, Buchan G S. Aetiology, pathogenesis and diagnosis of Mycobacterium bovis in deer[J]. Veterinary Microbiology,1994,40:193-205.
    116. Griffin J F T. Stress and immunity:A unifying concept[J]. Veterinary Immunology and Immunopathology,1989,29:263-312.
    117. Griffin J F T, Bissett B, Rodgers C R, et al.Uncontrollable spread of tuberculosis within a deer herd[J]. Proceedings of the New Zealand Veterinary Association Deer Branch,1998,15:227-34.
    118. Beatson N S. Tuberculosis in red deer in New Zealand[J]. In Biology of Deer Production, eds K.R. Drew and P.F. Fennessy,1985,22:147-150.
    119. Essey M A, Koller M A. Status of bovine tuberculosis in North America[J]. Veterinary Microbiology, 1994,40:15-22.
    120. De lisle G W, Welch P J, Havill P F, et al. Experimental tuberculosis in red deer (Cervus elaphus) [J]. New Zealand Veterinary Journal,1983,41:213-6.
    121. Bishai W R, Dannenberg A M, Parrish N, et al. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie's pulmonary tubercle count method [J]. Infection and Immunity,1999 67,4931-4934.
    122. Lugton I, Wilson P R, Morris R S, et al.Epidemiology and pathogenesis of Mycobacterium bovis infection of red deer (Cervus elaphus) in New Zealand[J].New Zealand Veterinary Journal,1998, 46:147-156.
    123.丁春光,姚贵芳.鹿结核病的诊治[J].黑龙江畜牧兽医,2004,4:36.
    124.张旭静.小种群白唇鹿结核病的流行与诊断[J].中国预防兽医学报,2002,24(2):23-24.
    125. Fanning A, Edwards S, Hauer G. Mycobacterium bovis infection in humans exposed to elk in Alberta[J]. Canadian Disease Weekly Report,1991,17:239-243.
    126. Wilson P, Harrington R. A case of bovine tuberculosis in fallow deer[J]. Veterinary Record,1976,98:74.
    127. Anon. Deer Tuberculosis VTO Manual. New Zealand Veterinary Association, Wellington, New Zealand,1999, PO Box 27:499.
    128. Carter C E. Tuberculosis in the New Zealand deer industry:Have we progressed[J].Proceedings of the New Zealand Veterinary Association Deer Branch,1995,12:155-161.
    129. Corrin K C, Carter C E, Kissling R C, et al.Short interval skin testing in farmed red deer (Cervus elaphus) inoculated with Mycobacterium bovis[J].New Zealand Veterinary Journal,1987,35:204-207.
    130. Corrin K. C, Carter C E, Kissling R.C, et al. An evaluation of the comparative tuberculin skin test for detecting tuberculosis in farmed deer[J]. New Zealand Veterinary Journal,1993,41:2-20.
    131. Griffin J F T. Immunodiagnostic testing for tuberculosis in deer[J]. Irish Veterinary Journal,1989,42: 101-107.
    132. Mackintosh C G. Deer health and disease[J]. Acta Veterinaria Hungaria,1998,46:381-394.
    133. Quigley F C, Costello E, Flynn O, et al. Isolation of mycobacteria from lymph node lesions in deer[J]. Veterinary Record,1997,141:516-518.
    134. Rohonczy E B, Balachandran A V, Dukes T W, et al. A comparison of gross pathology, histopathology, and mycobacterial culture for the diagnosis of tuberculosis in elk (Cervus elaphus) [J].Canadian Journal of Veterinary Research,1996,60:108-114.
    135.刘清河,胡伟群.酶联免疫吸附试验诊断鹿结核病的研究[J].吉林农业大学学报.1994,16(4),98-103.
    136. Sutton P J, De lisle G W,Wall E P.Serology of tuberculosis in red deer In Biology of deer Production[J] Royal Society of New Zealand,1985,155-158.
    137. Sugden E A, Stilwell K, Rohonczy E B, et al. Competitive and indirect enzyme-linked immunosorbent assays for Mycobacterium bovis infections based on MPB70 and lipoarabinomannan antigens[J]. Canadian Journal of Veterinary Research,1997,61:8-14.
    138.杨瑞梅.结核病的诊断方法研究进展.人畜共患传染病防治研究新成果汇编.中国畜牧兽医学会家畜传染病分会,2004(9):554-556.
    139. Huang T S,Chen C S,Lee S S,et al.Comparison of the BACTEC MACTEC 960 and BACTEC 460 TB Systems for De-tetion Mycobacteria in Clinical Specimens[J].Ann Clin Lab Sci,2001,31(3):279-283.
    140. Aranaz A, Liebana E, Mateos A, et al. Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals:a tool for studying epidemiology of tuberculosis[J]. Journal of Clinical Microbiology,1996,34:2734-40.
    141. Collins D M, Lisle G W, Garbic D M. Geographic distribution of restriction types of Mycobacterium bovis isolates from brush-tailed possums (Trichosurus vulpecula) in New Zealand[J]. Journal Hygiene, 1986,96:431-38.
    142. Collins D M, Lisle G W, Collins J D, et al.DNA restriction fragment typing of Mycobacterium bovis isolates from cattle and badgers in Ireland[J]. Veterinary Record,1994,134:681-82.
    143. Grange J M, Collins J D, O'reilly L M, et al. Identification and characteristicsof Mycobacterium bovis isolated from cattle, badgers and deer in the Republic of Ireland[J]. Irish Veterinary Journal,1990, 43:33-5.
    144. Groenen P M, Bunschoten A E, Van soolingen D, et al. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method[J].Molecular Microbiology,1993,10:1057-65.
    145. Skuce R A, Brittain D, Hughes M S, et al. Genomic fingerprinting of Mycobacterium bovis from cattle by restriction fragment lenght polymorphism[J].J Clin Microbiol,1994,32:2387-92.
    146. Whipple D L, Clarke P R, Jarnagin J L, et al. Restriction fragment length polymorphism analysis of Mycobacterium bovis isolates from captive and free-ranging animals[J]. Journal of Veterinary Diagnostic Investigation,1997,9:381-6.
    147. Costello E, O'grady D, Flynn O, et al. Study of restriction fragment length polymorphism analysis and spoligotyping for epidemiological investigation of Mycobacterium bovis infection[J]. J Clin Microbiol, 1999,37:3217-22.
    148.刘敬华,万康林,成诗明.结核分枝杆菌株水平鉴定技术及其研究进展[J].中华流行病学杂志,2003,24(12):1153-1157.
    149. Sreevatsan S, Pan X, Stockbauer KE, et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination [J]. PNAS, 1997,94:9869-9874.
    150. Van Embden J D A, Cave M D, Crawford J T, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting:recommendations for a standardized methodology [J]. J Clin Microbiol,1993, 31:406-409.
    151. Clifton-hadley rs, Wilesmith j w. Tuberculosis in deer:areview[J]. Veterinary Record,1991,129:5-12.
    152. Clfton-Hadley R S,Wilesmith J W. An epidemiological outlook on bovine tuberculosis in the developed world.In Tuberculosis in wildlife and Domestic Animals[M]. Dunedin,University of Otago Press, 1995,178-182.
    153.高利,肖建华,王海彬,等.鹿结核病流行概况[J].特产研究,2006,2:74-76.
    154. Fine p e m. Variation in protection by BCG:implications of and for heterologous immunity[J]. The Lance,t,1995,346,1339-45.
    155. World Health Organization, The Stop TB Department, WHO Report 2008.Global tuberculosis control-surveillance, planning, financing (2008), p.1.
    156. R E Huebner, M F Schein, J B Bass Jr.The tuberculin skin test[J]. Clin Infect Dis,1993,17:968-975.
    157. R M Jasmer, P Nahid, P C Hopewell. Clinical practice. Latent tuberculosis infection[J]. J Med.2002 (347) 1860-1866.
    158. Acha, P N Szyfres, B. Zoonotic tuberculosis, In Zoonoses and Communicable Diseases Common to Man and Animals, seconded. Pan American Health Organization/World Health Organization, Washington, Scientific Publication.1987.No.503.
    159. Blazquez B, de Los Monteros, L E E Samper, et al. Genetic characterization of multidrugresistant M. bovis strains from a hospital outbreak involving human immunodeficiency virus positive patients[J]. J Clin Microbiol,1997,35,1390-1393.
    160. Daborn C J, Grange J M, Kazwala R R.The bovine tuberculosis cycle:an African perspective[J].J Appl Bacteriol Sym Suppl,1993,8:127s-132s.
    161. Grange J M, Yates M D, de Kantor I.Guidelines for Speciation Within the M. tuberculosis Complex, second ed.World Health Organization, Geneva, unpublished document.1996. WHO/EC/Zoo/96.4.
    162.王春雨,杨莉,王振国,等.结核病与BCG疫苗接种个体荧光探针PCR鉴别检测方法的建立及初步应用[J].中国预防兽医学报,2010,32(12):952-955.
    163.苏建青.犬瘟热免疫层析试纸及荧光定量PCR诊断方法的建立与评价[博士学位论文].长春.吉林大学.2008
    164.龙飞.基于活菌内标的单核细胞增生李斯特菌荧光定量PCR方法的建立[博十学位论文].武汉.华中农业大学.2008
    165.孟双.避免乙型肝炎病毒和丙型肝炎病毒核酸漏检的新型实时荧光PCR方法的研究及其内标的建立[博士学位论文].北京.中国协和医科大学.2010
    166.鲁韦韦.猪繁殖与呼吸综合征病毒实时荧光RT-PCR检测方法的建立[硕十学位论文].南京.南京农业大学.2008
    167.余新沛,陈月,张丽芸,等.七种常见MBL基因单倍型标准质粒的构建[J].第一军医大学学报,2005,25(11):1379-1383.
    168.张传海,刘秋英,金琳,等.nnm23-H1基因实时荧光定量PCR标准质粒的构建[J].中国卫生检验杂志,2007,17(4):604-605.
    169. Wise MG,Siragusa GR. Quantitative Detection of Clostridium perfringens in the Broiler Fowl Gastrointe stinal Tract by Real-Time PCR[J]. Applied and Environmental Microbiology,2005,71(7):3911-3916.
    170.朱玉兰,王佃鹏,高朝贤,等.结核分枝杆菌荧光定量PCR检测方法的建立与应用[J].中国热带医学,2008,8(10):1680-1682.
    171.韩彩霞,赵德明,吴长德,等.实时荧光定量PCR构建绵羊PrP基因标准品质粒和标准曲线[J].畜牧兽医学报,2005,36(12):1363-1366.
    172.徐超,杜卫华,王宗礼,等.荧光定量PCR检测牛性别相关基因DAX1表达的标准质粒和标准由线的构建[J].中国畜牧兽医,2010,37(9):94-99.
    173.张太翔,宁章勇,赵德明,等.实时荧光定量PCR构建奶牛生殖系统PrP基因标准品质粒和标滩曲线[J].中国农业大学学报,2007,12(2):1-4.
    174. Hillemann D, Galle J, Vollmer E, et al. Real-time PCR assay forimproved detection of Mycobacteriun tuberculosis complex in paraffin embedded tissues[J]. Int J Tuberc Lung Dis,2006,10(3):340-2.
    175.蔡宏,呼西旦,李淑霞,等.利用TB-PCR试剂盒对牛结核病的检[J].中国预防兽医学报,2000,2:(6):447-450.
    176.亓文宝,罗满林,周 荣,等.牛TB荧光定量PCR快速检测方法的建立及初步应用[J].中国人兽共患病学报,2007,23(9):883-885.
    177. S Prabhakar, A Mishra, A Singhal, et al. Use of the hupB Gene Encoding a Histone-Like Protein c Mycobacterium tuberculosis as a Target for Detection and Differentiation of M. tuberculosis and M bovis[J]. J Clin Microbiol,2004,42(6):2724-2732.
    178. Ram Pramod Tiwari, Narendra S, Hattikudur, et al. Modern approaches to a rapid diagnosis c tuberculosis:Promises and challenges ahead[J]. Tuberculosis,2007,87:193-201.
    179. Chandramukhi A, Bothemley GH, Brennan PJ, et al. Levels of antibodies to define antigens c Mycobacterium tuberculosis in tuberculous meningitis[J]. J Clin Microbiol,1989,27:821-5.
    180. Ivanyi J, Krambovitis E, Keen M. Evaluation of a monoclonal antibody (TB 72) based serological tes for tuberculosis[J]. Clin Exp Immunol,1983,54:337-45.
    181. leven M, Goossens H. Relevance of nucleic acid amplificationtechniques for diagnosis of respirator tract infections in the clinical laboratory[J]. Clin Microbiol Rev,1997,10:242-56.
    182.程钢,何蕴韶,周新宇,等.结核分枝杆菌荧光PCR试剂盒的研制及临床试验[J].第一军医大学学报,2002,22(6):533-535.
    183. Man'a J Rebollo. Rafael San Juan Garrido, Dolores Folgueira, et al. Blood and urine samples as useft sources for the direct detection of tuberculosis by polymerase chain reaction[J]. Diagnostic Microbiolog and Infectious Disease,2006,56:141-146.
    184. Jacques Godfroid, Cathy Delcorps, Leonid M Irenge, et al. Definitive Differentiation between Single and Mixed Mycobacterial Infections in Red Deer (Cervus elaphus) by a Combination of Duplex Amplification of p34 and f57 Sequences and Hpy188I Enzymatic Restriction of Duplex Amplicons[J]. J Clin Microbiol,2005,43(9):4640-4648.
    185. W C Yam, V C C Cheng, W T Hui, et al. Direct detection of Mycobacterium tuberculosis in clinical specimens using single-tube biotinylated nested polymerase chain reaction-enzyme linked immunoassay (PCR-ELISA) [J]. Diagnostic Microbiology and Infectious Disease,2004,48:271-275.
    186. Paul H M Savelkoul, Arnold Catsburg, Sije Mulder, et al. Detection of Mycobacterium tuberculosis complex withReal Time PCR:Comparison of different primer-probe setsbased on the IS6110 element[J]. Journal of Microbiological Methods,2006,66:177-180.
    187. Teruyuki Takahashi, Masato Tamura, Yukihiro Asami, et al. Novel Wide-Range Quantitative Nested Real-Time PCR Assay for Mycobacterium tuberculosis DNA:Clinical Application for Diagnosis of Tuberculous Meningitis[J]. J Clin Microbiol,2008,46(5):1698-1707.
    188. Rattan A. PCR for diagnosis of tuberculosis:where are we now? [J].Ind J Tub 2000,47:79-82.
    189.刘思国,王春来,宫强,等.牛分枝杆菌特异性PCR检测方法的建立及初步应用[J].中国预防兽医学报,2006,28(1):80-83.
    190. Jiazhen Chen, Xiaodi Su, Ying Zhang, et al. Novel recombinant RD2-and RD11-encoded Mycobacterium tuberculosis antigens are potential candidates for diagnosis of tuberculosis infections in BCG-vaccinated individuals[J]. Microbes and Infection,2009,11:876-885.
    191.王春雨,王振国,刘金华,等.应用TaqMan荧光定量PCR检测牛分枝杆菌[J].中国预防兽医学报,2011,34(2):133-136.
    192. Del portillo P, Murillo L A, Patarrogo M E, Amplification of a species-specific DNA fragment of M. tuberculosis and its possible use in diagnosis[J]. J Clin Microbiol,1991,29:2613-2668.
    193. Rodriguez J G, Mejia G A, Portillo P D, et al. Species-specific identification of M. bovis by PCR[J]. Microbiology,1995,141:2131-2138.
    194. Weil A, Bonny B, Plikaytis W, et al. The mtp40 gene is not present in all strains of M.tuberculosis[J]. J Clin Microbiol,1996,34:2309-2311.
    195. Shah D H, Verma R, Bakshi C S, et al. A multiplex PCR for the differentiation of M. bovis and M. tuberculosis[J]. FEMS Microbiol. Lett,2002,214:39-43.
    196. Zumarraga M, Bigi F, Alito A, et al. A 12.7-kb fragment of the M. tuberculosis genome is not present in M. bovis[J]. Microbiology,1999,145:893-897.
    197.陈茹,刘中勇,杨国海,等.结核分枝杆菌和牛分枝杆菌TaqMan荧光PCR检测的建立[J].中 国人兽共患病学报,2008,24(2):154-158.
    198.李健明,于本峰,姚波,等.鹿结核病的诊断方法研究进展[J].吉林畜牧兽医,2009,30(12):15-18.
    199. Belli L B. Bovine tuberculosis in white-tailed deer (Odocoileus virginianus) [J].Canadian Veterinary Journal,1962,3:56-58.
    200.丁春光,姚贵芳.鹿结核病的诊治[J].黑龙江畜牧兽医,2004,(4):36.
    201.丁润峰,戴春玲,丁世哲,等.关于鹿结核病及其防制措施的探讨[J].当代畜牧,2004,3:18-20.
    202.张旭静.小种群白唇鹿结核病的流行与诊断[J].中国预防兽医学报,2002,24(2):23-24.
    203.王春雨,杨莉,王全凯,等.鹿结核分枝杆菌的分离与荧光PCR鉴定[J].黑龙江畜牧兽医,2011,373:86-87.
    204. Stuart F A, P A Manser, F G Mclntosh. Tuberculosis in Imported Red Deer [J]. Vet Rec,1988, 122:508-511.
    205.李太元,金吉东,于文会,等.鹿结核病的诊断、病原分离及鉴定[J].黑龙江畜牧兽医,2002,11:34-35.
    206.崔国印,李怀志.鹿结核病研究进展[J].中国农学通报,1989,6:12-16.
    207.王龙涛,葛晨霞,马磊,等.鹿结核病的诊断[J],动物医学进展,2010,31(11):104-107.
    208.雷剑明,谢芝勋,谢志勤,等.牛分枝杆菌广西分离株cfp-10、es-at-6、mpb70基因的克隆与序列分析[J].广西农业科学,2009,40(9):1229-1233.
    209.崔国印,王树志,何敬芝,等.鹿结核病的病原鉴定[J].吉林农业大学学报,1990,12(4):85-88.
    210.刘清河,王全凯,胡伟群,等.应用变态反应方法诊断鹿结核病的研究[J].吉林农业大学学报,1996,16(2):69-73.
    211.刘清河,王树志,胡桂学,等.鹿结核病诊断与免疫方法的研究[J].中国兽医学报,1995,15(4):362-366.
    212.郭志廷,梁剑平,罗晓琴.一起梅花鹿结核病的临床诊断与防治[J].中国动物检疫,2010,27(7):61.
    213.肖建华,高利,易美丽,等.鹿结核病诊断与预防的研究现状[J].特产研究,2005,3:44-48.
    214. Moda G, Daborm C J, et al. The zoonotic importance of Mycobacterium bovis[J].Tuber Lung Dis,1996, 7(7):103-108.
    215.李超,林祥梅,梅琳,等.牛γ-干扰素单克隆抗体的制备及ELISA检测方法的建立[J].中国畜牧兽医,2010,38(1):72-75.
    216.杜艳芬.牛结核病病原学调查及分子流行病学研究[硕十学位论文].哈尔滨,中国农业科学院研究生院哈尔滨兽医研究所,2009.
    217.白宇.鹿副结核病酶标诊断方法的研究[硕十学位论文].长春,吉林农业大学,2005.
    218.王春雨.基因分型技术在梅花鹿结核病研究中的应用[硕十学位论文].长春,吉林农业大学,2008.
    219.王春雨,杨莉,王全凯,等.吉林省鹿结核病的流行病学调查[J].中国畜牧兽医,2010,37(10):204-206.
    220.李玉梅,干全凯.北方三省区梅花鹿间二种疫病的血清学调查[J].中国动物检疫,2006,23(11):37-38.
    221.刘思国,王春来,宫强,等.牛分枝杆菌特异性PCR检测方法的建立及初步应用[J].中国预防兽医学报,2006,28(1):80-83.
    222.李玉梅.东北地区梅花鹿四种疫病的血清学调查[硕十学位论文].长春,吉林农业大学,2005.
    223.刘辛,冯晓鸿.牛结核检疫中酶联免疫吸附试验和皮内变态反应的应用比较[J].中国奶牛,1998,(1):432-441.
    224. Office International Des Epizooties. Manual of Stundards for Diagnostic Tesis and Vaccine[M]. Paris, OIE,1996.
    225.崔国印,关中湘,何敬芝,等.鹿结核病的病原分离[J].吉林农业大学学报,1989,11(2):81-84.
    226. Tessaro S V.The existence and potential importance of tuberculosis in Canadian wildlife:a review[J].CanadianVeterinary Journal,1986,27:119-124.
    227. Dodd K.Tuberculosis in free-living deer[J].Veterinary Record,1984,115:592-593.
    228. Mackintosh C G, Beatson N S. Relationship between diseases of deer and other animals.In Biology of Deer Pro-duction[M].,Royal Society of New Zealand, Dunedin,1985,22:77-82.
    229. Schmitt S M, Fitzgerald S D,et al. Bovine tuberculosis in free ranging white-tailed deer from Michigan[J]. Journal of wildlife Diseases,1997,33:749-758.
    230. Schliesser T A, Prevalence of tuberculosis and mycobacterium diseases in some European zoos.In Mycobacterial infections of zoo animals [J].Montali,RJ,Smithsonian Institution Press,1978:29-32.
    231. Griffin JFT, Buchan G S. Aetiology,pathogenesis and diagnosis of Mycobacterium bovis in deer[J]. Veterinary Microbiology,1994,40:193-205.
    232.郑腾,白泉阳,宁晓明.新西兰的牛群和鹿群牛型结核病控制计划[J].中国动物检疫,2005,22(7):45-47.
    233. Thoen C A, Hall M R, Thannis A, et al. Detection of mycobacterial antibodies in sera of cattle experimentally experimentally exposed to Mycobacterium bovis by use of a modified enzymelinked immunosorbent assay [M]. Proc 26th Annu Meet AmAssoc Vet lab diagnosticians,1983:25-38.
    234. Amicosante M, Houde M, Guaraldi G, et al. Sensitivity and specificity of a multi-antigen ELISA test for the serological diagnosisof tuberculosis [J]. Int J Lung Dis,1999,3(8):736-740.
    235. Gutierrez M, Tellechea J, Marin J F G. Evaluation of cellular andserological diagnostic tests for the detection of Mycobacteriumbovis-infected goats [J]. Vet Microbiol,1998,62:281-290.
    236. Ritacco V, Kantor 1 N, Barrera L, et al. Assessment of the sensitivityand specificity of enzyme-linked immunosorbent assay(ELISA) for the detection of mycobacterial antibodies in bovinetuberculosis [J]. J Vet Med B,1987,34:119-125.
    237. Ritacco V, Lopez B. Barrera L, et al. Further evaluation of an indirect enzyme-linked immunosorbent assay for the diagnosis of bovine tuberculosis [J]. J Vet Med,1990,37:19-27.
    238. De Anda J H, Monaghan M, Collins J D, et al. Evaluation of MPB70 bovine PPD and lipoarabinomannan as antigens in ELISA for the serodiagnosis of bovine tuberculosis [J]. Pre Vet Med, 1996,27:211-215.
    239. Fifis T, Costopoulos C, Corner L A, et al. Serological reactivity to Mycobacterium bovis protein antigens in cattle [J]. Vet Microbiol,1992,30:343-354.
    240. Amadori M, Lyashchenko K P, Gennaro M L, et al. Use of recombinant proteins, in antibody tests for bovine tuberculosis[J].Vet Microbiol,2002,85:379-389.
    241.郭设平, 刘思国,王春来,等.检测牛结核抗体新型ELISA方法的建立及应用[J].中国预防兽医学报,2007,29(]0):810-813.
    242. Borgdorff M W, NagelkerkeN, van Soolingen, e tal. Analysis of tuberculosis transmission between nationalities The Netherlands in theperiod 1993-1995 using DNA fingerprinting[J]. Am. J. Epidemiol. 1998,147:187-19.
    243. Kamerbeek J, Schouls L, Kolk A, e tal. Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis for diagnosis and tuberculosis control[J]. J Clin Microbiol.1997.35, 907-914.
    244. Philip Supply, Caroline Allix, Sarah Lesjean, e tal. Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis[J]. J Clin Microbiol,2006,46(12):4498-4510.
    245.曹瑞,张喜悦,孙照刚,等.新疆牛分枝杆菌MIRU-VNTR基因分型的初步研究[J].中国预防兽医学报,2010,32(7):524-528.
    246. Andrea L Gibson, Glyn Hewinson, Tony Goodchild, e tal. Molecular Epidemiology of Disease Due to Mycobacterium bovis in Humans in the United Kingdom[J]. J Clin Microbiol,2004,42(1):431-434.
    247. Solvig Roring, Alistair N Scott, R Glyn Hewinson, e tal. Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland[J]. Veterinary Microbiology,2004,101:65-73.
    248. E L Duarte, M Domingo, Amado, e tal. MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping[J]. Veterinary Microbiology,2009,11:027.
    249. E Yokoyama, K Kishida, M Uchimura, e tal. Improved differentiation of Mycobacterium tuberculosis strains, including many Beijing genotype strains, using a new combination of variable number of tandem repeats loci[J]. Infection, Genetics and Evolution,2007,7:499-508.
    250. Cowan L S, L Diem, T Monson, e tal. Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States[J]. J Clin Microbiol,2005, 43:688-695.
    251. Haddad N, Masselot M, Durand B. Molecular differentiation of Mycobacterium bovis isolates:review of main techniques and applications[J].Res Vet Sci,2004,76:1-18.
    252. Cousins D, William S, Liebana E, et al. Evaluation of four DNA typing techniques in epidemiological investigations of bovine tuberculosis[J]. Clin Microbiol,1998,36:168-178.
    253. Bifani P J, Mathema B, Kurepina N E, et al. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains[J]. Trends Microbiol,2002,10:45-52.
    254. Heersma H F, Kremer K, van Embden, et al. Computer analysis of IS6110 RFLP patterns of Mycobacterium tuberculosis[J]. Meth Mol Biol,1998,101:395-422.
    255. Haddad N, Ostyn A, Karoui C, et al. Spoligotyping diversity of Mycobacterium bovis strains isolated in France from 1970 to 2000[J].Clin Microbiol,2001,39:3623-3632.
    256. Aranaz A, E Liebana, A Mateos, et al. Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals:a tool for studying epidemiology of tuberculosis[J]. J Clin Microbiol,1996, 34:2734-2740.
    257. Cousins D V, R A Skuce, R R Kazwala, et al. Towards a standardized approach to DNA fingerprinting of Mycobacterium bovis. International Union Against Tuberculosis and Lung Disease, Tuberculosis in Animals Subsection[J]. lnt J Tuberc Lung Dis,1998,2:471-478.
    258. Le Fleche P, M Fabre, F Denoeud, et al. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing[J]. BMC Microbiol,2002,2:37.
    259. Roring S, A Scott, D Brittain, et al. Development of variable-number tandem repeat typing of Mycobacterium bovis:comparison of results with those obtained by using existing exact tandem repeats and spoligotyping[J]. J Clin Microbiol,2002,40:2126-2133.
    260. Skuce R A, T P McCorry, J F McCarroll, et al. Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets[J]. Microbiology,2002,148:519-528.
    261. Smittipat N, P Palittapongarnpim. Identification of possible loci of variable number of tandem repeats in Mycobacterium tuberculosis[J]. Tuber Lung Dis,2000,80:69-74.
    262. Supply P, J Magdalena, S Himpens, et al. Identification of novel intergenic repetitive units in a mycobacterial two-component system operon[J]. Mol Microbiol,1997,26:991-1003.
    263. Kwara A, R Schiro, L S Cowan, et al. Evaluation of the epidemiologic utility of secondary typing methods for differentiation of Mycobacterium tuberculosis isolates[J]. J Clin Microbiol,2003, 41:2683-2685.
    264. Mazars E, S Lesjean, A L Banuls, et al. High-resolution minisatellitebased typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology[J]. Proc. Natl. Acad. Sci,2001, 98:1901-1906.
    265. Supply P, S Lesjean, E Savine, et al. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units[J]. J Clin Microbiol,2001,39:3563-3571.
    266. Allix C, P Supply, M Fauville Dufaux. Utility of fast mycobacterial interspersed repetitive unit-variable number tandem repeat genotyping in clinical mycobacteriological analysis[j]. Clin. Infect. Dis,2004, 39:783-789.
    267. Evans J T, P M Hawkey, E G Smith, et al. Automated high-throughput mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis strains by a combination of PCR and nondenaturing high-performance liquid chromatography[J]. J Clin Microbiol,2004,42:4175-4180.
    268. Goyal M, D Young, Y Zhang, et al. PCR amplification of variable sequence upstream of katG gene to subdivide strains of Mycobacterium tuberculosis complex[J]. J Clin Microbiol,1994,32:3070-3071.
    269. Kam K M, C W Yip, L W Tse, et al. Optimization of variable number tandem repeat typing set for differentiating Mycobacterium tuberculosis strains in the Beijing family[J]. FEMS Microbiol Lett,2006, 256:258-265.
    270. Kremer K, B K Au, P C Yip, et al. Use of variable-number tandem-repeat typing to differentiate Mycobacterium tuberculosis Beijing family isolates from Hong Kong and comparison with IS6110 restriction fragment length polymorphism typing and spoligotyping[J]. J Clin Microbiol,2005, 43:314-320.
    271. Le Fleche P, M Fabre, F Denoeud, et al. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing[J]. BMC Microbiol,2002,2:37.
    272. Magdalena J, P Supply, C Locht. Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex[J]. J Clin Microbiol,1998,36:2471-2476.
    273. Magdalena J, A Vachee, P Supply, et al. Identification of a new DNA region specific for members of Mycobacterium tuberculosis complex[J]. J Clin Microbiol,1998,36:937-943.
    274. Roring S, A Scott, D Brittain, et al. Development of variable-number tandem repeat typing of Mycobacterium bovis:comparison of results with those obtained by using existing exact tandem repeats and spoligotyping[J]J Clin Microbiol,2002,40:2126-2133.
    275. Roring S, A N Scott, R G Hewinson, et al. Evaluation of variable number tandem repeat (VNTR) loci in moleculartyping of Mycobacterium bovis isolates from Ireland[J]. Vet Microbiol,2004,101:65-73.
    276. Skuce R A, T P McCorry, J F McCarroll, et al. Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets[J]. Microbiology,2002,148:519-528.
    277. Smittipat N, P Billamas, M Palittapongarnpim, et al. Polymorphism of variable-number tandem repeats at multiple loci in Mycobacterium tuberculosis[J]. J Clin Microbiol,2005,43:5034-5043.
    278. Surikova O V, D S Voitech, G Kuzmicheva, et al. Efficient differentiation of Mycobacterium tuberculosis strains of the W-Beijing family from Russia using highly polymorphic VNTR loci[J]. Eur J Epidemiol,2005,20:963-974.
    279. Blackwood K S, J N Wolfe, A M Kabani. Application of mycobacterial interspersed repetitive unit typing to Manitoba tuberculosis cases:can restriction fragment length polymorphism be forgotten[J]? J Clin Microbiol,2004,42:5001-5006.
    280. Hawkey P M, E G Smith, J T Evans, et al. Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110 based restriction fragment length polymorphism analysis for investigation of apparently clustered cases of tuberculosis[J]. J Clin Microbiol,2003, 41:3514-3520.
    281. Savine E, R M Warren, G D van der Spuy, et al. Stability of variable-number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis[J]. J Clin Microbiol,2002,40:4561-4566.
    282. Allix C, K Walravens, C Saegerman, et al. Evaluation of the epidemiological relevance of variable-number tandem-repeat genotyping of Mycobacterium bovis and comparison of the method with 1S6110 restriction fragment length polymorphism analysis and spoligotyping[J]. J Clin Microbiol,2006, 44:1951-1962.
    283. Bifani P J, B Mathema, N E Kurepina, et al. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains[J].Trends Microbiol,2002,10:45-52.
    284. Brudey K, J R Driscoll, L Rigouts, et al. Mycobacterium tuberculosis complex genetic diversity:mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology[J]. BMC Microbiol,2006,6:23.
    285. Cowan L S, L Diem, T Monson, et al. Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States[J]. J Clin Microbiol,2005, 43:688-695.
    286. de Boer A S, K Kremer, M W Borgdorff, et al. Genetic heterogeneity in Mycobacterium tuberculosis isolates reflected in IS6110 restriction fragment length polymorphism patterns as low-intensity bands[J]. J Clin Microbiol,2000,38:4478-4484.
    287. Feil E J, B G Spratt. Recombination and the population structures of bacterial pathogens[J]. Annu. Rev. Microbiol,2001,55:561-590.
    288. Filliol I, J R Driscoll, D Van Soolingen, et al. Global distribution of Mycobacterium tuberculosis spoligotypes[J]. Emerg Infect Dis,2002,8:1347-1349.
    289. Filliol I, A S Motiwala, M Cavatore, et al. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis:insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set[J]. J Bacteriol,2006,188:759-772.
    290. Smith N H, Godon R R, Clifton-Hadley S, et al. The molecular evolution of Mycobacterium bovis[J].Nat Rev Microbiol,2006,4:670-681.
    291. Mazars E, Lesijean S, Banuls AL, et al. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology [J]. Proc Natl Acad Sci USA, 2001,98(4):1901-1906.
    292. Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems:an application of Simpsons index of diversity [J]. J Clin Microbiol,1988,26:2465-2466.
    293.阚晓宏.DNA数目可变串联重复序列用于结核分枝杆菌分型研究[J].中国防痨杂志,2005,27(2):77-81.
    294.同重湘,赵秀琴,马建军,等.228株结核分枝杆菌MLVA分型研究[J].中国医药导报,2010,7(16):97-98.
    295.石荔,范昕建,万康林.多位点可变串联重复序列技术用于西藏地区结核分枝杆菌基因分型的初步研究[J].中华流行病学杂志,2007,28(5):477-481.
    296. Allix-Beguec C, Fauville-Dufaux M, Supply P. Three-year popu-lation-based evaluation of standardized mycobacterial inter-spersed repetitive unit variable number tandem repeat typing of Mycobacterium tuberculosis[J].Clin Microbiol,2008,46:1398-1406.
    297.吕冰,Pourcel C,刘敬华,等.结核分枝杆菌多位点可变数目重复序列分型方法标准化程序的建立[J].中华流行病学杂志,2008,29(9):919-924.
    298.吕冰,李兆娜,刘梅,等.45个可变数目串联重复序列位点用于中国结核分枝杆菌基因型鉴定的分辨力评价[J].中华流行病学杂志,2009,30(1):63-67.
    299.沈国妙,查佳,徐琳.结核分枝杆菌散在分布重复单位基因型分型法的应用研究[J].中华结核和呼吸杂志.2005,28(5):292-296.
    300.张天民.结核病分子流行病学的概况和进展[J].中华结核和呼吸杂志,2000,23(10):583-5.
    301.王廷民.结核分枝杆菌DNA指纹技术及其应用研究[J].中华检验医学杂志,2001,24:76-78.
    302.王艳华,杨修军,王博,等.应用MLVA技术对吉林省294株结核分枝杆菌分型分析[J].实用预防医学,2010,17(1):135-137.
    303.陈靖.结核分枝杆菌北京基因型菌株的鉴定及分型方法的建立及应用[硕士学位论文].上海,复旦大学,2009.
    304.文建强.甘肃省结挂分枝杆菌临床分离株基因分型初步研究[硕士学位论文].兰州,兰州大学,2008.
    305.石荔.西藏自治区结核分枝杆菌临床分离菌株的基因分型初步研究[博士学位论文].成都,四川大学,2007.
    306.杨海飞,潘劲草,姜彩霞.结核病的分子流行病学[J].国外医学流行病学传染病学分册.2004,31(2):125-127
    307.严懿嘉,朱建国,华修国.基因分型技术在牛结核病的分子流行病学研究中的应用[J].中国人兽共患病学报,2006,22(4):375-378.
    308.韩晖,叶临湘.结核分枝杆菌流行病学研究中基因分型的方法[J].中国社会医学杂志.2006,23(4):254-256
    309. Rua Domenech R. Human Mycobacterium bovis infection in the United Kingdom:incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis[J]. Tuberculosis (Edinburg) 2006,86:77-109.
    310. Thoen C, LoBue P, de Kantor I. The importance of Mycobacterium bovis as a zoonosis[J]. Vet Microbiol 2006,112:339-45.
    311.LoBue PA, Moser KS. Treatment of Mycobacterium bovis infected tuberculosis patients:San Diego County, California,United States,1994-2003[J]. Int J Tuberc Lung Dis,2005,9:333-8.
    312.Dankner W M, Waecker NJ, Essey MA, et al. Mycobacterium bovis infections in San Diego clinicoepidemiologic study of 73 patients and a historical review of a forgotten pathogen[J]. Medicine (Baltimore) 1993,72:11-37.
    313. Winters A, Driver C, Macaraig M, et al. Tuberculosis cases caused by Mycobacterium bovis infections, New York City,2001-2004[J]. Morb Mortal Wkly Rep 2005,54:605-8.
    314. Blaas SH, Bohm S, Martin G, et al. Pericarditis as primary manifestation of Mycobacterium bovis ssp. caprae infection[J]. Diagn Microbiol Infect Dis 2003,47:431-3.
    315. Meyer S, Naumann L, Landthaler M, et al. Lupus vulgaris caused by Mycobacterium bovis ssp. caprae[J]. Br J Dermatol 2005,153:220-2.
    316. Evans JT, Smith EG, Banerjee A, et al. Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK[J]. Lancet 2007,369:1270-6.
    317. Guerrero A, Cobo J, Fortu'n J, et al. Nosocomial transmission of Mycobacterium bovis resistant to 11 drugs in people with advanced HIV-1 infection[J]. Lancet 1997,350:1738-42.
    318. Nitta AT, Knowles LS, Kim J, et al. Limited transmission of multidrug-resistant tuberculosis despite a high proportion of infectious cases in Los Angeles County, California[J]. Am J Respir Crit Care Med 2002,165:812-7.
    319. Hughes V M, Skuce R, Doig C et al.Analysis of multidrug-resistant Mycobacterium bovis from three clinical samples from Scotland[J]. Int J Tuberc Lung Dis 2003,7:1191-8.
    320. Kubica T, Rusch-Gerdes S, Niemann S. Mycobacterium bovis subsp. caprae caused one-third of human M. bovis-associated tuberculosis cases reported in Germany between 1999 and 2001[J]. J Clin Microbiol 2003,41:3070-7.
    321. Erler W, Martin G, Sachse K, et al. Molecular fingerprinting of Mycobacterium bovis subsp. caprae isolates from central Europe[J]. J Clin Microbiol 2004,42:2234-8.
    322. Gutie'rrez M, Samper S, Jime'nez MS et al.Identification by spoligotyping of a caprine genotype in Mycobacterium bovis strains causing human tuberculosis[J]. J Clin Microbiol 1997,35:3328-30.
    323. Prodinger W M, Eigentler A, Allerberger F, et al. Infection of red deer, cattle, and humans with Mycobacterium bovis subsp. caprae in western Austria[J]. J Clin Microbiol 2002,40:2270-2.
    324. Sechi LA, Zanetti S, Sanguinetti M, et al. Molecular basis of rifampin and isoniazid resistance in Mycobacterium bovis strains isolated in Sardinia, Italy[J]. Antimicrob Agents Chemother 2001, 45:1645-8.
    325. Cavirani S, Fanti F, Benecchi M, et al. Evaluation of susceptibility of Mycobacterium bovis to antituberculous drugs by radiometric BACTEC 460TB system[J]. New Microbiol 2003,26:181-6.
    326. Parreiras PM, Lobato FC, Alencar AP, et al. Drug susceptibility of Brazilian strains of Mycobacterium bovis using traditional and molecular techniques[J]. Mem Inst Oswaldo Cruz 2004,99:749-52.
    327. Daly M, Diegel K L, Fitzgerald S D, et al. Patterns of antimicrobial susceptibility in Michigan wildlife and bovine isolates of Mycobacterium bovis[J]. J Vet Diagn Invest 2006,18:401-4.
    328. Heyman S, Brewer T F, Wilson M E, et al. The need for global action against multidrug-resistant tuberculosis[J]. J Am Med Assoc,1999.281,2138-2140.
    329.杨柳,苏明权,程晓.结核分枝杆菌atG、rpoB、rpsL耐药基因快速检测方法的建立[J].中国卫生检验杂志,2009,19(8):1735-1737.
    330. Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicinresistance mutations in Mycobacterium tuberculosis[J]. Lancet,1993,341:647-50.
    331. Honore N, Cole ST. Streptomycin resistance in mycobacteria[J]. Antimicrob Agents Chemother 1994, 38:238-42.
    332. Takiff H E, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations[J]. Antimicrob Agents Chemother 1994,38:773-80.
    333. Telenti A, Philipp W J, Sreevatsan S, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol[J]. Nat Med 1997,3:567-70.
    334. Ramaswamy S V, Reich R, Dou S J, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother 2003,47:1241-50.
    335. Canetti G, Rist N, Grosset J. Measurement of sensitivity of the tuberculous bacillus to antibacillary drugs by the method of proportions. Methodology, resistance criteria, results and interpretation[J]. Rev Tuberc Pneumol (Paris),1963,27:217-72.
    336. Garattini S, Leonardi A. Mechanism of action of isoniazid:relations with the pyruvic acid of the mycobacterial [J]. G Ital Chemioter,1954,1:281-8.
    337. Pope H. The neutralization of isoniazid activity in Mycobacterium tuberculosis by certain metabolites[J]. Am Rev Tuberc,1955,73:735-47.
    338. Boisvert H. Effect of pyruvic acid on mycobacterial growth and antibiograms[J]. Rev Tuberc Pneumol (Paris),1970,34:117-24.
    339. Hale Y M, Pfyffer G E, Salfinger M. Laboratory diagnosis of mycobacterial infections:new tools and lessons learned[J]. Clin Infect Dis,2001,33,834-846.
    340. Soini H, Musser J M. Molecular diagnosis of tuberculosis[J]. Clin Chem,2001,47,809-814.
    341.Beatriz Romeroa, Alicia Aranaza, Javier Bezosa. Drug susceptibility of Spanish Mycobacterium tuberculosis complex isolates from animals[J]. Tuberculosis,2007,87:565-571.
    342.曾范利,于录,葛发,等.应用MABA法与试管法测定蛇床子素和8-甲氧基补骨脂素体外抗结核活性的研究[J].中国预防兽医学报2010,32(2):112-115.
    343.曾范利,于录,葛发,等.应用MABA法与试管法测定齐墩果酸体外抗结核活性的研究[J].动物医学进展,2010,31(7):22-25.
    344. Collins L A, Franzblau S G. Microplate Alamar Blue Assay versus Bactec 460 system for high-throughput screening of compound against Mycobacterium tuberculosis and Mycobacterium avium. [J].Antimicrobial Agents Chemotheraphy,1997,41:1004-1009.
    345.赵全民,于录,邓旭明,等.应用Alamar Blue法与试管法测定α-倒捻子素和8-甲氧基补骨脂素体外抗结核杆菌活性[J].中国预防兽医学报,2010,32(1):71-73.
    346. Maria J Torresa, Antonio Criadoa, Maite Ruizb. Improved real-time PCR for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates[J]. Diagnostic Microbiology and Infectious Disease,2003,45:207-212
    347.单金岚,单万水,詹能勇,等.深圳地区结核分枝杆菌耐利福平株rpoB基因突变分布[J]。中国微 生态学杂志,2004,16(1):22-23.
    348.谭守勇,谭耀驹,黎燕琼.对利福平耐药的结核分枝杆菌rpoB基因突变与耐药程度关系的探讨[J].中国实用内科杂志,2004,24(1):27-29.
    349.中国防痨协会.结核病诊断细菌学检验规程[P].中国防痨杂志,1996,18(1):80-85.
    350. MORRIS S, BAIG H, SUFFYS P, et al. Molecularmechanisms ofmul-tiple drug resistance in clinical isolates ofMycobacterium tuberculosis[J]. J InfectDis,1995,171(4):954-960.
    351.吴雪琼,梁建琴,曹立雪,等.应用聚合酶链反应-寡核苷酸探针快速检测结核菌耐药基因突变[J].中华检验医学杂志,2005,28(3):310-312.
    352. HERRERA-LEON L, MOLINA T, SAIZ P, et al. New multiplex PCR for rapid detection of isoniazid-resistantMycobacterium tuberculosisclin-ical isolates[J]. Antimicrob Agents Chemother,2005, 49(1):144-147.
    353.吴雪琼,张俊仙,庄玉辉.应用PCR-RFLP分析结核分枝杆菌rpsL基因突变[J].中华防痨杂志,2000,22:8.
    354.刘宇红,姜广路,赵立平,等.第四次全国结核病流行病学抽样调查-结核分枝杆菌耐药性分析与评价[J].中华结核和呼吸杂志,2002,25(4):224.
    355.杨柳,苏明权,程晓东,等.PCR-SSCP法检测结核分枝杆菌耐药性[J].第四军医大学学报,2003,24(23):2142.
    356.罗振华,王和.结核分枝杆菌临床分离株的基因检测研究[J].贵州医药,2004,28(2):103
    357.黄海南,韩金祥,王进鸿,等.链霉素耐药结核分枝杆菌rpsL基因分析[J].遗传学报,2003,30(4):376.
    358.宋艳斌,马文丽,郑文岭.应用ABI-PRISIMTM3100测序仪进行快速且经济的DNA测序[J].生物技术通报,2002,3:44.
    359.邬小薇.3种方法检测结核分枝杆菌的比较[J].重庆医学,2005,34(10):1506-1511.
    360.杨松,钟敏,张耀亭,等.耐多药结核分枝杆菌基因突变分析[J].中国病原生物学杂志,2009,4(6):412-415.
    361. World Health Organisation:Anti-tuberculosis drug resistance in the world:Report Number 3.The WHO/IUALTD global project on anti-tuberculosis drug resistance surveillance. In: WHO/CDS/TB/2004.343.Geneva:WHO,2004.(http://www.who.int/tb/publications/who_htm_tb_2004_3 43/en/index.html
    362. Guo H, Seet Q, Denkin S, et al. Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA[J]. J Med Microbiol.2006,55(11):1527-31.
    363. Zhang Y, Heym B, Allen B, et al.The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis[J].Nature,1992,358(6387):591-593.
    364. HARRI J.MARTTILA, HANNA SOINI, PENTT1 HUOVINEN, et al.katG Mutations in Isoniazid-Resistant Mycobacterium tuberculosis Isolates Recovered from Finnish Patients[J]. Antimicrobial Agents And Chemotherapy,1996,2187-2189.
    365. Ng V H, Cox J Sm, Sousa AO, et al.Role of katG catalase-peroxidase in mycobacterial pathogenesis:countering the phagocyte oxidative burst[J].Mol Microbiol,2004,52:1291-1302.
    366. Argyrou A, Vetting M W, Aladegbami B, er al. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid[J].Nat Struct Mol Biol,2006,13:408-413.
    367. Lancaster J R, Gaston B. NO and nitrosothiols:spatial confinement and free diffusion[J].Am J Physiol Lung Cell Mol Physiol,2004,287:L465-L466.
    368.林辉.重庆市结核病耐药的流行病学调查及耐药相关基因分子特征研究[博士学位论文].重庆.第三军医大学.2008.
    369. Wu Xue-Qiong, Lu Yang, Zhang Jun-Xian, et al. Detection of the mutations in katG315 and inhA-15 of Mycobacterium tuberculosis strains isolated from Chinese patients[J].Chin Med J 2006,119(3):230:230-233
    370. Manzour Hernando Hazbo'n, Michael Brimacombe, Miriam Bobadilla del Valle, et al. Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis[J].Antimicrobial Agents And Chemotherapy, Aug.2006,50(8):2640-2649
    371.金嘉琳,张文宏,翁心华,等.华东地区耐药结核分枝杆菌katG基因的变异[J].中华传染病学杂志.2006,24(5):301-306.
    372. M.Caws, Phan Minh Duy, Dau Quang Tho, et al. Mutations Prevalent among Rifampin-and Isoniazid-Resistant Mycobacterium tuberculosis Isolates from a Hospital in Vietnam[J].Journal Of Clinical Microbiology,2006,44(7):2333-2337.
    373. Mokrousov I, Narvskaya O,Otten T, et al. High prevalence of katG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia,1996 to 2001 [J]. Antimicrob Agents Chemother,2002,46(5):1417-24.
    374. Maxine Caws, Dau Quang Tho, Phan Minh Duy, et al. PCR-Restriction Fragment Length Polymorphism for Rapid, Low-Cost Identification of Isoniazid-Resistant Mycobacterium tuberculosis[J] JOURNAL OF CLINICAL MICROBIOLOGY,2007,45(6):1789-1793.
    375. Min Zhang, Jun Yue, Yan-ping Yang, et al. Detection of Mutations Associated with Isoniazid Resistance in Mycobacterium tuberculosis Isolates from China[J]JOURNAL OF CLINICAL MICROBIOLOGY, 2005,43(11):5477-5482
    376. Raphael C Y Chan, Mamie Hui, Edward W C, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong[J]. Journal of Antimicrobial Chemotherapy,2007,59:866-873.
    377. Herrera L, Valverde A, Saiz P, et al. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical strains isolated in the Philippines[J].Int J Antimicrob Agents,2004,23(6):572-576.
    378. Maxim V Afanas'evl, Larisa N Ikryannikova, Elena N.ll'inal, et al. Molecular characteristics of rifampicin-and isoniazid-resistant Mycobacterium tuberculosis isolates from the Russian Federation[J].Journal of Antimicrobial Chemotherapy,2007,59:1057-1064
    379. Saeed Zaker Bostanabad, Leonid Ptitov. katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis isolates from Belarusian patients[J].Tuberkiiloz ve Toraks Dergisi,2007,55(3):231-237.
    380.宋艳斌,马文丽,郑文岭,等.结核分枝杆菌rpsL基因突变的快速检测[J].广东医学,2004,26(4):469-470.
    381.吴雪琼,张俊仙,庄玉辉.应用PCR-RFLP分析结核分枝杆菌rpsL基因突变[J].中华防痨杂志,2000,22:8-11.
    382.刘宇红,姜广路,赵立平,等.第四次全国结核病流行病学抽样调查结核分枝杆菌耐药性分析与评价[J].中华结核和呼吸杂志,2002,25(4):224-227.
    383.郭邦成,周学章,王玉炯;牛结核分支杆菌临床分离株rpsL,rpoB,KatG基因突变分析[J].宁夏大学学报(自然科学版),2009,30(2):160-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700