胎猪皮肤前体组织异种移植的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮肤是身体最大的器官,它兼负着机械防护、免疫调节、物质代谢及体温调节等功能。局部皮肤的严重损伤可通过自体全厚皮、游离皮瓣及带蒂皮瓣移植重建其完整的结构与功能;但临床大面积烧、创伤患者由于自体皮源严重不足,大张异体皮加盖自体微粒皮虽然能够较快地封闭创面,挽救患者生命,但是往往遗留大量瘢痕,愈合后的皮肤组织机械强度和弹性远不及正常皮肤,严重影响患者的愈后生活质量。近年有研究发现特定胎龄的猪胚胎前体组织/器官(肝、肾、胰、脾等)异种移植后既能够生长发育成为相应的成熟组织(或器官)又不形成畸胎瘤,且能发挥一定的生理功能。胎猪皮肤前体组织是否也具有这种特性呢?
     为解决大面积烧、创伤后创面覆盖材料来源及创面愈合质量等问题,本课题主要围绕胎猪皮肤前体组织移植裸鼠后的生长发育问题,应用简便有效的胎猪皮肤前体组织异种移植模型,观察了五个不同胎龄的胎猪皮肤前体组织移植裸鼠后的创面愈合特点及新生组织的形态结构,评价了不同胎龄的胎猪皮肤前体组织的移植后生长潜能及成瘤性,探讨胚胎皮肤前体组织移植后的生长发育及其可能的机理。全文主要结果及结论如下:
     1、本课题采用精确胎龄为56天的胎猪皮肤前体组织对3种不同的移植模型进行了对比,观测移植后的生长特性。研究结果表明,裸鼠背部全层缺损创面加盖异种皮移植胎猪皮肤前体组织微粒的方式是简便有效的移植模型。
     ①背部创面移植模型:裸鼠背部正中开创至肌膜上,创面植入胎猪皮肤前体组织微粒悬液,用人尸体皮覆盖、缝合;②背部皮下移植模型:裸鼠背部正中横向切口至肌筋膜上,植入小块邮票皮,缝合切口;③耳廓皮下移植模型:裸鼠双耳廓皮下穿刺行胎猪皮肤前体组织微粒移植;背部创面模型及耳廓皮下模型新生组织块大小采用双样本t检验。3种模型中移植的胎猪皮肤前体组织均能继续生长发育成为具有表皮及真皮结构的双层皮肤组织,其中背部创面移植模型及背部皮下移植模型观察到了汗腺,皮脂腺及毛囊等附件,耳廓皮下移植模型未见汗腺;背部创面移植模型的生长潜能远高于耳廓皮下移植模型的生长潜能。
     2、系统筛选了用于异种移植的胎猪皮肤前体组织的最佳“妊娠时间窗”(gestational window,以下简称时间窗)。选取了5个精确胎龄(E35、E42、E56、E70、E91)的胎猪皮肤前体组织,采用背部创面移植模型,观察移植后创面的愈合情况,于移植后6周及12周取材检测新生皮肤组织的结构形态,评价成瘤性。直接免疫荧光及黑色素染色鉴定新生组织的种属来源。移植后12周的新生组织块大小采用单因素方差分析,比较其移植后的生长潜能。研究结果认为胎猪皮肤前体组织异种移植后能够继续生长发育成为结构“完整”的成熟皮肤,且其最佳的取材时间窗在胎龄56天左右。
     ①各胎龄的胎猪皮肤前体组织移植均能生长发育为具有表皮、真皮及毛发、皮脂腺及汗腺等附件的“完整”成熟皮肤组织;②E42的胎猪皮肤前体组织具有最大的生长能力(新生组织平均大小为47.1 mm2,L×W),E56为31.1 mm2,E35为18.4 mm2,E70为20.1 mm2,E91为6.5 mm2;③抗鼠的H-2Dd(FITC)免疫荧光及Fortana法黑色素染色鉴定新生组织的种属来源。④新生的皮肤组织大部分胶原纤维排列规则,表皮钉突明显。⑤E56及以后的胎猪皮肤前体组织异种移植后未发现形成畸胎瘤。
     [结论] E56的胎猪皮肤前体组织具有良好的移植后器官发育成力、生长能力及安全性;胎猪皮肤前体组织异种移植的最佳“妊娠时间窗”在胎龄56天左右。
Skin, the biggest organ of human body, assume the responsibility of protection, immunological regulation, metabolism and body temperature modulation, etc. The serious injury of local skin can be repaired by transplantation of autologous full-thickness skin, free skin flap and pedicle skin flap favoring restoration of integrate structure and function. Because of the lack of the autologous skin, autologous microskin grafting combined with large alloskin might be able to repair the wound quickly and save the patients’life but still leave many problems that can seriously influence the life quality not solved in the extensive deep burn and truma patients, in which the mechanical strength and elasticity of the neoregenerative skin tissue are far worse than the normal skin and the unavoidale scar emerge after convalescence. Recent research demonstrated that embryonic porcine precursor tissue or organ (i.e.liver, kidney, pancreas and spleen) at certain gestational age can develop into mature and functional tissue or organ without teratoma formation. What about the embryonic porcine skin precursor?
     In order to overcome these obstacles in large scale burn and trauma, such as the source of wound covering material and wound healing quality, in our study, we focus on the growth and development of the embryonic porcine skin precursor graft from five different gestational ages. With the help of convenient and effective xenotransplantation model, we observe the characteristics of the convalescent wound and the histomorphous and the structure of the neoregenerative tissue after transplanting to nude mouse and evaluate the tumorigenesis of the graft and the growth potential after transplantation. The results and conclusions are summarized as follows:
     1. In our research, we compared the following three transplantation models using the embryonic porcine skin precursor harvested at precise E(embryonic day)56. It is proved the model that the graft microgranules onto the dorsal full-thickness defect covering by xenogenous skin is the most convenient and effective xenotransplantation model.
     a. dorsal wound model: The wound involving upper- tunica muscularis was made on the center of the nude mouse dorsum, then transplanted with the graft granule suspension and finally covered with human cadaver skin.
     b. dorsal hypodermis model: The wound involving upper muscular fasciae was made horizontally on the center of the nude mouse dorsum, then transplanted with the stamp-like graft and finally sutured.
     c. auricle hypodermis model: The graft granule suspension was injected into the ear auricle hypodermis via subcutaneous puncture.
     The results of the first and the third model were evaluated using double-sample t test. The grafts in all the three models could develop into double-layer skin tissue with epidermis and dermis. Appendages such as hair follicles, sebaceous glands and sweat glands were seen in the first two models while sweat glands were not observed in the last model. Our data also demonstrated that growth potential of the grafts in the dorsal wound model was higher than that of the auricle hypodermis model.
     2. We systematically studied the growth state and tumorigenesis posttransplantation of embryonic porcine skin precursors from different gestational ages (E35, E42, E56, E70, E91). Embryonic porcine skin precursors from five precise gestational ages, were prepared as microgranules and then implanted onto wound surfaces of full-thickness skin defect, followed by xenoskin covering for protection. The neoregenerative tissue was performed biopsy in the 6th and 12th week after transplantation to study histomorphous and tumorigenesis. Melanin staining and immunofluorescence were performed to identify the tissue origin. The size of the neoregenerative tissue recorded in the 12th week was analyzed by mono-factor variance analysis to evaluate the growth potential. Our data strongly indicated that skin precursors from five different gestational ages could grow and develop into the“integrate”skin and the optimal time for embryonic porcine skin precursor xenotransplantation is around E56.
     a. The results showed that all skin precursors could grow and develop into the“integrate”skin, which consists of epidermis, dermis and appendages including hairs, hair follicles, sebaceous glands and sweat glands.
     b. Skin precursors obtained at E42 exhibited the maximal growth potential—the average size of neoregenerative tissue from E42 was 47.1 mm2 (L×W), while the average size of neoregenerative tissue from E35, E56, E71 and E91 was 18.4, 31.7, 20.1 and 6.5 mm2 respectively.
     c. Melanin staining and immunofluorescence were performed to identify the tissue origin.
     d. Orderly arranged collagen fibers and rete ridges were observed obviously in the neoregenerative tissue.
     e. No teratoma was detected in neoregenerative tissue from E56 and later gestational ages.
     Conclusion: The embryonic porcine skin precursor from E56 showed high growth potential and could develop into the“integrate”skin including hair follicles, sebaceous glands and sweat glands without teratoma formation. The optimal time for embryonic porcine skin precursor xenotransplantation is around E56.
引文
1. Eventov-Friedman S, Katchman H, Shezen E, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA, 2005,102(8):2928-2933.
    2. Hammerman MR. Growing new endocrine pancreas in situ. Clin Exp Nephrol.2006, 10(1):1-7.
    3. Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med, 2003,9(1):53-60.
    4. Drukker M. Immunogenicity of embryonic stem cells and their progeny. Methods Enzymol, 2006,420: 391-409.
    5.吴军,罗高兴,王锡华.完美与遗憾梦想与现实——组织工程在创面修复中的现状与未来.中华烧伤杂志,2006,22(1):5-7.
    6. Boyd M, Flasza M, Johnson PA, et al. Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen Med. 2007,2(4):363-370.
    7. Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA, 2002, 99(4): 2344–2349.
    8. Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000,102(4):451-461.
    9. Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001,104(2):233-245.
    10. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts.Science.1998,282(5391):1145-1147.
    11. Rogers SA, Lowell JA, Hammerman NA, et al. Transplantation of developing metanephroi into adult rats. Kidney Int.1998,54(1):27-37.
    12. Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson's disease?. Proc Natl Acad Sci USA.2002, 99(4):1755-1757.
    1. Cooper DKC,Gollackner B,Sachs DH. Will the pig solve the transplantation backlog?Annu. Rev. Med.2002(53):133–147.
    2. Groth CG. et al. Transplantation of porcinefetal pancreas to diabetic patients.Lancet, 1994(344):1402–1404.
    3. Elliott RB.et al. Live encapsulated porcineislets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation,2007(14): 157–161.
    4. Cardona K.et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nature Med. 2006(12):304–306.
    5. Hering BJ.et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates.Nature Med. 2006(12): 301–303.
    6. Galili U. Interaction of the natural anti-Gal antibody withα-galactosyl epitopes: a major obstacle for xenotransplanta tion in humans. Immunol. Today,1993(14) 14:480–482.
    7. Schuurman HJ,Cheng J,Lam T. Pathology of xenograft rejection: a commentary. Xenotransplantation,2003(10):293–299.
    8. Shimizu I,Smith NR,Zhao G, et al. Decay-accelerating factor prevents acute humoral rejection induced by low levels of anti-αGal natural antibodies. Transplantation, 2006(81):95–100.
    9. Davila E. et al. T-cell responses during pig-to-primate xenotransplantation. Xenotransplantation,2006(13):31–40.
    10. Ramirez P. et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-Transferase). Transplantation Proc,2005(37):4103–4106.
    11. GollacknerB. et al. Acute vascular rejection of xenografts: roles of natural and elicited xenoreactive antibodies in activation of vascular endothelial cells and induction of procoagulant activity. Transplantation,2004(77):1735–1741.
    12. Shimizu A. et al. Thrombotic microangiopathic glomerulopathy in human decay accelerating factor-transgenic swine-to-baboon kidney xenografts.J. Am. Soc. Nephrol,2005(16):2732–2745.
    13. Yamada K. et al. Marked prolongation of porcine renal xenograft survival in baboons through the use ofα1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nature Med,2005(11):32–34.
    14. Crikis S,Cowan PJ,D’Apice AJ. Intravascular thrombosis in discordant xenotransplantation. Transplantation,2006(82):1119–1123.
    15. Schulte EJ,Rogiers X,Robson SC. Molecular incompatibilities in hemostasis between swine and men—impact on xenografting. Ann. Transplant,2001(6):12–16 .
    16. Goto M,Groth CG.,Nilsson B,Korsgren O. Intraportal pig islet xenotransplantation into athymic mice as an in vivo model for the study of the instant blood-mediated inflammatory reaction.Xenotransplantation,2004(11):195–202.
    17. Keusch JJ,Manzella SM,Nyame KA,et al. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J. Biol. Chem,2002(275):25308–25314 .
    18. Milland J. et al. The molecular basis for Galα(1,3)Gal expression in animals with a deletion of theα1,3galactosyltransferase gene. J. Immunol,2006(176):2448–2454.
    19. Sharma A. et al. Pig cells that lack the gene forα1–3 galactosyltransferase express low levels of the gal antigen. Transplantation,2003(75):430–436.
    20. Kuwaki K. et al. Heart transplantation in baboons usingα1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nature Med,2005(11):29–31.
    21. Zhou D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science, 2004(306):1786–1789.
    22. Dorling A, Lombardi G,Binns R,et al. Lechler RI. Detection of primary direct and indirect human antiporcine T cell responses using a porcine dendritic cell population. Eur. J. Immunol. 1996(26):1378–1387.
    23. McGregor CG.A.et al. Cardiac xenotransplantation:recent preclinical progress with 3-month median survival. J. Thorac. Cardiovasc. Surg2005(130):844–851.
    24. Sachs DH. A knock-out punch? Nature Med,2005(11):1271.
    25. Seebach JD. et al. HLA-Cw3 expression on porcine endothelial cells protects against xenogeneic cytotoxicity mediated by a subset of human NK cells.J. Immunol,1997(159):3655–3661.
    26. Sharland A.et al. Genetically modified HLA class I molecules able to inhibit human NK cells without provoking alloreactive CD8+ CTLs. J. Immunol,2002(168):3266–3274.
    27. Ito M. et al. Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J. Exp. Med,2006(203):289–295.
    28. Moretta A,Biassoni R.,Bottino C,et al. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today2000(21):228–234.
    29. Nakamura MC. et al. Natural killing of xenogeneic cells mediated by the mouse Ly-49D receptor. J. Immunol,1999(163):4694–4700.
    30. Forte P,Lilienfeld BG.,Baumann BC,et al. Human NK cytotoxicity against porcine cells is triggered by NKp44 and NKG2D. J. Immunol2005(175):5463–5470.
    31. Lilienfeld BG.,Garcia-Borges C,Crew MD,et al. Porcine UL16-binding protein 1 expressed on the surface of endothelial cells triggers human NK cytotoxicity through NKG2D. J. Immunol,2006(177):2146–2152.
    32. Christiansen D. et al. Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161).Xenotransplantation,2006(13):440–446.
    33. Nikolic B,Cooke DT,Zhao G,.et al.BothγδT cells and NK cells inhibit the engraftment of xenogeneic rat bone marrow cells and the induction of xenograft tolerance in mice. J. Immunol,2001(166):1398–1404.
    34. Goodman DJ,Millan MT,Ferran C,et al. Xenotransplantation: The Transplantation of Organs and Tissues Between Species. Springer, 1997(1):77-94.
    35. Gourlay WA,Chambers WH,Monaco AP,et al. Importance of natural killer cells in the rejection of hamster skin xenografts. Transplantation,1998(65):727–734.
    36. Abe M. et al. Elimination of porcine hemopoietic cells by macrophages in mice. J. Immunol,2002(168):621–628.
    37. Basker M. et al. Clearance of mobilized porcine peripheral blood progenitor cells isdelayed by depletion of the phagocytic reticuloendothelial system in baboons. Transplantation,2001(72):1278–1285.
    38. Ide K. et al. Antibody- and complement-independent phagocytotic and cytolytic activities of human macrophages toward porcine cells. Xenotransplantation, 2005(12):181–188.
    39. Candinas D. et al. T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation,1996(62):1920–1927.
    40. Burlak C,Twining LM,Rees MA. Terminal sialic acid residues on human glycophorin A are recognized by porcine Kupffer cells. Transplantation,2005(80):344–352.
    41. Jin R,Greenwald A,Peterson MD,et al. Human monocytes recognize porcine endothelium via the interaction of galectin 3 andα-GAL. J. Immunol, 2006(177):1289–1295.
    42. Wang H. et al. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood,2007(109):836–842.
    43. Ide K. et al. Role for CD47–SIRPαsignaling in xenograft rejection by macrophages. Proc. Natl Acad. Sci,2007(104):5062–5066
    44. Yi S. et al. T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J. Immunol,2003(170):2750–2758.
    45. Oldenborg PA. et al. Role of CD47 as a marker of self on red blood cells. Science,2000(288):2051–2054.
    46. Al-Mohanna F. et al. Activation of naive xenogeneic but not allogeneic endothelial cells by human naive neutrophils: a potential occult barrier to xenotransplantation. Am. J. Pathol,1997(151):111–120.
    47. A l-Mohanna F, Saleh S, Parhar RS,et al. Human neutrophil gene expression profiling following xenogeneic encounter with porcine aortic endothelial cells: the occult role of neutrophils in xenograft rejection revealed. J. Leukoc. Biol,2005(78):51–61.
    48. Nicolas JM,Fishman JA. Infectious risk in xenotransplantation. Curr. Opin. Organ Transplant,2006(11):180–184.
    49. Li Z, Ping Y, Shengfu L, et al. Phylogenetic analysis of porcine endogenous retroviruses expressed in Chinese pigs based on envelope sequences. Transplant-Proc,2006(38):2252-2257.
    50. Clemenceau B,Jegou D,Martignat L,et al. Microchimerism and transmission of porcine endogenous retrovirus from a pig cell line or specific pathogen-free pig islets to mouse tissues and human cells during xenografts in nude mice. Diabetologia, 2002(45):914–923.
    51. Yang YG. et al. Mouse retrovirus mediates porcine endogenous retrovirus transmission into human cells in long-term human-porcine chimeric mice.J. Clin. Invest, 2004(114):695–700.
    52. Oldmixon BA. et al. Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J. Virol,2002(76):3045–3048.
    53. Garkavenko O. et al. Monitoring for potentially xenozoonotic viruses in New Zealand pigs. J. Med. Virol,2004(72):338–344.
    54. Dwyer KM,Cowan PJ,d’Apice AJF. Xenotransplantation: past achievements and future promise. Heart Lung Circ,2002(11):32–41.
    55. Lin Y. et al. Long-term survival of hamster hearts in presensitized rats. J. Immunol, 2000(164):4883–4892.
    56. Tabata T. et al. Accommodation after lung xenografting from hamster to rat. Transplantation,2003(75):607–612.
    57. Koch CA,Khalpey ZI,Platt JL.Accommodation: preventing injury in transplantation and disease. J. Immunol,2004(172):5143–5148.
    58. Lin SS. et al. The role of anti-Galα1–3Gal antibodies in acute vascular rejection and accommodation of xenografts. Transplantation,2000(70):1667–1674
    59. Cowan PJ.et al. Protective effects of recombinant human antithrombin III in pig-to-primate renal xenotransplantation. Am. J. Transplant,2002(2):520–525.
    60. Byrne GW. et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function. Am. J. Transplant,2005(5):1011–1020.
    61. Cozzi E. et al. Effects of long-term administration of high-dose recombinant humanantithrombin in immunosuppressed primate recipients of porcine xenografts. Transplantation,2005(80):1501–1510.
    62. Imai M.et al. Modulation of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1)cd39 in xenograft rejection. Mol. Med,1999(5):743–752.
    63. Enjyoji K. et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Med.,1999(5):1010–1017.
    64. Imai M. et al. Recombinant adenoviral mediated CD39 gene transfer prolongs cardiac xenograft survival. Transplantation,2000(70):864–870.
    65. Dwyer KM. et al. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation.J. Clin. Invest, 2004(113):1440–1446.
    66. Chen D. et al. Complete inhibition of acute humoral rejection using regulated expression of membranetethered anticoagulants on xenograft endothelium.Am. J. Transplant,2004(4):1958–1963.
    67. Sandrin MS. et al. Enzymatic remodelling of the carbohydrate surface of a xenogeneic cell substantially reduces human antibody binding and complementmediated cytolysis. Nature Med,1995(1):1261–1267.
    68. Sharma A. et al. Reduction in the level of Galα(1,3)Gal in transgenic mice and pigs by the expression of anα(1,2)fucosyltransferase. Proc. Natl Acad. Sci, 1996 (93):7190–7195.
    69. McKenzie IF,Li YQ,Patton K,et al. Fucosyl transferase (H) transgenic heart transplants to Gal–/– mice. Transplantation,2000(70):1205–1209.
    70. Lai L. et al. Production ofα-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science,2002(295):1089–1092.
    71. Dai Y. et al. Targeted disruption of theα1,3-galactosyltransferase gene in cloned pigs. Nature Biotechnol,2002(20):251–255.
    72. Kolber-Simonds D. et al. Production ofα-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl Acad. Sci,2004(101):7335–7340.
    73. Chen G. et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Galknockout pig kidneys. Nature Med,2005(11):1295–1298.
    74. Yang YG. et al. Tolerization of anti-Galα1–3Gal natural antibody-forming B cells by induction of mixed chimerism. J. Exp. Med,1998(187):1335–1342.
    75. Ohdan H,Yang YG.,Shimizu A,et al. Mixed chimerism induced without lethal conditioning prevents T cell- and anti-Galα1,3Gal-mediated graft rejection. J. Clin. Invest,1999(104):281–290.
    76. Ohdan H., Yang YG.,Swenson KG.,et al. T cell and B cell tolerance to GALα1,3GALexpressing heart xenografts is achieved inα1,3-galact osyltransferase-deficient mice by nonmyeloablative induction of mixed chimerism. Transplantation,2001(71):1532–1542 .
    77. Kawahara T,Shimizu I,Ohdan H,et al. Differing mechanisms of early and late B cell hyporesponsiveness induced by mixed chimerism. Am. J. Transplant, 2005(5):2821–2829.
    78. Shimizu I. et al. B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-αGal-producing B-1 cells. Blood,2007(109):1773–1781.
    79. Aksentijevich I.,Sachs DH,Sykes M. Humoral tolerance in xenogeneic BMT recipients conditioned with a non-myeloablative regimen. Transplantation,1992(53):1108–1114.
    80. Bracy JL,Sachs DH,Iacomini J. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science,1998(281):1845–1847.
    81. Mitsuhashi N. et al. Tolerance induction by lentiviral gene therapy with a nonmyeloablative regimen.Blood,2006(107):2286–2293.
    82. Hancock WW.et al. Effects of leflunomide and deoxyspergualin in the guinea pig→rat cardiac model of delayed xenograft rejection: suppression of B cell and C-C chemokine responses but not induction of macrophage lectin. Transplantation,1997(64):696–704.
    83. Lin Y,Goebels J, Xia G.,et al. Induction of specific transplantation tolerance across xenogeneic barriers in the T-independent immune compartment. Nature Med, 1998(4):173–180.
    84. Yin D. et al. Induction of species-specific host accommodation in the hamster-to-ratxenotransplantation model. J. Immunol,1998(161):2044–2051.
    85. Yan Y. et al. Effects of a short course of leflunomide on T-independent B-lymphocyte xenoreactivity and on susceptibility of xenografts to acute or chronic rejection. Transplantation,2005(79):135–141.
    86. Fan X. et al. Donor-specific B-cell tolerance after ABO-incompatible infant heart transplantation. Nature Med,2004(10):1227–1233.
    87. Stussi G.,West L,Cooper DKC,et al. ABO-incompatible allotransplantation as a basis for clinical xenotransplantation. Xenotransplantation,2006(13):390–399.
    88. Kuwaki K. et al. Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen. Am. J. Transplant,2004(4):363–372.
    89. Teotia SS. et al. Prevention, detection, and management of early bacterial and fungal infections in a preclinical cardiac xenotransplantation model that achieves prolonged survival. Xenotransplantation,2005(12):127–133.
    90. Dufrane D,Goebbels RM,Saliez A,et al. Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates:proof of concept. Transplantation, 2006(81):1345–1353.
    91. Kizilel S,Garfinkel M,Opara E. The bioartificial pancreas: progress and challenges. Diabetes Technol.Ther,2005(7):968–985.
    92. Valdés-González RA. et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells:a 4-year study. Eur. J. Endocrinol,2005(153):419–427.
    93. Salazar A,Wright JR. Islet xenotransplantation clinical trial: does histology show islet cells? Eur. J.Endocrinol,2006(154):917–918.
    94. Sykes M,Cozzi E. Xenotransplantation of pig islets into Mexican children: were the fundamental ethical requirements to proceed with such a study really met? Eur. J. Endocrinol,2006(154),:921–922.
    95. Lenschow DJ. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science,1992(257):789–792.
    96. Gordon EJ. et al. Rat xenograft survival in mice treated with donor-specific transfusionand anti-CD154 antibody is enhanced by elimination of host CD4+ cells. Transplantation,2001(71):319–327.
    97. Chen W. et al. Donor lymphocyte infusion induces long-term donor-specific cardiac xenograft survival through activation of recipient double-negative regulatory T cells. J. Immunol,2005(175):3409–3416.
    98. Lee LA. et al. Specific tolerance across a discordant xenogeneic transplantation barrier. Proc. Natl Acad.Sci,1994(91):10864–10867.
    99. Zhao Y,Swenson K,Sergio JJ,et al. Pig MHC mediates positive selection of mouse CD4+ T cells with a mouse MHC-restricted TCR in pig thymus grafts. J. Immunol,1998(161):1320–1326.
    100. Zhao Y,Rodriguez-Barbosa JI,Shimizu A,et al. Despite efficient intrathymic negative selection of host-reactive T cells, autoimmune disease may develop in porcine thymus-grafted athymic mice: evidence for failure of regulatory mechanisms suppressing autoimmunity. Transplantation,2003(75):1832–1840.
    101. Zhao Y. et al. Immune restoration by fetal pig thymus grafts in T cell-depleted, thymectomized mice. J. Immunol,1997(158):1641–1649.
    102. Yamamoto S. et al. Vascularized thymic lobe transplantation in a pig-to-baboon model: a novel strategy for xenogeneic tolerance induction and T-cell reconstitution. Transplantation,2005(80):1783–1790.
    103. Wu A. et al. Xenogeneic thymus transplantation in a pig-to-baboon model. Transplantation,2003(75):282–291.
    104. Abe M,Qi J,Sykes M,et al. Mixed chimerism induces donor-specific T cell tolerance across a highly disparate xenogeneic barrier. Blood,2002(99):3823–3829.
    105. Chen AM. et al. Porcine stem cell engraftment and seeding of murine thymus with class II+ cells in mice expressing porcine cytokines: toward tolerance induction across discordant xenogeneic barriers. Transplantation,2000(69):2484–2490.
    106. Lan P. et al. Induction of human T cell tolerance to porcine xenoantigens through mixed hematopoietic chimerism. Blood,2004(103):3964–3969.
    107. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derivedfrom human blastocysts.Science.1998,282(5391):1145-1147.
    108. Bjorklund L M, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA.2002,99(4):2344-2349.
    109. Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson's disease? Proc Natl Acad Sci USA. 2002,99(4):1755-1757.
    110. Eventov-Friedman S, Katchman H, Shezen E, et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA.2005,102(8):2928-2933.
    111. Dekel B, Burakova T, Arditti FD, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat-Med.2003,9(1):53-60.
    112. Anna A, Dalit T, Helena K, et al. Correction of hemophilia as a proof of concept for treatment of monogenic diseases by fetal spleen transplantation.PNAS.2006,103: 19075-19080
    113. Rogers SA, Lowell JA, Hammerman NA, et al. Transplantation of developing metanephroi into adult rats. Kidney-Int.1998,54(1):27-37.
    114. Eventov-Friedman S, Tchorsh D, Katchman H, et al. Embryonic Pig Pancreatic Tissue Transplantation for the Treatment of Diabetes. PLoS Med.2006,3(7):e215.
    115.青春,曹颖平,史济湘,等.自异体皮混合移植成活机制中角质形成细胞及细胞因子作用的实验研究.中华烧伤杂志,2004,20(06):336-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700