肿瘤抑制因子CYLD调节微管组装及微管相关细胞活动的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微管细胞骨架在多种细胞活动过程中发挥着非常重要的作用,如细胞形态的维持、胞内物质运输、细胞分裂以及细胞运动。微管具有动态性,能不断进行聚合与解聚的动态变化,这种动态性对于其很多功能的发挥至关重要。细胞内微管的功能及动态性是由一系列的微管结合蛋白调节的,包括调节微管组装、组织的蛋白以及介导细胞器和膜泡运输的马达蛋白。微管结合蛋白的异常表达或药物处理会使细胞内微管的组装或稳定性发生异常,进而可能导致严重的细胞表型,如细胞运动的缺陷、细胞周期停滞甚至细胞死亡。
     CYLD是一个由956个氨基酸组成的蛋白质,其基因的突变与人类家族性圆柱瘤等肿瘤的发生有着密切的关系。CYLD的羧基端含有一个去泛素化酶催化结构域,赋予该蛋白去泛素化酶的功能,能特异性去除靶蛋白上的通过第63位赖氨酸连接形成的泛素链。另外,CYLD的氨基端含有三个CAP-Gly结构域。CAP-Gly结构域存在于多种微管结合蛋白中,并介导这些蛋白与微管的相互作用。然而,尚不清楚CYLD是否能够与微管相互作用,如果能够相互作用,是否是通过其CAP-Gly结构域来介导。在本项研究中,我们通过免疫荧光染色实验,发现在细胞中内源的CYLD与微管共定位。微管共沉淀实验表明CYLD能够直接与微管在体外相互作用。微管共沉淀实验进一步显示,CYLD含有三个CAP-Gly结构域的氨基端以及其第一个CAP-Gly结构域主要存在于微管沉淀中,表明CYLD与微管的相互作用主要由CYLD的第一个CAP-Gly结构域来介导。通过GST下拉实验,我们发现CYLD也能够与微管的亚基——微管蛋白相互作用。细胞内CYLD表达的沉默能够显著抑制微管解聚后的再生,表明CYLD具有促进微管聚合的功能。通过微管蛋白混浊度检测实验,我们发现CYLD能够在体外促进微管蛋白聚合成微管,并且在稀释诱导的微管解聚过程中对微管具有稳定作用。而且,微管蛋白混浊度检测实验以及微管沉淀实验都证实CYLD是通过降低微管聚合的临界浓度而促进微管蛋白聚合成微管。另外,通过划痕愈合实验,我们发现CYLD在介导细胞迁移的过程中发挥着重要的作用,并且CYLD的这一调节活性依赖于其第一个CAP-Gly结构域。这些研究结果表明CYLD是一个对微管动态性具有重要调节作用的CAP-Gly蛋白。
     虽然CYLD最初是作为一个肿瘤抑制因子被发现的,但它最近被发现在多种重要的生理活动中起作用,如免疫应答、炎症反应、破骨细胞发生、细胞周期调控等。在本项研究中,我们发现CYLD在血管新生中也发挥着非常重要的作用。血管新生是一个受到促血管新生因子和抑血管新生因子调制的过程,并依赖于血管内皮细胞的迁移。在基于基质胶(matrigel)的内皮细胞成管实验和基于胶原胶的细胞球出芽形成实验中,我们发现了CYLD表达的沉默使得血管新生的能力显著削弱。我们进一步研究了CYLD对体内血管新生的影响,发现CYLD的小干扰RNA及CYLD的抗体在小鼠体内能显著抑制血管新生诱导因子诱导的血管生成。我们接下来研究了CYLD调节血管新生的分子机制。细胞铺展实验和划痕愈合实验显示CYLD通过介导血管内皮细胞的铺展和迁移来调节血管新生。我们对迁移中细胞的前沿膜皱褶的动态性进行了检测,发现CYLD表达抑制的细胞中膜皱褶的动态性显著降低,进一步证明了CYLD对血管内皮细胞迁移的调节。CYLD表达的沉默显著抑制了内皮细胞中微管的动态性,并通过阻止细胞的极化而抑制内皮细胞的迁移,这些结果表明CYLD对微管动态性的调节在细胞迁移中发挥重要作用。为了进一步地了解CYLD调节内皮细胞迁移和血管新生的机制,我们研究了CYLD的调节作用是否涉及到了Rho家族GTP酶。结果表明,Rac1的活化在CYLD调节血管内皮细胞迁移和血管新生过程中起着重要的作用。这些研究结果揭示CYLD具有调节血管新生的功能,并提出在内皮细胞迁移和血管新生过程中Rac1活化的一种新机制。
     CYLD已经被发现在细胞周期进程中具有重要的调节作用,然而其详细的分子机制仍需进一步地了解。在细胞进入有丝分裂的时候,微管经历剧烈的重组过程。在这个过程中,精确的微管动态性对于有丝分裂纺锤体的组装以及染色体的分离是必需的。我们的研究发现CYLD调节微管的动态性,这暗示了CYLD可能在有丝分裂进程中具有重要作用。为了检测这种可能性,我们研究了CYLD对纺锤体组装的影响,发现CYLD表达的降低能够导致纺锤体的异常定位,表明CYLD对于有丝分裂纺锤体的定位具有关键作用。我们通过免疫荧光染色实验,发现CYLD介导了星体微管与细胞皮层的相互作用。微管末端结合蛋白EB1已经被发现能够介导微管正极与细胞皮层之间的连接。我们通过GST下拉实验,发现CYLD能够与EB1相互作用,并通过免疫荧光染色实验,发现CYLD与EB1在部分星体微管的末端存在共定位。通过GST下拉实验,我们进一步发现CYLD在细胞内能够形成二聚体,这种二聚化作用是由CYLD的B-box结构域介导的。这些结果暗示CYLD二聚体可能与EB1二聚体相互作用来调节微管的动态性和介导微管对细胞皮层的捕获,进而调节有丝分裂细胞中纺锤体的定位。另外,我们的研究发现CYLD表达的降低能诱导染色体分离及胞质分裂异常,表现为细胞在非水平的方向进行分裂和存在染色体分离滞后的现象。激酶实验显示CYLD能够负调节Aurora-B激酶的活性,而CYLD的结合蛋白EB1则促进Aurora-B激酶的活性,这些结果暗示CYLD和EB1对Aurora-B激酶的活性调节具有相反的作用,共同调节胞质分裂进程。我们的研究进一步地表明CYLD表达水平的降低导致细胞增殖不受接触抑制的控制,而细胞增殖接触抑制的丧失可能是由纺锤体定位和胞质分裂的异常所引起的。我们的研究表明,CYLD对纺锤体定位、胞质分裂以及Aurora-B活性的调节可能是其发挥肿瘤抑制功能的重要因素。
     概括来讲,本项研究首次证明CYLD是一个微管结合蛋白,能够调节微管的动态性,从而在细胞迁移过程中发挥重要作用。本项研究进一步发现CYLD能够通过影响血管内皮细胞的极化和迁移而调节血管的新生。此外,本项研究还发现CYLD能够通过介导星体微管与细胞皮层的相互作用而影响有丝分裂纺锤体的定位,并参与对于染色体分离、胞质分裂以及Aurora-B活性的调节。这些研究结果为理解CYLD在正常生理活动及肿瘤发生过程中的作用提供了崭新的思路。
The microtubule cytoskeleton plays an important role in many cellular activities, such as cell shaping, intracellular trafficking, cell division, and cell motility. Microtubules are intrinsically dynamic polymers and the dynamic property of microtubules is critical for many of their cellular functions. The structure and function of microtubules are regulated exquisitely in cells by a repertoire of microtubule-binding proteins, including proteins that regulate the assembly and organization of microtubules and motor proteins that mediate the transport of organelles and vesicles. Alteration of microtubule assembly and/or stability by abnormal expression of microtubule-binding proteins or by drug treatment can result in serious phenotypes such as defects in cell motility. cell cycle arrest, or even cell death.
     The tumor suppressor for human familial cylindromatosis (CYLD) is a protein that consists of 956 amino acid residues with three CAP-Gly domains in the amino terminus. In addition, a deubiquitinase domain exists in the carboxyl terminus of CYLD conferring its activity to deconjugate lysine-63-linked polyubiquitin chains from target proteins. CAP-Gly domains exist in a number of microtubule-binding proteins and are responsible for their association with microtubules. However, it remains elusive whether CYLD interacts with microtubules and, if so, whether the interaction is mediated by the CAP-Gly domains. In this study, immunofluorescence microscopy shows that endogenous CYLD colocalizes with the microtubule cytoskeleton in cells. Microtubule cosedimentation assays further demonstrate a direct interaction of CYLD with microtubules in vitro. In addition, microtubule cosedimentation assays reveal that the first CAP-Gly domain of CYLD is mainly responsible for its interaction with microtubules. By GST pulldown assays, we find that CYLD interacts with the microtubule subunit tubulin. Knockdown of cellular CYLD expression dramatically delays microtubule regrowth after depolymerization, indicating an activity for CYLD in promoting microtubule assembly. By tubulin turbidity assay, we find that CYLD promotes tubulin polymerization into microtubules and stabilizes microtubules against dilution-induced depolymerization. Furthermore, tubulin turbidity and microtubule sedimentation assays both reveal that CYLD enhances tubulin polymerization into microtubules by lowering the critical concentration for microtubule assembly. In addition, we identify by wound healing assay a critical role for CYLD in mediating cell migration and find that its first CAP-Gly domain is required for this activity. Thus CYLD joins a growing list of CAP-Gly domain-containing proteins that regulate microtubule dynamics and functions.
     Although CYLD was initially identified as a tumor suppressor, it has recently been implicated in diverse physiologic processes, such as immune response. inflammation, osteoclastogenesis. and cell cycle progression. In this study, we have investigated the involvement of CYLD in angiogenesis, a process tightly regulated by pro- and anti-angiogenic factors and requires the migration of vascular endothelial cells from preexisting blood vessels. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based three-dimensional capillary sprouting assay. The effect of CYLD on angiogenesis is also studied in vivo. We find that addition of CYLD siRNA or anti-CYLD antibody significantly blocks vascular growth into the angioreactors implanted in mice. We have also investigated the molecular mechanisms that underlie the function of CYLD in angiogenesis. Cell spreading and wound healing assays reveal that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Examination of membrane ruffling at the leading edge of migrating cells shows diminished membrane ruffling in CYLD-knockdown cells, providing further evidence for the involvement of CYLD in vascular endothelial cell migration. In addition, we find that silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. To gain more mechanistic insight into how CYLD mediates endothelial cell migration and angiogenesis, we have investigated the involvement of the Rho family GTPases in these processes. Our data identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. These results thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Racl activation during endothelial cell migration and angiogenesis.
     CYLD has been shown to regulate cell cycle progression, but the precise molecular mechanisms remain to be elucidated. Microtubules undergo dramatic rearrangement at the onset of mitosis, and exquisite microtubule dynamics are required for mitotic spindle assembly and chromosome segregation. The finding that CYLD regulates microtubule dynamics suggests that CYLD may play an important role in mitosis. To investigate this hypothesis, we have studied the effect of CYLD on spindle assembly. We find that CYLD knockdown results in spindle misorientaion, indicating a critical role for CYLD in spindle positioning. Immunofluorescence microscopy reveals that CYLD mediates the interaction of astral microtubules with the cell cortex. By GST pulldown assay. we find that CYLD interacts with the microtubule tip-associated protein EB1. a known linker between microtubule plus ends and the cell cortex. Immunofluorescence microscopy further shows that CYLD and EB1 colocalize at the ends of some astral microtubules. In addition. CYLD can form dimers in cells, and the dimerization is mediated by its B-box domain. These results suggest that the CYLD dimer may interact with the EB1 dimer to modulate microtubule dynamics and to link microtubules to the cell cortex, thereby regulating spindle positioning in mitotic cells. Furthermore, we find that CYLD knockdown results in defects in chromosome segregation and cytokinesis, evidenced by non-horizontal cell division and chromosome lagging. Kinase assays reveal that CYLD negatively regulates the kinase acivity of Aurora-B, while its binding partner EB1 promotes Aurora-B activity. indicating opposite roles for CYLD and EB1 in the regulation of Aurora-B activity. We further find that CYLD knockdown results in the loss of contact-mediated inhibition of cell proliferation, which may be result from abnormal spindle positioning and cytokinesis. These findings suggest that the regulation of spindle positioning, cytokinesis, and Aurora-B activity by CYLD may contribute to its tumor-suppressing function.
     In conclusion, this study provides the first evidence that CYLD is a microtubule-binding protein and regulates microtubule dynamics, thereby mediating cell migration. This study further demonstrates that CYLD regulates angiogenesis through its effects on the polarization and migration of vascular endothelial cells. In addition, the present study reveals that CYLD regulates spindle positioning by mediating the interaction of astral microtubules with the cell cortex and that CYLD participates in the regulation of chromosome segregation, cytokinesis, and Aurora-B activity. These results provide novel insights into the functions of CYLD in normal physiologic processes and cancer development.
引文
[1]Amos LA and Schlieper D. Microtubules and maps. Adv Protein Chem,2005,71(257-98.
    [2]Amos LA and Lowe J. How Taxol stabilises microtubule structure. Chem Biol,1999, 6(3):R65-9.
    [3]Horesh D, Sapir T, Francis F, et al. Doublecortin, a stabilizer of microtubules. Hum Mol Genet,1999,8(9):1599-610.
    [4]Kim MH, Cierpicki T, Derewenda U, et al. The DCX-domain tandems of doublecortin and doublecortin-like kinase. Nat Struct Biol,2003,10(5):324-33.
    [5]Hayashi I and Ikura M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J Biol Chem.2003.278(38):36430-4.
    [6]Li S, Finley J,Liu ZJ, et al. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J Biol Chem,2002,277(50):48596-601.
    [7]Goedert M,Spillantini MG, Potier MC. et al. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats:differential expression of tau protein mRNAs in human brain. EMBO J,1989,8(2):393-9.
    [8]Dehmelt L and Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol,2005,6(1):204.
    [9]Marklund U, Larsson N, Gradin HM, et al. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J,1996,15(19):5290-8.
    [10]McNally FJ and Vale RD. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell,1993,75(3):419-29.
    [11]Hamill DR, Howell B, Cassimeris L, et al. Purification of a WD repeat protein, EMAP, that promotes microtubule dynamics through an inhibition of rescue. J Biol Chem,1998, 273(15):9285-91.
    [12]Wordeman L. Microtubule-depolymerizing kinesins. Curr Opin Cell Biol,2005,17(1):82-8.
    [13]Fanara P, Oback B, Ashman K, et al. Identification of MINUS, a small polypeptide that functions as a microtubule nucleation suppressor. EMBO J,1999,18(3):565-77.
    [14]Mimori-Kiyosue Y and Tsukita S. "Search-and-capture" of microtubules through plus-end-binding proteins (+TIPs). J Biochem (Tokyo),2003,134(3):321-6.
    [15]Zheng Y, Wong ML, Alberts B, et al. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature,1995,378(6557):578-83.
    [16]Schroer TA. Dynactin. Annu Rev Cell Dev Biol,2004,20(759-79.
    [17]Walenta JH, Didier AJ, Liu X, et al. The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J Cell Biol,2001,152(5):923-34.
    [18]Ohkura H, Garcia MA and Toda T. Dis1/TOG universal microtubule adaptors-one MAP for all? J Cell Sci,2001,114(Pt21):3805-12.
    [19]Nishida E, Kuwaki T and Sakai H. Phosphorylation of microtubule-associated proteins (MAPs) and pH of the medium control interaction between MAPs and actin filaments. J Biochem, 1981,90(2):575-8.
    [20]Jourdain L, Curmi P, Sobel A, et al. Stathmin:a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry,1997,36(36):10817-21.
    [21]Andersen SS, Ashford AJ, Tournebize R, et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature,1997,389(6651):640-3.
    [22]Leighton IA, Curmi P, Campbell DG, et al. The phosphorylation of stathmin by MAP kinase. Mol Cell Biochem,1993,127-128(151-6.
    [23]Takahashi K and Suzuki K. Membrane transport of WAVE2 and lamellipodia formation require Pakl that mediates phosphorylation and recruitment of stathmin/Op18 to Pakl-WAVE2-kinesin complex. Cell Signal,2009,21(5):695-703.
    [24]Kortazar D, Fanarraga ML. Carranza G, et al. Role of cofactors B (TBCB) and E (TBCE) in tubulin heterodimer dissociation. Exp Cell Res,2007,313(3):425-36.
    [25]Le Clech M. Role of CAP350 in centriolar tubule stability and centriole assembly. PLoS ONE,2008,3(12):e3855.
    [26]Hoppeler-Lebel A, Celati C, Bellett G, et al. Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci,2007,120(Pt 18):3299-308.
    [27]Horiguchi K, Hanada T, Fukui Y, et al. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J Cell Biol,2006,174(3):425-36.
    [28]Hayashi I, Wilde A, Mal TK, et al. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol Cell,2005,19(4):449-60.
    [29]Hayashi I, Plevin MJ and Ikura M. CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1. Nat Struct Mol Biol,2007,14(10):980-1.
    [30]Mishima M, Maesaki R, Kasa M, et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc Natl Acad Sci USA,2007, 104(25):10346-51.
    [31]Pierre P, Scheel J, Rickard JE, et al. CLIP-170 links endocytic vesicles to microtubules. Cell, 1992,70(6):887-900.
    [32]Diamantopoulos GS, Perez F, Goodson HV, et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J Cell Biol,1999,144(1):99-112.
    [33]Coquelle FM, Caspi M, Cordelieres FP, et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol Cell Biol,2002,22(9):3089-102.
    [34]Akhmanova A, Hoogenraad CC, Drabek K, et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell, 2001,104(6):923-35.
    [35]Brunner D and Nurse P. CLIP170-like tiplp spatially organizes microtubular dynamics in fission yeast. Cell,2000,102(5):695-704.
    [36]Perez F, Diamantopoulos GS, Stalder R, et al. CLIP-170 highlights growing microtubule ends in vivo. Cell,1999,96(4):517-27.
    [37]Lomakin AJ, Semenova I, Zaliapin I, et al. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev Cell,2009,17(3):323-33.
    [38]Tanenbaum ME, Galjart N, van Vugt MA, et al. CLIP-170 facilitates the formation of kinetochore-microtubule attachments. EMBO J,2006,25(1):45-57.
    [39]Dujardin D, Wacker UI, Moreau A, et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment.J Cell Biol,1998,141(4):849-62.
    [40]Dhonukshe P and Gadella TW, Jr. Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell,2003,15(3):597-611.
    [41]Suzuki K and Takahashi K. Regulation of lamellipodia formation and cell invasion by CLIP-170 in invasive human breast cancer cells. Biochem Biophys Res Commun,2008, 368(2):199-204.
    [42]Lallemand-Breitenbach V, Quesnoit M, Braun V, et al. CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule dynamics. J Biol Chem,2004.279(39):41168-78.
    [43]Perez F, Pernet-Gallay K, Nizak C, et al. CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol,2002,156(4):631-42.
    [44]Tsuzuki Y, Fukumura D, Oosthuyse B, et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-lalpha-> hypoxia response element-> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res,2000, 60(22):6248-52.
    [45]Ozaki H, Yu AY, Della N, et al. Hypoxia inducible factor-1 alpha is increased in ischemic retina:temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci,1999, 40(1):182-9.
    [46]Watanabe T, Noritake J and Kaibuchi K. Regulation of microtubules in cell migration. Trends Cell Biol,2005,15(2):76-83.
    [47]Rodriguez OC, Schaefer AW, Mandato CA, et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol,2003,5(7):599-609.
    [48]Goode BL, Drubin DG and Barnes G. Functional cooperation between the microtubule and actin cytoskeletons. Curr Opin Cell Biol,2000,12(1):63-71.
    [49]Wu WS, Wu JR and Hu CT. Signal cross talks for sustained MAPK activation and cell migration:the potential role of reactive oxygen species. Cancer Metastasis Rev,2008, 27(2):303-14.
    [50]Cain RJ and Ridley AJ. Phosphoinositide 3-kinases in cell migration. Biol Cell,2009, 101(1):13-29.
    [51]Baruzzi A, Caveggion E and Berton G. Regulation of phagocyte migration and recruitment by Src-family kinases. Cell Mol Life Sci,2008,65(14):2175-90.
    [52]Huang C, Jacobson K and Schaller MD. MAP kinases and cell migration. J Cell Sci,2004, 117(Pt20):4619-28.
    [53]Sattler M, Quackenbush E and Salgia R. Cell motility, adhesion, homing, and migration assays in the studies of tyrosine kinases. Methods Mol Med,2003,85(87-105.
    [54]Roche S. [Tyrosine kinases of the Src family, enzymes with multiple functions:from the growth of fibroblasts to the migration of epithelial cells]. C R Seances Soc Biol Fil,1998, 192(2):357-65.
    [55]Raftopoulou M and Hall A. Cell migration:Rho GTPases lead the way. Dev Biol,2004, 265(1):23-32.
    [56]Fukata M, Nakagawa M and Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol,2003,15(5):590-7.
    [57]Ridley AJ. Rho GTPases and cell migration. J Cell Sci,2001,114(Pt 15):2713-22.
    [58]Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science,1999,285(5429):895-8.
    [59]Kawano Y. Fukata Y. Oshiro N, et al. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol,1999,147(5):1023-38.
    [60]Watanabe G, Saito Y. Madaule P, et al. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science,1996.271(5249):645-8.
    [61]Wen Y. Eng CH, Schmoranzer J. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol,2004,6(9):820-30.
    [62]Shandala T, Gregory SL, Dalton HE, et al. Citron kinase is an essential effector of the Pbl-activated Rho signalling pathway in Drosophila melanogaster. Development,2004, 131(20):5053-63.
    [63]Reid T, Furuyashiki T, Ishizaki T, et al. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the rho-binding domain. J Biol Chem,1996,271(23):13556-60.
    [64]Wittmann T, Bokoch GM and Waterman-Storer CM. Regulation of leading edge microtubule and actin dynamics downstream of Racl. J Cell Biol,2003,161(5):845-51.
    [65]Watanabe T, Wang S, Noritake J, et al. Interaction with IQGAP1 links APC to Racl, Cdc42, and actin filaments during cell polarization and migration. Dev Cell,2004,7(6):871-83.
    [66]Kobayashi K, Kuroda S, Fukata M, et al. p140Sra-1 (specifically Racl-associated protein) is a novel specific target for Racl small GTPase. J Biol Chem,1998,273(1):291-5.
    [67]Abou-Kheir W, Isaac B, Yamaguchi H, et al. Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization:a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci,2008,121(Pt 3):379-90.
    [68]Fukata M, Watanabe T, Noritake J, et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell,2002,109(7):873-85.
    [69]Szczepanowska J. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements. Acta Biochim Pol,2009,56(2):225-34.
    [70]Higgs HN and Pollard TD. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol, 2000, 150(6):1311-20.
    [71]Chen XM, Huang BQ, Splinter PL, et al. Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum. Infect Immun,2004,72(5):3011-21.
    [72]Etienne-Manneville S, Manneville JB, Nicholls S, et al. Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol,2005, 170(6):895-901.
    [73]Leung T, Chen XQ, Tan I, et al. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol,1998, 18(1):130-40.
    [74]Cook TA, Nagasaki T and Gundersen GG. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol,1998, 141(1):175-85.
    [75]Ezratty EJ, Partridge MA and Gundersen GG. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol,2005,7(6):581-90.
    [76]Palazzo AF, Eng CH, Schlaepfer DD, et al. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science,2004,303(5659):836-9.
    [77]Wittmann T, Bokoch GM and Waterman-Storer CM. Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Racl. J Biol Chem,2004,279(7):6196-203.
    [78]Gomes ER, Jani S and Gundersen GG. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell,2005, 121(3):451-63.
    [79]Schlessinger K, McManus EJ and Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol,2007,178(3):355-61.
    [80]Etienne-Manneville S and Hall A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature,2003,421(6924):753-6.
    [81]Itoh RE, Kiyokawa E, Aoki K, et al. Phosphorylation and activation of the Racl and Cdc42 GEF Asef in A431 cells stimulated by EGF. J Cell Sci,2008,121(Pt 16):2635-42.
    [82]Waterman-Storer CM, Worthylake RA, Liu BP, et al. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol, 1999, l(l):45-50.
    [83]Chitaley K and Webb RC. Microtubule depolymerization facilitates contraction of vascular smooth muscle via increased activation of RhoA/Rho-kinase. Med Hypotheses,2001, 56(3):381-5.
    [84]Shirasu M, Yonetani A and Walczak CE. Microtubule dynamics in Xenopus egg extracts. Microsc Res Tech,1999,44(6):435-45.
    [85]Verde F, Dogterom M, Stelzer E, et al. Control of microtubule dynamics and length by cyclin A- and cyclin B-dependent kinases in Xenopus egg extracts. J Cell Biol,1992,118(5):1097-108.
    [86]Walczak CE and Mitchison TJ. Kinesin-related proteins at mitotic spindle poles:function and regulation. Cell,1996,85(7):943-6.
    [87]Goshima G, Saitoh S and Yanagida M. Proper metaphase spindle length is determined by centromere proteins Mis 12 and Mis6 required for faithful chromosome segregation. Genes Dev, 1999,13(13):1664-77.
    [88]Nigg EA, Blangy A and Lane HA. Dynamic changes in nuclear architecture during mitosis: on the role of protein phosphorylation in spindle assembly and chromosome segregation. Exp Cell Res,1996,229(2):174-80.
    [89]Amon A. The spindle checkpoint. Curr Opin Genet Dev,1999,9(1):69-75.
    [90]Pinsky BA and Biggins S. The spindle checkpoint:tension versus attachment. Trends Cell Biol,2005,15(9):486-93.
    [91]Page AM and Hieter P. The anaphase promoting complex. Cancer Surv,1997,29(133-50.
    [92]Oliferenko S, Chew TG and Balasubramanian MK. Positioning cytokinesis. Genes Dev, 2009,23(6):660-74.
    [93]Wheatley SP and Wang Y. Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol,1996,135(4):981-9.
    [94]Bignell GR, Warren W, Seal S, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genetics,2000,25(2):160-165.
    [95]Glittenberg M and Ligoxygakis P. CYLD:a multifunctional deubiquitinase. Fly (Austin), 2007,1(6):330-2.
    [96]Courtois G. Tumor suppressor CYLD:negative regulation of NF-kappaB signaling and more. Cell Mol Life Sci,2008,65(7-8):1123-32.
    [97]Saggar S, Chernoff KA, Lodha S, et al. CYLD Mutations in Familial Skin Appendage Tumors. J Med Genet,2008,
    [98]Zheng G, Hu L, Huang W, et al. CYLD mutation causes multiple familial trichoepithelioma in three Chinese families. Hum Mutat,2004,23(4):400.
    [99]Poblete Gutierrez P, Eggermann T, Holler D, et al. Phenotype diversity in familial cylindromatosis:a frameshift mutation in the tumor suppressor gene CYLD underlies different tumors of skin appendages. J Invest Dermatol,2002,119(2):527-31.
    [100]Komander D, Lord CJ, Scheel H, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B Box module. Mol Cell, 2008,29(4):451-64.
    [101]Massoumi R, Kuphal S, Hellerbrand C, et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med,2009,
    [102]Hellerbrand C, Bumes E, Bataille F, et al. Reduced expression of CYLD in human colon and hepatocellular carcinomas. Carcinogenesis,2007,28(1):21-7.
    [103]Massoumi R, Chmielarska K, Hennecke K, et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell,2006,125(4):665-77.
    [104]Jenner MW, Leone PE, Walker BA, et al. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood,2007,110(9):3291-300.
    [105]Feys T, Poppe B, De Preter K, et al. A detailed inventory of DNA copy number alterations in four commonly used Hodgkin's lymphoma cell lines. Haematologica,2007, 92(7):913-20.
    [106]Hirai Y, Kawamata Y, Takeshima N, et al. Conventional and array-based comparative genomic hybridization analyses of novel cell lines harboring HPV18 from glassy cell carcinoma of the uterine cervix. International Journal Of Oncology,2004,24(4):977-986.
    [107]Strobel P, Zettl A, Ren Z, et al. Spiradenocylindroma of the kidney:clinical and genetic findings suggesting a role of somatic mutation of the CYLD1 gene in the oncogenesis of an unusual renal neoplasm. Am J Surg Pathol,2002,26(1):119-24.
    [108]Lamb A, Yang XD, Tsang YH, et al. Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys63 ubiquitination. EMBO Rep,2009,10(11):1242-9.
    [109]Tan JM, Wong ES, Kirkpatrick DS, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet,2008,17(3):431-9.
    [110]Lamothe B, Besse A, Campos AD, et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem,2007,282(6):4102-12.
    [111]Trompouki E, Hatzivassiliou E, Tsichritzis T, et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappa B activation by TNFR family members. Nature,2003, 424(6950):793-796.
    [112]Kovalenko A, Chable-Bessia C, Cantarella G, et al. The tumour suppressor CYLD negatively regulates NF-kappa B signalling by deubiquitination. Nature,2003, 424(6950):801-805.
    [113]Brummelkamp TR, Nijman SM, Dirac AM, et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature,2003,424(6950):797-801.
    [114]Yoshida H, Jono H, Kai H, et al. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem,2005,280(49):41111-21.
    [115]Wright A, Reiley WW, Chang M, et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell,2007,13(5):705-16.
    [116]Reiley WW, Jin W, Lee AJ, et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Takl and prevents abnormal T cell responses. J Exp Med,2007, 204(6):1475-85.
    [117]Wooten MW, Geetha T, Babu JR, et al. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem,2008,283(11):6783-9.
    [118]Burns KA and Martinon F. Inflammatory diseases:is ubiquitinated NEMO at the hub? Curr Biol,2004,14(24):R1040-2.
    [119]Zhang SQ, Kovalenko A, Cantarella G, et al. Recruitment of the IKK signalosome to the p55 TNF receptor:RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity,2000,12(3):301-11.
    [120]Reiley W, Zhang M and Sun SC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem,2004,279(53):55161-7.
    [121]Xue L, Igaki T, Kuranaga E, et al. Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev Cell,2007,13(3):446-54.
    [122]Lee TH, Shank J, Cusson N, et al. The kinase activity of Ripl is not required for tumor necrosis factor-alpha-induced I kappa B kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. Journal Of Biological Chemistry,2004,279(32):33185-33191.
    [123]Jono H, Lim JH, Chen LF, et al. NF-kappaB is essential for induction of CYLD, the negative regulator of NF-kappaB:evidence for a novel inducible autoregulatory feedback pathway. J Biol Chem,2004,279(35):36171-4.
    [124]Reiley W. Zhang MY, Wu XF, et al. Regulation of the deubiquitinating enzyme CYLD by 1 kappa B kinase gamma-dependent phosphorylation. Molecular And Cellular Biology.2005. 25(10):3886-3895.
    [125]Liu Q. Chen T. Chen G, et al. Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through P13-K/Akt and NF-kappaB pathways. Mol Immunol.2007, 44(10):2686-96.
    [126]Reiley WW, Zhang M, Jin W, et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat Immunol,2006,7(4):411-7.
    [127]Friedman CS, O'Donnell MA, Legarda-Addison D, et al. The tumour suppressor CYLD is a negative regulator of RIG-1-mediated antiviral response. EMBO Rep,2008,9(9):930-6.
    [128]Stegmeier F, Sowa ME, Nalepa G, et al. The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA,2007,104(21):8869-74.
    [129]Stokes A, Wakano C, Koblan-Huberson M, et al. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal,2006,18(10):1584-94.
    [130]Sun SC. CYLD:a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ,2009,
    [131]Zhang J, Stirling B, Temmerman ST, et al. Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest, 2006,116(11):3042-9.
    [132]Jin W, Reiley WR, Lee AJ, et al. Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J Biol Chem,2007, 282(21):15884-93.
    [133]Lim JH, Ha U, Sakai A, et al. Streptococcus pneumoniae synergizes with nontypeable Haemophilus influenzae to induce inflammation via upregulating TLR2. BMC Immunol,2008, 9(40.
    [134]Lim JH, Ha UH, Woo CH, et al. CYLD is a crucial negative regulator of innate immune response in Escherichia coli pneumonia. Cell Microbiol,2008,10(11):2247-56.
    [135]Lim JH, Stirling B, Derry J, et al. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity,2007,27(2):349-60.
    [136]Zhang M, Wu X, Lee AJ, et al. Regulation of KK-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem,2008,
    [137]Jin W, Chang M, Paul EM, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest,2008,
    [138]Pierre P, Pepperkok R and Kreis TE. Molecular characterization of two functional domains of CLIP-170 in vivo. J Cell Sci,1994,107 (Pt7)(1909-20.
    [139]Feierbach B, Nogales E, Downing KH, et al. Alflp, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin. J Cell Biol,1999, 144(1):113-24.
    [140]Xuan C, Qiao W, Gao J, et al. Regulation of microtubule assembly and stability by the transactivator of transcription protein of Jembrana disease virus. J Biol Chem,2007, 282(39):28800-6.
    [141]Desai A and Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol,1997,13(83-117.
    [142]Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol,2000,16(89-111.
    [143]Jordan MA and Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004,4(4):253-65.
    [144]Mollinedo F and Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis,2003,8(5):413-50.
    [145]Folkman J. Angiogenesis:an organizing principle for drug discovery? Nat Rev Drug Discov,2007,6(4):273-86.
    [146]Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis:therapeutic implications. Semin Oncol,2002,29(6 Suppl 16):10-4.
    [147]Lamalice L, Le Boeuf F and Huot J. Endothelial cell migration during angiogenesis. Circ Res,2007,100(6):782-94.
    [148]Li R and Gundersen GG Beyond polymer polarity:how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol,2008,9(11):860-73.
    [149]Bornens M. Organelle positioning and cell polarity. Nat Rev Mol Cell Biol,2008, 9(11):874-86.
    [150]Gundersen GG, Wen Y, Eng CH, et al. Regulation of microtubules by Rho GTPases in migrating cells. Novartis Found Symp,2005,269(106-16; discussion 116-26,223-30.
    [151]Sun SC. CYLD:a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Cell Death Differ,17(1):25-34.
    [152]Koga T, Lim JH, Jono H, et al. Tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for Streptococcus pneumoniae-induced NFAT signaling. J Biol Chem,2008,
    [153]Lim JH, Jono H, Koga T, et al. Tumor Suppressor CYLD Acts as a Negative Regulator for Non-Typeable Haemophilus influenza-Induced Inflammation in the Middle Ear and Lung of Mice. PLoS ONE,2007,2(10):e1032.
    [154]Gao J, Huo L, Sun X, et al. The Tumor Suppressor CYLD Regulates Microtubule Dynamics and Plays a Role in Cell Migration. J Biol Chem,2008,283(14):8802-9.
    [155]Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med, 2005, 11(3):263-70.
    [156]Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol,2003,5(9):834-9.
    [157]Reynolds A, Anderson EM, Vermeulen A, et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA,2006,12(6):988-93.
    [158]Kovacic HN. Irani K and Goldschmidt-Clermont PJ. Redox regulation of human Racl stability by the proteasome in human aortic endothelial cells. J Biol Chem.2001, 276(49):45856-61.
    [159]Visvikis O, Lores P, Boyer L, et al. Activated Racl, but not the tumorigenic variant Rac1b. is ubiquitinated on Lys 147 through a JNK-regulated process. FEBS J,2008. 275(2):386-96.
    [160]Cassimeris L. Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr Opin Cell Biol,1999,11(1):134-41.
    [161]Manning AL and Compton DA. Structural and regulatory roles of nonmotor spindle proteins. Curr Opin Cell Biol,2008,20(1):101-6.
    [162]Varmark H. Functional role of centrosomes in spindle assembly and organization. J Cell Biochem,2004,91(5):904-14.
    [163]Lee L, Tirnauer JS, Li J, et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science,2000,287(5461):2260-2.
    [164]Odde DJ. Chromosome capture:take me to your kinetochore. Curr Biol,2005, 15(9):R328-30.
    [165]Green RA, Wollman R and Kaplan KB. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell,2005,16(10):4609-22.
    [166]Rogers SL, Rogers GC, Sharp DJ, et al. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol,2002,158(5):873-84.
    [167]Draviam VM, Shapiro I, Aldridge B, et al. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1-or APC-depleted cells. EMBO J,2006,25(12):2814-27.
    [168]Gao J, Sun L, Huo L, et al. CYLD regulates angiogenesis by mediating vascular endothelial cell migration. Blood,
    [169]Rehberg M and Graf R. Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell,2002,13(7):2301-10.
    [170]Berrueta L, Kraeft SK, Tirnauer JS, et al. The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci USA, 1998,95(18):10596-601.
    [171]Manna T, Honnappa S, Steinmetz MO, et al. Suppression of microtubule dynamic instability by the+TIP protein EB1 and its modulation by the CAP-Gly domain of p150glued. Biochemistry,2008,47(2):779-86.
    [172]Ligon LA, Shelly SS, Tokito MK, et al. Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct plus-end complexes. FEBS Lett,2006,580(5):1327-32.
    [173]Hoogenraad CC, Akhmanova A, Grosveld F, et al. Functional analysis of CLIP-115 and its binding to microtubules. J Cell Sci,2000,113 (Pt 12)(2285-97.
    [174]Honnappa S, John CM, Kostrewa D, et al. Structural insights into the EB1-APC interaction. Embo J,2005,24(2):261-9.
    [175]Slep KC and Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell,2007,27(6):976-91.
    [176]Tatsuka M, Katayama H, Ota T. et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipll-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res,1998,58(21):4811-6.
    [177]Terada Y, Tatsuka M, Suzuki F, et al. AIM-1:a mammalian midbody-associated protein required for cytokinesis. EMBO J,1998,17(3):667-76.
    [178]Rickard JE and Kreis TE. CLIPs for organelle-microtubule interactions. Trends Cell Biol,1996,6(5):178-83.
    [179]Regamey A, Hohl D, Liu JW, et al. The tumor suppressor CYLD interacts with TRIP and regulates negatively nuclear factor kappa B activation by tumor necrosis factor. Journal Of Experimental Medicine,2003,198(12):1959-1964.
    [180]Kar S, Fan J, Smith MJ, et al. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J,2003,22(1):70-7.
    [181]Rosenberg KJ, Ross JL, Feinstein HE, et al. Complementary dimerization of microtubule-associated tau protein:Implications for microtubule bundling and tau-mediated pathogenesis. Proc Natl Acad Sci USA,2008,105(21):7445-50.
    [182]Bu W and Su LK. Characterization of functional domains of human EB1 family proteins. J Biol Chem,2003,278(50):49721-31.
    [183]Komarova Y, Lansbergen G, Galjart N, et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol Biol Cell,2005,16(11):5334-45.
    [184]Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol,2005, 168(1):141-53.
    [185]Vaughan KT. TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol,2005,171 (2):197-200.
    [186]Asakawa K and Toda T. Cooperation of EB1-Mal3 and the Bubl spindle checkpoint. Cell Cycle,2006,5(1):27-30.
    [187]Yan X, Habedanck R and Nigg EA. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol Biol Cell,2006,17(2):634-44.
    [188]Lee T, Langford KJ, Askham JM, et al. MCAK associates with EB1. Oncogene,2008, 27(17):2494-500.
    [189]Strickland LI, Wen Y, Gundersen GG, et al. Interaction between EB1 and p150glued is required for anaphase astral microtubule elongation and stimulation of cytokinesis. Curr Biol, 2005,15(24):2249-55.
    [190]Thoma CR, Toso A, Gutbrodt KL, et al. VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol,2009, 11(8):994-1001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700