米非司酮对人外周血来源树突状细胞成熟和功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生殖免疫学的核心问题是母体对半同种异体移植物(胚胎)的耐受机制,这个谜团目前尚未被解开。既往的研究认为,母胎界面的局部免疫应答是母胎免疫耐受建立和维持的关键。母胎界面免疫微环境由子宫粘膜的免疫细胞及其分泌的细胞因子组成。目前对于子宫自然杀伤细胞(uterine natural killer cell, uNK)、T细胞在母胎免疫耐受中的作用研究比较深入,但对于树突状细胞(dendritic cells,DCs)在母胎免疫耐受中的作用研究甚少。
     DCs是机体内功能最强大的专职性抗原提呈细胞(antigen-presenting cell,APC),是特异性免疫应答的始动者,其激活T细胞的能力为巨噬细胞、B细胞的1000倍。人类DCs主要来源于骨髓CD34+造血干细胞(hematopoietic stem cells,HSC),广泛分布于机体粘膜表面,不仅能直接或间接激活T细胞、B细胞,引发机体免疫排斥,还能诱导免疫耐受,在机体对某些抗原免疫耐受的建立过程中发挥了重要作用。自从20世纪末DCs被正式确认以来,对DCs在免疫反应中的作用及机制的了解是近10年来免疫学领域最重大的进展之一。目前对DCs研究的热点是DCs在免疫激活及免疫耐受中的作用及机制。一般认为,成熟DCs诱导免疫激活,倾向于引发免疫排斥反应,不成熟DCs倾向于诱导机体免疫耐受。最新的研究证实人子宫内膜及蜕膜均含有DCs,在抵御外来病原体入侵及母胎免疫调控中起了重要作用。
     米非司酮是一种高效孕激素受体与糖皮质激素受体拮抗剂,近年来成功用于紧急避孕,其用药剂量在逐步减少。单次米非司酮剂量减到10mg,其避孕有效性仍很高,且不良反应少,对月经周期影响小,为目前通用的紧急避孕剂量。最新的研究发现低剂量米非司酮有望发展成一种新型的不抑制排卵的常规避孕药。每日给予低剂量米非司酮(1mg/d,稳态血药浓度65 nmol/L),不抑制排卵,但可使子宫内膜发育延迟,不利于胚胎着床而起到避孕效果,被称为“内膜避孕”,但其相关机制,尤其是免疫学机制研究甚少。
     本研究首先利用免疫组化技术观察DCs在人正常子宫内膜的分布及周期性变化,探索DCs在母胎免疫耐受中的作用。在成功制备人外周血来源DCs的基础上,在体外以不同浓度米非司酮作用于DCs,观察米非司酮对DCs成熟及生物学功能的影响,探索米非司酮作为内膜避孕药及紧急避孕药的免疫学机制。
     第一部分人正常子宫内膜DCs周期性变化研究
     目的:
     研究DCs在人正常子宫内膜的分布及周期性变化,探讨DCs在母胎免疫耐受中的作用。
     方法:
     40例正常子宫内膜样本取自具有正常月经周期的育龄女性,20例处于增生期(月经周期第6至10天),20例处于植入窗期(月经周期第20至24天)。常规HE染色判定组织学分期。免疫组化染色观察CD1a、CD83阳性细胞在子宫内膜的表达情况。结合血清雌二醇(E2)、孕酮(P)水平,分析DCs表达水平与E2、P的相关性。
     结果:
     1.人子宫内膜存在CD1a+DCs。植入窗期子宫内膜CD1a+DCs阳性率为100%,增生期子宫内膜CD1a+DCs阳性率为90%(18/20)
     2.人子宫内膜DCs数量随月经周期变化而变化,植入窗期CD1a+DCs细胞密度为18.2±5.76 cells/mm2,显著高于增生期子宫内膜CD1a+DCs细胞密度(6.5±4.05 cells/mm2, P<0.05)。
     3.子宫内膜DCs数量与血清孕激素水具有相关性(相关系数为0.630,P<0.01)。
     4.未发现CD83+成熟DCs存在于人正常子宫内膜。
     结论:
     1.人子宫内膜存在DCs,为未成熟DCs。
     2.人子宫内膜DCs数量随月经周期变化而变化,受卵巢性激素调节。
     3.植入窗期子宫内膜未成熟DCs数量显著上升,这可能有利于胚胎顺利着床,诱导母胎耐受。
     第二部分人外周血来源DCs的体外扩增及鉴定
     目的:
     从健康人外周血中分离和纯化单核细胞,体外培养诱导分化为DCs,为后续实验奠定基础。
     方法:
     淋巴细胞分离液密度梯度离心法从健康成年女性外周血浓缩白细胞分离获得单个核细胞。免疫磁珠分选CD14+单核细胞。纯化后的CD14+单核细胞在含有100 ng/ml rhGM-CSF、20 ng/ml rhIL-4的RPMI1640培养基中培养6天分化成为未成熟DCs。加入100 ng/ml LPS继续培养48小时诱导DCs成熟。相差显微镜及扫描电镜观察细胞形态。流式细胞仪分析细胞免疫表型。混合淋巴细胞反应(mixed leukocyte reactions, MLR)检测DCs刺激同种异体T淋巴细胞增殖的能力。
     结果:
     1.单核细胞体外培养6天后,相差显微镜、扫描电镜观察到细胞呈现典型DCs形态。
     2.新鲜分离的单核细胞表型为CD14+CD1a-。体外培养6天后成功分化为未成熟DCs,流式细胞术分析表型为CD14-CD1a+HLA-DRlowCD83-。在不同的刺激细胞/反应细胞比例下(DC/T 1:125,1:25, 1:5),MTT去测定OD值分别为0.1123,0.1975,0.3665,即刺激T细胞增殖的能力较弱。
     3.培养第8天的细胞(LPS促成熟48小时),显著上调表达HLA-DR及CD83分子(P<0.05)。在不同的刺激细胞/反应细胞比例下(DC/T 1:125,1:25,1:5),OD值分别为0.1563,0.2825,0.5180,与培养第6天的细胞相比,具有很强的刺激同种异体T淋巴细胞增殖的能力(P<0.05),其刺激能力随着刺激细胞/反应细胞比例(DC/T)升高而增强。
     结论:
     人外周血CD14+单核细胞经GM-CSF和IL-4体外培养获得大量DCs。细胞形态、免疫表型及混合淋巴细胞反应证实其为典型DCs。
     第三部分米非司酮对人外周血来源DCs成熟和功能的影响
     目的:
     在成功制备人外周血来源DCs的基础上,在体外以不同浓度米非司酮作用于DCs,观察米非司酮对DCs成熟及生物学功能的影响,探索米非司酮作为抗着床避孕药及紧急避孕药的免疫学机制。
     方法:
     人外周血CD14+单核细胞在体外经GM-CSF、IL-4培养6天诱导分化为未成熟DCs。加入不同剂量的米非司酮(20 nmol/L,65 nmol/L,200 nmol/L和1800 nmol/L)继续培养48小时,同时设置阳性对照组(加入100ng/ml LPS),阴性对照组及溶剂对照组(加入米非司酮溶剂dimethyl sulphoxide, DMSO)。流式细胞仪检测和分析细胞表面CDla.CD83和HLA-DR分子的表达情况。酶联免疫吸附测定(enzyme linked immunosorbnent assay, ELSIA)检测DCs培养上清液中IL-12p70水平。MLR检测各组DCs刺激同种异体T细胞增殖的能力。
     结果:
     1.米非司酮上调DCs表面HLA-DR及CD83分子表达。
     2.与阴性对照组相比,米非司酮处理组DCs分泌的IL-12p70水平显著升高(P<0.05)。在一定范围内(20 nmol/L~200 nmol/L),米非司酮促进DCs分泌IL-12p70的能力随着米非司酮浓度增大而增强。
     3.与阴性对照组相比,米非司酮处理组DCs刺激同种异体T细胞增殖的能力明显增强(P<0.05)。在一定范围内(20 nmol/L~200 nmol/L),米非司酮促进DCs刺激T细胞增殖的能力随着米非司酮浓度增大而增强。
     结论:
     1.米非司酮诱导DCs表型成熟,促进DCs分泌IL-12并增强其刺激T淋巴细胞增殖的能力。
     2.在一定浓度范围内,米非司酮对DCs的促成熟作用存在量效关系。
     3.米非司酮可能通过促进DCs成熟,引发母体对半同种异体胎儿抗原免疫排斥,达到抗着床避孕。
     4.米非司酮紧急避孕的免疫学机制与内膜避孕可能不完全相同。
The survival of the semi-allogeneic fetus has been an immunological paradox. The mechanism by which the fetus is not rejected by maternal immune system is unclear. It is generally accepted that fetal survival depends on the local immunity at the maternal-fetal interface. Human endometrium is richly populated by maternal leukocytes, including uterine naturally killer (uNK) cell, T cell, macrophage and DCs. Considerable studies have been focused on the role of uNK and T cell in maternal-fetal tolerance. Recent evidence suggests that DCs are critical mediators of immunological interactions at the maternal-fetal interaction.
     DCs are the most potent antigen-presenting cells with a unique ability to induce primary immune responses. The capacity of DCs to activate T cells is 1,000 times more than macrophages and B cells. Human mucosal surfaces contain specialized DCs capable of sensing these external stimuli and mounting appropriate local responses depending on the nature of the elements they encounter. Emerging evidence indicates that DCs are responsible for the establishment of tolerance as well as immunity. Generally, immature DCs induce tolerance and mature DCs induce immunity. Although small numbers in endometrium and decidua, recent evidence suggests that DCs are involved in this balance between immune defence and maternal-fetal tolerance.
     Mifepristone (Ru486), a potent progesterone and glucocorticoid receptor antagonist, is widely used as an emergency contraceptive and its dosage is gradually reduced. A single dose of 10 mg mifepristone is one of the most effective hormonal methods for emergency contraception, with little side effects. Recently, mifepristone has shown the potential to be used as a novel estrogen-free contraceptive which disturbs endometrial development enough to prevent implantation without affecting ovulation. Daily dose of 1 mg mifepristone, reaching a steady plasma level of 65 nmol/L with no impairment on ovulation, was effective to prevent pregnancy and is called "endometrium contraception". But the exact mechanism of endometrial contraception, especially immunological mechanism, remains unknown.
     In current study, we first investigated endometrial dendritic cell populations during the normal menstrual cycle by immunohistochemistry and explored the role of DCs in the establishment of maternal-fetal tolerance. Then we investigated the effect of mifepristone on the phenotypic and functional maturation of human moncyte-derived DCs, and consequently, to elucidate the mechanism of mifepristone as an anti-implantation contraceptive or emergency contraceptive.
     PartⅠEndometrial dendritic cells populations during the normal menstrual cycle
     Objective:
     To investigate the number and distribution of dendritic cells in normal endometrium of reproductive age during the normal menstrual cycle. And to explore the role of DCs in the establishment of maternal-fetal tolerance.
     Methods:
     Normal endometrial sample weres collected from forty women of reproductive age,20 in the proliferative phase (d6-10) and 20 in the "window of implantation" (d20-24). Endometrial specimens were stained with hematoxylin and eosin for histological examination. And the expression of CD1a and CD83 was evaluated by immunohistochemistry.
     Results:
     1. CD1a positive dendritic cells were found in all cases of the "window of implantation" and most cases of the proliferative phase (18/20,90%).
     2. The density of CD1a+DCs in the "window of implantation" was 18.2±5.76 cells/mm2, significantly higher than that in the proliferative phase (6.5±4.05 cells/mm2, P<0.05).
     3. Serum progesterone level was correlated with the density of CD1a+ DCs.
     4. No CD83+ DCs were found in human emdometrium.
     Conclusion:
     1. Human endometrium contains CD1a+ DCs, but no CD83+ mature DCs.
     2. The number and maturation of DCs may be regulated by ovarian hormones.
     3. The highly coordinated cyclical changes in DCs populations may be important for the establishment of maternal-fetal tolerance.
     PartⅡExpansion of DCs from human peripheral blood in vitro
     Objective:
     To generate large numbers of DCs from CD14+ monocytes in vitro.
     Methods:
     Peripheral blood mononuclear cells (PBMC) from healthy female donors (buffy coats obtained from the local central blood bank) were isolated by Ficoll-Hypaque density gradient separation. CD14+ monocytes were enriched with bead-labeled anti-CD 14 mAb on a high-gradient magnetic cell sorting system (MACS). Purified CD14+ monocytes were cultured in PRMI1640 medium containing 100 ng/ml rhGM-CSF and 20 ng/ml rhIL-4 for 6days. LPS (100 ng/ml) was added for another 48 hours to induce maturation. The morphology was monitored by light microscopy and scanning electron microscopy, and the immunophenotypes were determined by flow cytometry. Allogeneic mixed leukocyte reactions were used for immune functional assays.
     Results:
     1. Light microscopy and scanning electron microscopy showed typical DCs morphology after 6 days.
     2. Freshly isolated monocytes were CD14+CD1a-.After 6 days, cells showed an immature DCs phenotype (CD14-CD1a+ HLA-DRlowCD83-) and induced little or no allogeneic T cells proliferation in MLR.
     3. Addition of LPS to immature DCs resulted in a marked increase in the expression of HLA-DR, as well as CD83, indicative of DCs maturation. And mature DCs stimulated allogeneic T cell proliferation markedly in a stimulator/responder ratio-dependent manner.
     Conclusion: This study developed a simple way to generate large numbers DCs from PBMC with rhGM-CSF and rhIL-4. With analyzing morphology, phenotypes and function, we confirmed these cells were typical DCs.
     PartⅢMifepristone induces maturation of human monocyte-derived dendritic cells
     Objective:
     To investigate the effect of mifepristone on the phenotypic and functional maturation of human moncyte-derived DCs, and consequently, to elucidate the mechanism of mifepristone as an anti-implantation contraceptive or emergency contraceptive.
     Methods:
     DCs were generated from human peripheral blood CD14+ cells cultured with GM-CSF and IL-4. On day 6, immature DCs were left untreated (negative control), stimulated with various concentrations of mifepristone (20 nmol/L,65 nmol/L,200 nmol/L and 1800 nmol/L), DMSO (solvent control), or LPS (posotive control,100 ng/mL). After 48 hours, DCs were harvested and stained with mAbs against CD1a, CD83 and HLA-DR to determine their phenotype by flow cytometric analysis. The cytokine levels secreted by DCs were determined by ELISA and the allostimulatory capacity of DCs was measured by MLR.
     Results:
     1. Flow cytometric analysis revealed that mifepristone upregulated the surface expression of MHC classⅡmolecules and specific molecule CD83.
     2. Compared with negative control, mifepristone enhanced the secretion of IL-12p70 by DCs significantly (P<0.05). Up to 200 nmol/L, the IL-12p70 production by DCs was upregulated by mifepristone in a dose-dependent manner.
     3. Compared with negative control, mifepristone-treated DCs strongly stimulates the proliferation of allogeneic T cell in a mixed lymphocyte reaction (P<0.05). Up to 200 nmol/L, the capacity of stimulating the proliferation of T cell was upregulated by mifepristone in a dose-dependent manner.
     Conclusion:
     Mifepristone induced a distinct phenotypic and functional maturation of DCs in vitro. Similar mechanisms may be effective in vivo, providing an explanation for the possible mechanism of mifepristone as a contraceptive agent, especially as an anti-implantation contraceptive.
引文
1. Steinman RM, Adams JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. Ⅳ. Identification and distribution in mouse spleen. J Exp Med.1975;141:804-820.
    2. Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6:476-483.
    3. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol.2000;18:767-811.
    4. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature.1998;392:245-252.
    5. Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol.2007;25:381-418.
    6. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23:445-449.
    7. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol.2005;23:975-1028.
    8. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell.2001; 106:259-262.
    9. Naik SH, Sathe P, Park HY, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol.2007;8:1217-1226.
    10. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol.2002;2:151-161.
    11. Anjuere F, Martin P, Ferrero I, et al. Definition of dendritic cell subpopulations present in the spleen, peyer's patches, lymph nodes, and skin of the mouse. Blood.1999;93:590-598.
    12. Sallusto, F, Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med.1994; 179:1109-1118.
    13. Gary KK, Lyudmila AL, Nancy RR. Rapid lipopolysaccharide-induced differentiation of CD14+ monocytes into CD83+ dendritic cells is modulated under serum-free conditions by exogenously added IFN-yand endogenously produced IL-10. Eur J Immunol.2001;31:3773-3781.
    14. Romani N, Reider D, Heuer M, et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods.1996;196:137-151.
    15. Bender A, Sapp M, Schuler G, et al. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods.1996;196:121-135.
    16. Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med.1994; 180:1263-1272.
    17. Cella M, Scheidegger D, Palmer-Lehmann K, et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity:T-T help via APC activation. J Exp Med. 1996;184:747-752.
    18. Koch F, Stanzl U, Jennewein P, et al. High level IL-12 production by murine dendritic cells:upregulation via MHC class Ⅱ and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med.1996; 184:741-746.
    19. Cao W, Lee SH, Lu J. CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J.2005;385:85-93.
    20. Maldonado-Lopez R, Moser M. Dendritic cell subsets and the regulation of
    Th1/Th2 responses. Semin Immunol.2001;13:275-282.
    21. Moser M. Regulation of Thl/Th2 development by antigen-presenting cells in vivo. Immunobiology.2001;204:551-557.
    22. Itano AA, Jenkins MK. Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol.2003;4:733-739.
    23. Mahnke K, Schmitt E, Bonifaz L, et al. Immature, but not inactive:the tolerogenic function of immature dendritic cells. Immunol Cell Biol. 2002;80:477-483.
    24. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol.2003;21:685-711.
    25. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol.2004;5:1219-1226.
    26. Barrou B, Benoit G, Ouldkaci M, et al. Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA. Cancer Immunol Immunother.2004;53:453-460.
    27. Dees EC, McKinnon KP, Kuhns JJ, et al. Dendritic cells can be rapidly expanded ex vivo and safely administered in patients with metastatic breast cancer. Cancer Immunol Immunother.2004;53:777-785.
    28. Kyte JA, Gaudernack G. Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother.2006;55:1432-1442.
    29. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol.2005;5:296-306.
    30. Palmer DH, Midgley RS, Mirza N, et al. A phase Ⅱ study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology.2009;49:124-132.
    31. Thomson AW, Robbins PD. Tolerogenic dendritic cells for autoimmune disease and transplantation. Ann Rheum Dis.2008;67 Suppl 3:iii90-96.
    32. Suciu-Foca N, Berloco P, Cortesini R. Tolerogenic dendritic cells in cancer, transplantation, and autoimmune diseases. Hum Immunol.2009;70:277-280.
    33. Ueta H, Shi C, Miyanari N, et al. Systemic transmigration of allosensitizing donor dendritic cells to host secondary lymphoid organs after rat liver transplantation. Hepatology.2008;47:1352-1362.
    34. Travis MA, Reizis B, Melton AC, et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature.2007;449:361-365.
    35. Morel PA, Feili-Hariri M. How do dendritic cells prevent autoimmunity? Trends Immunol.2001;22:546-547.
    36. Trowsdale J, Betz AG. Mother's little helpers:mechanisms of maternal-fetal tolerance. Nat Immunol.2006;7:241-246.
    37. Ng SC, Gilman-Sachs A, Thaker P, et al. Expression of intracellular Thl and Th2 cytokines in women with recurrent spontaneous abortion, implantation failures after IVF/ET or normal pregnancy. Am J Reprod Immunol. 2002;48:77-86.
    38. Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J Reprod Immunol. 2003;59:161-173.
    39. Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy:a new target for infertility treatment? Hum Reprod Update. 2009; 15:517-535.
    40. Girardi G, Yarilin D, Thurman JM, et al. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med.2006;203:2165-2175.
    41. Allegra A, Marino A, Coffaro F, et al. Is there a uniform basal endometrial gene expression profile during the implantation window in women who became pregnant in a subsequent ICSI cycle? Hum Reprod.2009;24:2549-2557.
    42. Horcajadas JA, Dominguez F, Martin J, et al. Implantation and uterine receptivity. Int Congr Ser.2004; 1266:177-182.
    43. Minas V, Loutradis D, Makrigiannakis A. Factors controlling blastocyst implantation. Reprod Biomed Online.2005; 10:205-216.
    44. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens.2004;63:1-12.
    45. Darmochwal-Kolarz D, Rolinski J, Tabarkiewicz J, et al. Blood myeloid and lymphoid dendritic cells are stable during the menstrual cycle but deficient during mid-gestation. J Reprod Immunol.2003;59:193-203.
    46. Blois SM, Alba Soto CD, Tometten M, et al. Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod.2004;70:1018-1023.
    47. Krey G, Frank P, Shaikly V, et al. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med.2008;86:999-1011.
    48. Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. 2003;69:1438-1446.
    49. Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol.2003;74:514-522.
    50. Askelund K, Liddell HS, Zanderigo AM, et al. CD83+ dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta. 2004;25:140-145.
    51. Blois S, Alba Soto CD, Olmos S, et al. Therapy with dendritic cells influences the spontaneous resorption rate in the CBA/J x DBA/2J mouse model. AM J Reprod Immunol.2004;51:40-48.
    52. Miranda S, Litwin S, Barrientos G, et al. Dendritic cells therapy confers a protective microenvironment in murine pregnancy. Scand J Immunol. 2006;64:493-499.
    53. Gemzell-Danielsson K, Marions L. Mechanisms of action of mifepristone and levonorgestrel when used for emergency contraception. Hum Reprod Update. 2004;10:341-348.
    54. Ashok PW, Wagaarachchi PT, Templeton A. The antiprogestogen mifepristone:a review. Curr Med Chem.2002;2:71-90.
    55. Narvekar N, Cameron S, Critchley HO, et al. Low-dose mifepristone inhibits endometrial proliferation and up-regulates androgen receptor. J Clin Endocrinol Metab.2004;89:2491-2497.
    56. Spitz IM, Van Look PF, Coelingh Bennink HJ. The use of progesterone antagonists and progesterone receptor modulators in contraception. Steroids. 2000;65:817-823.
    57. Chwalisz K, Perez MC, Demanno D, et al. Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis. Endocr Rev.2005;26:423-438.
    58. Ghosh D, Sengupta J. Target-oriented anti-implantation approaches for pregnancy interception:Experiences in the rhesus monkey model. Contraception. 2005;71:294-301.
    59. Spitz IM. Progesterone receptor antagonists. Curr Opin Investig Drugs. 2006;7:882-890.
    60. Sarkar NN. Mifepristone:bioavailability, pharmacokinetics and use-effectiveness. Eur J Obstet Gynecol reprod Biol.2002;101:113-120.
    61. Danielsson KG, Marions L, Bygdeman M. Effects of mifepristone on endometrial receptivity. Steroids.2003;68:1069-1075.
    62. Sarkar NN. The potential of mifepristone (RU486) as a female contraceptive drug. Int J Clin Pract.2002;56:140-144.
    63. Danielsson KG, Swahn ML, Westlund P, et al. Effect of low daily doses of mifepristone on ovarian function and endometrial development. Hum Reprod. 1997;12:124-131.
    64. Marions L, Viski S, Danielsson KG, et al. Contraceptive efficacy of daily administration of 0.5 mg mifepristone. Hum Reprod.1999;14:2788-2790.
    65. Stanisz AM, Kataeva G, Bienenstock J. Hormones and local immunity. Int Arch Allergy Immunol.1994;103:217-222.
    66. Mohllajee AP, Curtis KM, Martins SL, et al. Hormonal contraceptive use and risk of sexually transmitted infections:a systematic review. Contraception. 2006;73:154-165.
    67. Ildgruben AK, Sjoberg IM, Hammarstrom ML. Influence of hormonal contraceptives on the immune cells and thickness of human vaginal epithelium. Obstet Gynecol.2003;102:571-582.
    68. Trunova N, Tsai L, Tung S, et al. Progestin-based contraceptive suppresses cellular immune responses in SHIV-infected rhesus macaques. Virology. 2006;352:169-177.
    69. Ramalakshmi BA, Jagadeesan V, Prema K. Immune studies in oral contraceptive users. Contraception.1979;20:417-425.
    70.卢士燕,昊瑞芳,王振海,等.米非司酮并米索前列醇终止早孕的蜕膜组织T淋巴细胞亚群及细胞因子的表达.中华妇产科杂志.2001;36:625-627.
    71. Chen XY, Zhuang YL, Li L, et al. The effect of mifepristone on the peripheral blood natural killer cells cytotoxicity and expression of CD94/NKG2A and NKG2D during the implantation phase. Fertility and Sterility;In Press.
    72. Zhu HX, Zhang WW, Zhuang YL, et al. Mifepristone as an anti-implantation contraceptive drug:roles in regulation of uterine natural killer cells during implantation phase. Am J Reprod Immunol.2009;61:68-74.
    73. Liang J, Sun L, Wang Q, et al. Progesterone regulates mouse dendritic cells differentiation and maturation. Int Immunopharmacol.2006;6:830-838.
    74. Butts CL, Shukair SA, Duncan KM, et al. Progesterone inhibits mature rat
    dendritic cells in a receptor-mediated fashion. Int Immunol.2007; 19:287-296.
    75. Rozkova D, Horvath R, Bartunkova J, et al. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol.2006; 120:260-271.
    76. Piemonti L, Monti P, Allavena P, et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol.1999; 162:6473-6481.
    77. Kammerer U, Schoppet M, McLellan AD, et al. Human decidua contains potent immunostimulatory CD83+ dendritic cells. Am J Pathol.2000; 157:159-169.
    78. Laskarin G, Kammerer U, Rukavina D, et al. Antigen-presenting cells and materno-fetal tolerance:an emerging role for dendritic cells. Am J Reprod Immunol.2007;58:255-267.
    79.陈进,王自能.人正常子宫内膜树突状细胞的周期性变化.暨南大学学报(医学版).2003;24:68-71.
    80. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol.1975;122:262-263.
    81. Poppe WA, Drijkoningen M, Ide PS, et al. Lymphocytes and dendritic cells in the normal uterine cervix:an immunohistochemical study. Eur J Obstet Gynecol Reprod Biol.1998;81:277-282.
    82. Pudney J, Quayle AJ, Anderson DJ. Immunological microenvironments in the human vagina and cervix:Mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod.2005;73:1253-1263.
    83. Merviel P, Lourdel E, Cabry R, et al. Physiopathology of human embryonic implantation:clinical incidences. Folia Histochem Cytobiol.2009;47:S25-34.
    84. Blois SM, Kammerer U, Alba Soto C, et al. Dendritic cells:key to fetal tolerance? Biol Reprod.2007;77:590-598.
    85. Cernadas M, Lu J, Watts G, et al. CDla expression defines an interleukin-12 producing population of human dendritic cells. Clin Exp Immunol. 2009;155:523-533.
    86. Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol.1995;154:3821-3835.
    87. Randolph GJ, Ochando J, Partida-Sanchez S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol.2008;26:293-316.
    88. Kyurkchiev D, Ivanova-Todorova E, Hayrabedyan S, et al. Female sex steroid hormones modify some regulatory properties of monocyte-derived dendritic cells. Am J Reprod Immunol.2007;58:425-433.
    89. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol.2003;3:984-993.
    90. Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol.2000; 1:199-205.
    91. Wegmann TG, Lin H, Guilbert L, et al. Bidirectional cytokine interactions in the maternal-fetal relationship:is successful pregnancy a TH2 phenomenon? Immunol Today.1993;14:353-356.
    92. Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol.2002;3:135-142.
    93. Saito S, Shiozaki A, Sasaki Y, et al. Regulatory T cells and regulatory natural killer (NK) cells play important roles in feto-maternal tolerance. Semin Immunopathol.2007;29:115-122.
    94. Min WP, Gorczynski R, Huang XY, et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol.2000;164:161-167.
    95. Balkundi DR, Hanna N, Hleb M, et al. Labor-associated changes in Fas ligand expression and function in Human Placenta. Pediatr Res.2000;47:301-308.
    96. Lutz MB, Kukutsch N, Ogilvie ALJ, et al. An advanced culture method for
    generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods.1999;223:77-92.
    97. Caux C, Dezutter-Dambuyant C, Schmitt D, et al. GM-CSF and TNF-alpha in the generation of dendritic Langerhans cells. Nature.1992;360:258-261.
    98. Berger TG, Feuerstein B, Strasser E, et al. Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J Immunol Methods.2002;268:131-140.
    99. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med.1994;179:1109-1118.
    100.Cao X, Sugita M, Van Der Wel N, et al. CD1 molecules efficiently present antigen in immature dendritic cells and traffic independently of MHC class II during dendritic cell maturation. J Immunol.2002; 169:4770-4777.
    101.Cao W, Lee SH, Lu J. CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J.2005;385:85-93.
    102.Lechmann M, Berchtold S, Hauber J, et al. CD83 on dendritic cells:more than just a marker for maturation. Trends Immunol.2002;23:273-275.
    103.Dietze B, Cierpka E, Schafer M, et al. An improved method to generate equine dendritic cells from peripheral blood mononuclear cells:divergent maturation programs by IL-4 and LPS. Immunobiology.2008;213:751-758.
    104.Rescigno M, Martino M, Sutherland CL, et al. Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med. 1998;188:2175-2180.
    105.Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature.2006;440:808-812.
    106.Caux C, Massacrier C, Vanbervliet B, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. Adv Exp Med Biol. 1997;417:21-25.
    107.Renkl AC, Wussler J, Ahrens T, et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood.2005;106:946-955.
    108.Miyaura H, Iwata M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol.2002;168:1087-1094.
    109.Wilczynski JR. Immunological analogy between allograft rejection, recurrent abortion and pre-eclampsia-the same basic mechanism? Hum Immunol. 2006;67:492-511.
    110.Ferlazzo G, Tsang ML, Moretta L, et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med.2002;195:343-351.
    1. Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol.2007;25:381-418.
    2. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol.2000;18:767-811.
    3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245-252.
    4. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol.2002;23:445-449.
    5. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol.2003;21:685-711.
    6. Zhao X, Deak E, Soderberg K, et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Thl responses to herpes simplex virus-2. J Exp Med.2003;197:153-162.
    7. Iijima N, Linehan MM, Saeland S, et al. Vaginal epithelial dendritic cells renew from bone marrow precursors. Proc Natl Acad Sci U S A.2007;104:19061-19066.
    8. Lund JM, Linehan MM, Iijima N, et al. Cutting Edge:Plasmacytoid dendritic cells provide innate immune protection against mucosal viral infection in situ. J Immunol.2006;177:7510-7514.
    9. Hladik F, McElrath MJ. Setting the stage:host invasion by HIV. Nat Rev Immunol. 2008;8:447-457.
    10. Prakash M, Kapembwa MS, Gotch F, et al. Chemokine receptor expression on mucosal dendritic cells from the endocervix of healthy women. J Infect Dis. 2004; 190:246-250.
    11. Jimenez-Flores R, Mendez-Cruz R, Ojeda-Ortiz J, et al. High-risk human papilloma virus infection decreases the frequency of dendritic Langerhans' cells in the human female genital tract. Immunology.2006;117:220-228.
    12. de Witte L, Nabatov A, Geijtenbeek TB. Distinct roles for DC-SIGN+-dendritic cells and Langerhans cells in HIV-1 transmission. Trends Mol Med. 2008;14:12-19.
    13. Valladeau J, Ravel O, Dezutter-Dambuyant C, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity.2000; 12:71-81.
    14. Flores-Langarica A, Meza-Perez S, Calderon-Amador J, et al. Network of dendritic cells within the muscular layer of the mouse intestine. Proc Nati Acad Sci U S A.2005;102:19039-19044.
    15. Pudney J, Quayle AJ, Anderson DJ. Immunological microenvironments in the human vagina and cervix:mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod.2005;73:1253-1263.
    16. Hladik F, Sakchalathorn P, Ballweber L, et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 2007;26:257-270.
    17. Hagiwara H, Ohwada N, Aoki T, et al. Langerhans cells in the human oviduct mucosa. Ital J Anat Embryol.1998;103:253-258.
    18. Hladik F, Lentz G, Akridge RE, et al. Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J Virol.1999;73:5833-5842.
    19. Hussain LA, Kelly CG, Fellowes R, et al. Expression and gene transcript of Fc receptors for IgG, HLA class Ⅱ antigens and Langerhans cells in human cervico-vaginal epithelium. Clin Exp Immunol.1992;90:530-538.
    20. Miller CJ, McChesney M, Moore PF. Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques. Lab Invest. 1992;67:628-634.
    21. Parr MB, Parr EL. Langerhans cells and T lymphocyte subsets in the murine vagina and cervix. Biol Reprod.1991;44:491-498.
    22. Schwartz AJ, Alvarez X, Lackner AA. Distribution and immunophenotype of DC-SIGN-expressing cells in SIV-infected and uninfected macaques. AIDS Res Hum Retroviruses.2002;18:1021-1029.
    23. Poonia B, Wang X, Veazey RS. Distribution of simian immunodeficiency virus target cells in vaginal tissues of normal rhesus macaques:implications for virus transmission. J Reprod Immunol.2006;72:74-84.
    24. Keenihan SN, Robertson SA. Diversity in phenotype and steroid hormone dependence in dendritic cells and macrophages in the mouse uterus. Biol Reprod. 2004;70:1562-1572.
    25. Stanisz AM, Kataeva G, Bienenstock J. Hormones and local immunity. Int Arch Allergy Immunol.1994; 103:217-222.
    26. Patton DL, Thwin SS, Meier A, et al. Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am J Obstet Gynecol.2000; 183:967-973.
    27. Kaul R, Pettengell C, Sheth PM, et al. The genital tract immune milieu:an important determinant of HIV susceptibility and secondary transmission. J Reprod Immunol.2008;77:32-40.
    28. Marx PA, Spira AI, Gettie A, et al. Progesterone implants enhance SIV vaginal transmission and early virus load. Nat Med.1996;2:1084-1089.
    29. Wieser F, Hosmann J, Tschugguel W, et al. Progesterone increases the number of Langerhans cells in human vaginal epithelium. Fertil Steril.2001;75:1234-1235.
    30. Hughes GC, Thomas S, Li C, et al. Cutting edge:progesterone regulates IFN-alpha production by plasmacytoid dendritic cells. J Immunol.2008;180:2029-2033.
    31. Yang, D, Chertov, Bykovskaia SN, et al. Beta-defensins:linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525-528.
    32. Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity:more than just microbicidal. Trends Immunol.2002;23:291-296.
    33. Hubert P, Herman L, Maillard C, et al. Defensins induce the recruitment of dendritic cells in cervical human papillomavirus-associated (pre)neoplastic lesions formed in vitro and transplanted in vivo. Faseb J.2007;21:2765-2775.
    34. Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science.2002;298:1025-1029.
    35. Brinker KG, Garner H, Wright JR. Surfactant protein A modulates the differentiation of murine bone marrow-derived dendritic cells. Am J Physiol Lung Cell Mol Physiol.2003;284:L232-241.
    36. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol.2004;5:987-995.
    37. Zhang D, Zhang G, Hayden MS, et al. A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria. Science.2004;303:1522-1526.
    38. Aflatoonian R, Fazeli A. Toll-like receptors in female reproductive tract and their menstrual cycle dependent expression. J Reprod Immunol.2008;77:7-13.
    39. Fazeli A, Bruce C, Anumba DO. Characterization of Toll-like receptors in the female reproductive tract in humans. Hum Reprod.2005;20:1372-1378.
    40. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature.2006;442:39-44.
    41. Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev. 2007;220:214-224.
    42. Zammit DJ, Cauley LS, Pham QM, et al. Dendritic Cells maximize the memory CD8 T Cell response to infection. Immunity.2005;22:561-570.
    43. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953-964.
    44. Su H, Messer R, Whitmire W, et al. Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. J Exp Med.1998;188:809-818.
    45. Rey-Ladino J, Koochesfahani KM, Zaharik ML, et al. A live and inactivated Chlamydia trachomatis mouse pneumonitis strain induces the maturation of dendritic cells that are phenotypically and immunologically distinct. Infect Immun. 2005;73:1568-1577.
    46. Zhao X, Deak E, Soderberg K, et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med.2003;197:153-162.,
    47. Sato A, Iwasaki A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc Natl Acad Sci U S A.2004; 101:16274-16279.
    48. Le Poole IC, ElMasri WM, Denman CJ, et al. Langerhans cells and dendritic cells are cytotoxic towards HPV16 E6 and E7 expressing target cells. Cancer Immunol Immunother.2008;57:789-797.
    49. Geijtenbeek TB, van Vliet SJ, Engering A, et al. Self-and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol.2004;22:33-54.
    50. Geijtenbeek TBH, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T Cells. Cell. 2000;100:587-597.
    51. Jameson B, Baribaud F, Pohlmann S, et al. Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol. 2002;76:1866-1875.
    52. Gurney KB, Elliott J, Nassanian H, et al. Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J Virol. 2005;79:5762-5773.
    53. de Witte L, Nabatov A, Geijtenbeek TB. Distinct roles for DC-SIGN+-dendritic cells and Langerhans cells in HIV-1 transmission. Trends Mol Med. 2008;14:12-19.
    54. Turville SG, Cameron PU, Handley A, et al. Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol.2002;3:975-983.
    55. Saphire AC, Bobardt MD, Zhang Z, et al. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol. 2001;75:9187-9200.
    56. de Witte L, Bobardt M, Chatterji U, et al. Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc Natl Acad Sci U S A.2007; 104:19464-19469.
    57. Leon B, Ardavin C. Monocyte-derived dendritic cells in innate and adaptive immunity. Immunol Cell Biol.2008;86:320-324.
    58. Shen H, Iwasaki A. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN-based vaginal microbicide. J Clin Invest. 2006; 116:2237-2243.
    59. Liu W, Kelly KA. Prostaglandin E2 modulates dendritic cell function during chlamydial genital infection. Immunology.2008; 123:290-303.
    60. Parr MB, Parr EL. The role of gamma interferon in immune resistance to vaginal infection by herpes simplex virus type 2 in mice. Virology.1999;258:282-294.
    61. Lund JM, Hsing L, Pham TT, et al. Coordination of early protective immunity to viral infection by regulatory T cells. Science.2008;320:1220-1224.
    62. Abraham S, Indrasingh I, Vettivel S, et al. Gross morphology and ultrastructure of dendritic cells in the normal human decidua. Clin Anat.2000;13:177-180.
    63. Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod. 2003;69:1438-1446.
    64. Ban YL, Kong BH, Qu X, et al. BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells in early human pregnancy decidua. Clin Exp Immunol.2008; 151:399-406.
    65. Kammerer U, Schoppet M, McLellan AD, et al. Human decidua contains potent immunostimulatory CD83+ dendritic cells. Am J Pathol.2000; 157:159-169.
    66. Zarnani A-H, Moazzeni SM, Shokri F, et al. Kinetics of murine decidual dendritic cells. Reproduction.2007;133:275-283.
    67. Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol.2003;74:514-522.
    68. Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol. 2002;32:2418-2426.
    69. Nishioka Y, Nishimura N, Suzuki Y, et al. Human monocyte-derived and CD83+ blood dendritic cells enhance NK cell-mediated cytotoxicity. Eur J Immunol. 2001;31:2633-2641.
    70. King A, Wellings V, Gardner L, et al. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughow the menstrual cycle. Hum Immunol.1989;24:195-205.
    71. Blois SM, Kammerer U, Alba Soto C, et al. Dendritic cells:key to fetal tolerance? Biol Reprod.2007;77:590-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700