脂肪细胞因子与胰岛素抵抗和2型糖尿病患者代谢综合征临床表型的关系及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     胰岛素抵抗是代谢综合征、糖尿病和动脉粥样硬化的共同病理生理改变。糖尿病和代谢综合征的关系是复杂的,肥胖是中心环节。与肥胖有关的脂肪细胞因子通过调节免疫和炎症反应等途径参与胰岛素抵抗及其相关疾病如代谢综合征、2型糖尿病的发生、发展。脂肪细胞因子和胰岛素抵抗关系的确切机制还需深入阐明。
     Vaspin是一种新识别出来的内脏脂肪细胞因子,具有胰岛素增敏效应,最近的一些研究报道了用重组vaspin干预2型糖尿病鼠后明显改善了胰岛素抵抗和血糖水平,也抑制了一些将会促进胰岛素抵抗进展的基因表达。然而关于人体血清中vaspin怎样被调节以及与肥胖、胰岛素抵抗的关系还不清楚,有待于进一步研究。以NF-кB为网络中心的内皮细胞活化及炎症基因诱导途径参与2型糖尿病发病机制以及血管并发症和胰岛素抵抗相关疾病的发生发展是当今研究的热点。最近有报道,过度活化的NF-кB炎症通路是胰岛素抵抗的可能机制。深入研究NF-кB和胰岛素抵抗及其相关疾病的关系将有着重要的意义。
     如能早期诊断和预测肥胖个体发生代谢综合征的危险性将对临床治疗有很大的推动作用。通过2型糖尿病人群作为研究靶点,将观察脂联素、vaspin和代谢综合征临床表型各组分(国际糖尿病联盟IDF关于代谢综合征的诊断标准)的关系及脂联素、vaspin、脂联素与vaspin的比值(A/V)是否可以作为评估代谢综合征有用的指标。研究脂肪细胞因子,肥胖,胰岛素抵抗和代谢综合征的相互关系,进一步探索代谢综合征发生的危险性。肥胖,心血管疾病及与之相关的2型糖尿病和代谢综合征与系统性炎症有密切的关系,本次研究中也将深入观察在人类脐静脉内皮细胞中新发现的脂肪细胞因子vaspin将怎样作用血管内皮细胞NF-кB,和怎样影响NF-кB下游因子如细胞间黏附分子ICAM-1、血管细胞黏附分子VCAM-1和单核细胞趋化蛋白MCP-1,探讨vaspin是否通过影响炎症状态的平衡在胰岛素抵抗发生机制中产生重要作用,从而观察vaspin和胰岛素抵抗的关系。
     研究方法
     通过260例初诊2型糖尿病患者(126名男性、134名女性)研究脂联素、vaspin、A/V和肥胖、胰岛素抵抗和代谢综合征表型的关系。了解代谢综合征阴性和代谢综合征阳性患者的临床测量及代谢指标的变化。绘制ROC曲线分析脂联素、vaspin在代谢综合征中的诊断价值。以年龄、体重指数、腰围、腰臀比、收缩压、舒张压、胆固醇、甘油三酯、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇、空腹血糖、空腹胰岛素、糖化血红蛋白、稳态模型评估指数(HOMA-R)、脂联素、vaspin、A/V为自变量,是否代谢综合征为应变量,进行多因素Logistic回归分析,观察上述变量对代谢综合征的影响。非参数Spearman相关和多元回归分析观察脂联素、vaspin、A/V和胰岛素抵抗、肥胖、代谢变量的关系。
     瞬时转染原代脐静脉内皮细胞(HUVEC),以pNF-кB-1uc质粒和内参照β-gal质粒共转染,GFP质粒同时转染。β-gal活力测定为转染效率内参照,以β-gal的活性值校正相应细胞裂解液中NF-κB的化学发光强度,在此基础上建立一套高效率、稳定的脐静脉内皮细胞转染方法。从而准确的通过发光仪测定NF-κB荧光酶活力,即相对发光值(RLU)。pNF-кB-1uc报告质粒稳定转染脐静脉内皮细胞株EA.hy926(脐静脉内皮细胞和上皮癌细胞杂交的体细胞株),因转染用的质粒载体在哺乳动物细胞内表达hph基因,稳定转染用Hygromycin B压力筛选得到稳定表达pNF-кB-1uc质粒的EA.hy926同源细胞克隆。进而测定NF-κB的活力。
     NF-κB刺激因子—肿瘤坏死因子-α(TNF-α),激活NF-кB报告基因表达荧光素酶,再加入Bay11-7082(一种常用的NF-кB抑制剂,最终抑制依赖于NF-κB的基因转录),这种激活可被Bay11-7082所抑制。利用此方法检测不同浓度(0-3200ng/ml)vaspin是否能够激活NF-кB报告基因表达荧光素酶,及NF-кB的下游靶基因ICAM-1、VCAM-1和MCP-1。并且这种激活是否能被Bay11-7082所抑制。vaspin预培养后TNF-α干预人脐静脉内皮细胞,观察vaspin是否能够影响其它细胞因子对NF-κB激活。实时荧光定量聚合酶链反应(Real time-PCR)和免疫蛋白印迹(Western blot)观察vaspin作用后NF-κB下游因子ICAM-1、VCAM-1及MCP-1的mRNA和蛋白表达情况。同时在NF-кB抑制剂Bay11-7082参与下,观察NF-κB下游基因表达水平。
     每组实验均执行三次且为了保证实验的一致排除可能的干扰因素,在做干预实验前均换成无血清培养基后准备实验。实验结果运用SPSS16、Sigma Stat统计软件进行分析,数据描述采用均数±标准差,采用方差分析,T-test和LSD法两两比较。部分图表由Sigma plot绘制。
     研究结果
     2型糖尿病人群与正常人群相比血清脂联素水平是降低的,血清vaspin呈现升高的趋势(P<0.05),A/V减少(P<0.05)。血清vaspin在女性中蛋白表达水平增高。代谢综合征阳性病人相对于代谢综合征阴性病人有更多的致动脉粥样硬化形成因素,有较高的胰岛素抵抗和升高的Vaspin水平,降低的脂联素水平和降低的A/V。随着代谢综合征组分增多,血清vaspin水平逐渐增高,A/V及血脂联素水平逐步减少,当具备5个代谢综合征组分时vaspin最高,A/V和脂联素水平最低。ROC曲线分析vaspin,A/V对代谢综合征的诊断价值较高。
     vaspin与体重指数、腰围、腰臀比、甘油三酯、HOMA-IR、高密度脂蛋白胆固醇和空腹胰岛素有明显的相关性(P<0.01),脂联素除了和收缩压、舒张压、空腹血糖无明显相关外,与其它参数都有相关性(P<0.01)(P<0.05),A/V与所有研究参数都有明显的相关性(P<0.01)(P<0.05)。是否代谢综合征为应变量的多元Logistic回归分析中,自变量vaspin的OR:0.469(95%CI,0.252-0.873;P=0.017),A/V的OR:0.368(95%CI,0.171-0.791;P=0.010),脂联素的OR:0.279(95%CI,0.097-0.804;P=0018)。
     脂联素、vaspin、及它们的比值作为因变量,性别、是否肥胖、是否敏感、腰围、甘油三酯、高密度脂蛋白为自变量的多元回归分析中,当控制其它变量影响后,超重(肥胖)BMI≥25较非肥胖BMI<25的患者有较高的vaspin,和较低的脂联素和A/V。胰岛素敏感(HOMA<2)相对于胰岛素抵抗(HOMA≥2)时,有较低的vaspin水平,较高的脂联素水平和A/V。A/V或HOMA-R为因变量的多元回归分析中,A/V较HOMA-R与更多的研究变量有明显相关性(P<0.05)。A/V为因变量,性别、BMI、WC、TG、HDL为自变量的模型(校正的R2=0.692)有更好的拟和效果。
     经pNF-κB-Luc报告质粒稳定转染的EA.hy926细胞珠,0-3200 ng/ml的vaspin作用2小时,Vaspin激活了NF-κB的转录活性(P<0.05)。效应呈剂量依赖性(不同剂量之间的刺激活性相比有统计学意义即高浓度组较低浓度组刺激活性增高P<0.05)。同样观察到vaspin呈剂量依赖性激活了原代HUVEC中NF-κB转录活性(P<0.05)。0-3200ng/ml的vaspin预培养由pNF-κB-Luc报告质粒稳定转染EA.hy926细胞系不同的时间段,之后用10ng/ml TNFα作用2小时,TNFα介导的NF-κB转录活性被vaspin明显的抑制(P<0.05),呈剂量依赖性的抑制(P<0.05),预培养延长到24小时时,抑制TNFα介导NF-κB转录活性最强。
     0-3200ng/ml的vaspin作用人脐静脉内皮细胞株后,黏附分子ICAM-1,VCAM-1和趋化因子MCP-1的基因水平逐渐增强;先加入10μM Bay11-7082 1小时后再加入3200ng/ml的vaspin 4小时,ICAM-1,VCAM-1,MCP-1增高的mRNA被明显抑制,相比3200ng/ml的vaspin作用EA.hy926细胞珠,差异有统计学意义(p<0.05)。不同浓度vaspin作用EA.hy926细胞株和原代HUVEC,ICAM-1、VCAM-1和MCP-1的蛋白表达随着vaspin浓度的递增依次增高。10μM的Bay11-7082预培养后,Bay11-7082明显降低了TNFα介导的黏附分子ICAM-1,VCAM-1和趋化因子MCP-1的蛋白表达,也明显降低了vaspin介导的ICAM-1,VCAM-1和MCP-1蛋白表达。
     结论
     该研究从脂联素和vaspin与胰岛素抵抗和2型糖尿病患者代谢综合征临床表型的关系和vaspin对脐静脉内皮细胞NF-κB及下游基因影响两方面探讨了脂肪细胞因子在胰岛素抵抗中的可能作用。
     研究结果揭示脂联素、vaspin及脂联素与vaspin的比值(A/V)和肥胖、胰岛素抵抗密切相关,也与代谢综合征有紧密的联系,vaspin参与了胰岛素抵抗的发生;在此基础上采用瞬时转染、稳定转染、RT-PCR和Western blot等手段,从分子生物学层面观察并阐明vaspin在原代脐静脉内皮细胞和EA.hy926细胞珠体外培养过程中激活了NF-κB及其下游炎性因子,提示脂肪细胞因子是调节炎症反应的新靶点,vaspin激活NF-κB在胰岛素抵抗中发挥重要作用;同时研究也观察到vaspin抑制了TNF-α介导的NF-κB活性,显示其作用的复杂性,为今后进一步的理论和临床实践提供了新的思路。
Objective:
     Insulin resistance is a common pathophysiological condition of type 2 diabetes, metabolic syndrome and atherosclerosis. There are numerous mechanisms by which obesity can adversely affect the vasculature changes in diabetes and metabolic syndrome. White adipose tissue, the main energy store of the body, is also a source of factors that modulate the immune/inflammatory response and promote atherosclerosis, vascular dysfunction, insulin resistance, metabolic syndrome and type 2 diabetes. Therefore, investigations focused on the identification of adipose tissue derived molecules will provide further understanding of mechanisms for insulin resistance.
     Vaspin, a serine protease inhibitor derived from visceral adipose tissue, has been identified as an adipokine with insulin-sensitizing effects in a rat model of type 2 diabetes. The study by Hida et al. showed that the administration of recombinant human vaspin significantly improved insulin sensitivity and glucose tolerance, and reversed the expression of genes that may promote insulin resistance in diet-induced obese mice. However, the regulation of vaspin serum concentrations in human insulin resistance, and relationship between vaspin and insulin resistance related disorders is unclear. The present study focused on the role of vaspin in obesity-associated disorders.
     NF-κB is a major transcription factor in inflammatory responses, regulating a plethora of genes, activating endothelial cells, playing a vital role in the initiation, progression of type 2 diabetes, vessel complication and insulin resistance related disorders. Recent research has suggested that over-activation of NF-κB may be a mechanism of insulin resistance. It is important to investigate the relationship between NF-κB and diseases associated with insulin resistance.
     We postulated that adipokines, such as adiponectin and vaspin, can be included in the criteria used for the identification of subjects with metabolic syndrome. Therefore, our aim was to evaluate the determinants and associations of vaspin and adiponectin in relation with the number of clinical and metabolic abnormalities constituting the metabolic syndrome as defined by the International Diabetes Federal (IDF) diagnostic criteria. We also evaluated the performance characteristics of adiponectin, vaspin and the adiponectin/vaspin ratio (A/V) as markers for the identification of patients with the metabolic syndrome. For further exploring the risk of metabolic syndrome, the study was performed to evaluate the associations of adiponectin, vaspin, and their ratio (adiponectin/vaspin) and obesity, insulin resistance, and the metabolic syndrome in patients with type 2 diabetes.
     Adipocytes within adipose tissue directly augment systemic inflammation. Increased systemic inflammation is associated with higher prevalence of obesity, insulin resistance, type 2 diabetes, metabolic syndrome, and the risk of cardiovascular disease. With the aforementioned in mind, we sought to investigate whether Vaspin activates NF-κB inducing the intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and monocyte chemoattractant protein (MCP-1) in the vascular endothelium. Vaspin could affect the equilibration inflammatory state, which in turn may have a significant effect in the insulin resistance.
     Research Design and Methods:
     260 patients including 126 male and 134 female with newly diagnosed type 2 diabetes were recruited in this study. Patients were classified based on the degree of adiposity, insulin resistance (IR) (homeostasis model assessment of insulin resistance (HOMA-IR)) and the number of IDF criteria of the metabolic syndrome. The relationship between adiponectin, vaspin, A/V and the metabolic syndrome,degree of adiposity, IR, and the correlation with metabolic variables were investigated.
     Spearman’s correlation coefficients (r) and multiple regression analysis were used to describe the association between serum vaspin, adiponectin or A/V and other continuous variables of interest. Multiple regression analysis was used to analyze the relationship between vaspin, adiponectin, A/V and age, gender, BMI (Body mass index), HOMA-R, WC (Waist circle), TG (Triglyceride), HDL (High-density lipoprotein-cholesterol). Logistic regression analysis was used to ascertain the association of vaspin and adiponectin with the metabolic syndrome as dependent variable. Potential confounding variables such as BMI, WC, WHR (Waist-to-hip ratio), TC, TG, HDL, LDL, FPG (Fasting plasma glucose), FIRI (Fasting plasma insulin level), HbA1c (GlycohemoglobinA1c), HOMA-IR and A/V ratio were included. To assess the diagnostic accuracy of the adiponectin, vaspin, A/V ratio in predicting the metabolic syndrome, receiver operating characteristic (ROC) curve was also constructed.
     To study NF-κB activation, HUVEC cells were transient transfected with a cis-reporter plasmid (Promega, E849A, #25236701). The pNF-κB-Luc plasmid was transfected together withβ-gal plasmid (Aldevron, #5002) into HUVEC cells using a QIAGEN transfection reagent, GFP plasmid was transfected simultaneously. Intra-reference transfection efficiency was measured byβ-gal activity, which may revise NF-κB chemistry luminous intensity in corresponding cell disruption. With the aforementioned in mind, a set of high efficiency and stable transfection method was established in HUVEC cells. The relative light unit (RLU) of NF-κB was measured using Promega GLOMAX Multi Detection System. Since most Hygromycin-based vectors used in gene transfer experiments harbor the E. coli Hygromycin B phosphotransferase (Hph) gene in mammals, cells were cultured in the presence of Hygromycin B (Catalog # ant-hg-5,InvovoGen) at a concentration of 200μg/ml and the medium was replaced every two to three days. Approximately three weeks after transfection, Hygromycin B-resistant clones were isolated using a cloning cylinder and analyzed individually for the expression of luciferase activity. We obtained the EA.hy926 cell clones with stable expression of pNF-кB-1uc. Multiple clones were also selected for analysis of NF-κB activation. Luciferase activity was measured using a luciferase assay kit (Luciferase Assay system, Promega, # E1501).
     Tumor necrosis factor (TNF-α), a strong inducer of NF-κB activity, activates cis-reporter plasmid containing luciferase reporter gene linked to five repeats of NF-κB binding sites. Addition of Bay11-7082, an irreversible inhibitor, results in the inactivation of NF-κB and NF-κB-dependent transcriptional expression.
     EA.hy926 cells or HUVEC cells transfected with pNF-κB-Luc were treated with various concentrations (0-3200 ng/ml) of Vaspin, After two hours, cells were harvested and lysed, and luciferase activity was measured based on NF-κB-dependent transcriptional activity as mentioned above. The effects of Vaspin on ICAM-1,VCAM-1 and MCP-1 activity was performed in EA.hy926 cells or HUVEC cells. In addition, cells pre-incubated with Vaspin were then treated with TNF-α(10 ng/ml), the effect of Vaspin on TNF-αinduced NF-κB activation was then evaluated using the same method. The expression of ICAM-1, VCAM-1 and MCP-1 were investigated using quantitative real time PCR (mRNA level), western blot analysis (protein level) following treatment with Vaspin and also the NF-κB inhibitor, Bay 11-7082.
     All data in the present study are expressed as mean±SD. Differences between two groups were assessed using the t-test. Comparisons among groups were made by ANOVA and LSD. A p<0.05 was considered statistically significant. All statistical analysis was performed using SPSS 16 and Sigma plot. Serum-starved HUVECs transfected with pNF-κB-Luciferase were treated with or without vaspin. Each experiment was carried out in triplicates. Results:
     Compared to healthy adult, the patients with type 2 diabetes had lower adiponectin (P<0.05) and A/V (P<0.05), but higher Vaspin level (P<0.05). Serum Vaspin was elevated in females (P<0.05). In general, patients who were metabolic syndrome positive had more atherogenic lipid profile, exhibited higher insulin resistant, lower adiponectin and A/V, and had higher Vaspin level than patients who were negative of metabolic syndrome.
     Adiponectin and A/V ratio showed stepwise decrease with increasing number of the criteria for diagnosis of the metabolic syndrome, while Vaspin showed the opposite trend. Vaspin was the highest while five constituents of the metabolic syndrome were present. Receiver operating characteristic analysis showed that vaspin and A/V ratio had significantly larger area under the curve (AUC) compared with adiponectin, TG and HDL for the detection of the metabolic syndrome, suggesting the importance of Vaspin and A/V in the diagnosis of this syndrome. Vaspin, A/V and adiponectin were shown to be protector factors of the metabolic syndrome by multiple logistic regression analysis. The odds ratios (OR) are 0.469(95%CI,0.252-0.873;P=0.017), 0.368(95%CI,0.171-0.791;P=0.010), and 0.279(95%CI,0.097-0.804;P=0018)respectively.
     Vaspin levels were significantly correlated with BMI, WC, WHR, TG, HDL, FIRI, and HOMA-IR (P<0.01). Adiponectin levels were significantly correlated with other parameters in an opposite manner except for SBP, DBP, and FBG (P<0.01) (P<0.05). On the other hand, A/V ratio was significantly correlated with these parameters (P<0.01) (P<0.05). Multiple regression analysis was used to analyze the relationship between vaspin, adiponectin, A/V and gender, BMI, HOMA-R, WC, TG, HDL. Overweight obese patients had significantly lower adiponectin, A/V ratio levels and higher vaspin comparing with non-obese patients. Insulin-sensitive patients had significantly higher adiponectin, A/V ratio levels and lower vaspin than those with IR when adjusted by BMI, WC and other variable.
     The association between A/V ratio or HOMA-R and objective variables were investigated by multiple regression analysis. Significant correlations between these parameters and A/V ratio were observed (P<0.05). Furthermore, multiple linear regression analysis with A/V ratio or HOMA-R as dependent variables and gender, BMI, WC, TG and HDL as independent variables revealed that the A/V ratio (R2=0.692) was higher than HOMA-R (R2=0.433). This model suggested that A/V ratio might be a more accurate surrogate index for determining insulin resistance in patients with type 2 diabetes.
     Vaspin (0-3200 ng/ml) treatment for 2 hours induced a significant dose dependent increase in NF-κB mediated transcriptional activity in pNF-κB-Luc transfected EA.hy926 cells (P<0.05). Similar results were obtained in transiently transfected HUVEC (P<0.05). When cells were pretreated with Vaspin (0-3200 ng/ml) for varies time points and then subjected to TNF-α(10ng/ml) treatment for 2 hours. A significant inhibition of TNF-αinduced NF-κB transcriptional activity in human ECs was observed (P<0.05), a greater inhibition was observed in cells with a longer period of incubation with Vaspin (24 hours).
     Vaspin significantly increased ICAM-1, VCAM-1 and MCP-1 mRNA expression and protein levels in HUVEC cells. Pretreatment of HUVEC cells with Bay 11-7082 (10μM), a NF-κB inhibitor, for 1 hour, the mRNA levels of ICAM-1, VCAM-1 and MCP-1 induced by Vaspin (3200 ng/ml, 4 hour) was significantly reduced (P<0.05). Similarly, in Vaspin/TNF-αtreated human ECs, ICAM-1 and VCAM-1 and MCP-1 protein levels were also significantly decreased by pre-incubation with Bay 11-7082 (10μM).
     Conclusions:
     The present study investigated the relationship between adipokines and insulin resistance by examining the Adiponectin, Vaspin, insulin resistance and clinical manifestations of the metabolic syndrome in patients with Type 2 diabetes, and the effects of Vaspin on NF-κB activation and its downstream gene expression in Human vascular endothelial cells. The results revealed that adiponectin, vaspin, and A/V ratio were associated with obesity, insulin resistance, and the clinical manifestations of the metabolic syndrome. Vaspin participated in the process of insulin resistance. Further investigation using human ECs endothelial cells transient or stable transfected with pNF-κB-Luc plasmid revealed that Vaspin increased NF-κB transcriptional activity, significantly enhanced ICAM-1, VCAM-1 and MCP-1 mRNA expression and protein levels. We reaffirmed the emerging role of adipokines as mediators of inflammatory responses. Vaspin activated NF-κB, which may play an important role in developing insulin resistance. At the same time we observed that Vaspin induced NF-κB activation that led to the suppression of cytokine-induced NF-κB activation in Human vascular endothelial cells. Therefore, the complexity of vaspin offers the advantage of further exploring insulin resistance, and in consequence might benefit the treatment specifically targeting insulin resistance.
引文
[1] Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol, 2005, 25: 2243–2244.
    [2] Yang C, Hiromi O, Hayano N, et al. Ratio of leptin to adiponectin as an obesity index of cynomolgus monkeys (Macaca fascicularis).Exp Anim, 2003, 52(2): 137-143.
    [3] Vigouroux C, Maachi M, Nguyen TH,et al. Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS, 2003,17(10):1503-1511.
    [4] Leszczyszyn-Pynka M, Pynka S, Boron-Kaczmarska A, et al. Serum leptin and adiponectin concentrations in patients infected with human immunodeficiency virus type 1 (HIV-1) on antiretroviral therapy. Endokrynol Pol,2005 Jan-Feb, 56(1):19-24.
    [5] Mojiminiyi O, Abdella N, Arouj M, et al.Adiponectin,insulin resistance and clinical expression of the metabolic syndrome in patients with type 2 diabetes.International Journal of Obesity,2007,31:213-220
    [6] Taniguchi A, Fukushima M, Ohya M, et al. Interleukin 6,adiponectin, leptin, and insulin resistance in no obese Japanese type 2 diabetic patients.Metabolism,2006 Feb,55(2):258- 262.
    [7] Chu MC, Cosper P, Orio F, et al. Insulin resistance in postmenopausal women with metabolic syndrome and the measurements of adiponectin, leptin, resistin, and ghrelin. Am J Obstet Gynecol,2006 Jan, 194(1): 100-104.
    [8] Krakoff J, Funahashi T, Stehouwer CD, Schalkwijk CG, Tanaka S, Matsuzawa Y et al. Inflammatory markers, adiponectin, and risk of Type 2 diabetes in the Pima Indian. Diabetes Care, 2003, 26: 1745–1751.
    [9] Fasshauer M, Klein J, Neumann S, et al.Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 2002, 290: 1084–1089.
    [10] Yu JG, Javorschi S, Hevener AL, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and Type 2 diabetic subjects. Diabetes,2002, 51: 2968–2974.
    [11] Fasshauer M, Klein J, Neumann S, et al. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett, 2001, 507: 142–146.
    [12] Maeda N, Takahashi M, Funahashi T, et al. PPARg ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 2001, 50: 2094–2099.
    [13] Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion isinhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun, 2003, 301: 1045–1050.
    [14] Maeda N, Takahashi M, Funahashi T, et al. PPARg ligands increase expression and plasma concentrations of adiponectin, an adipose- derived protein. Diabetes, 2001, 50: 2094–2099.
    [15] Inoue M,Yano M,Maehata E,et al. Relationship between the adiponectin-leptin ratio and parameters of insulin resistance in subjects without hyperglycemia.Metabolism Clinical and Experimental, 2006,55: 1248-1254
    [16] Inoue M,Taniyama M,Suzuki S,et al.Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism Clinical and Experimental, 2005, 54:281-286
    [17] Faria AN, Kohlmann NE, Zanella MT, et al.Two-hour insulin determination improves the ability of abdominal fat measurement to identify risk for the metabolic syndrome. Diabetes Care, 2003, 26: 1725–1730.
    [18] Pajvani UB, Du X, Combs TP,et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem, 2003, 78: 9073– 9085.
    [19] Pajvani UB,Hawkins M,Combs TP,et al.Complex Distribution,Not Absolute Amount of Adiponectin, Correlates with Thiazolidinedione- mediated Improvement in Insulin Sensitivity.The Journal of Biological Chemistry, 2004,279:12152-12162
    [20] International Diabetes Federation. The IDF consensus worldwide definition of the metabolic syndrome. Berlin,2005. 14.
    [21] Eckle RH,Grundy SM, Zimmet PZ. The metabolism syndrome. Lancet,2005,365:1415-1428.
    [22] Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med, 1989, 149: 1514– 1520
    [23] Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med ,1993; 44: 121– 131.
    [24] Van Harmelen V, Reynisdottir S, Eriksson P, et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes, 1998,47: 913– 917
    [25] Rabe K, Lehrke M, Parhofer KG, et al. Adipokines and insulin resistance. Mol Med, 2008 Nov-Dec,14(11-12):741-751
    [26] Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab, 2002, 13: 84– 89
    [27] Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature, 2001, 409: 307– 312
    [28] Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA, 2005, 102: 10610– 10615
    [29] Kawano K, Hirashima T, Mori S, et al.Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes,1992, 41: 1422– 1428
    [30] Li Q, Chen R, Moriya J, et al. A novel adipocytokine, visceral adipose tissue-derived serine protease inhibitor (vaspin), and obesity. J Int Med Res,2008Jul-Aug, 36(4):625-629
    [31] Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition,novel functions, and a revised nomenclature. J Biol Chem 2001, 276: 33293– 33296
    [32] Gettins PG. Serpin structure, mechanism, and function. Chem Rev, 2002, 102: 4751– 4804
    [33] Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs, 2008 Mar,17(3):327-333
    [34] Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell, 2004,116: 337– 350
    [35] Zvonic S, Lefevre M, Kilroy G,et al. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics, 2007 Jan,6(1):18-28
    [36] Kl?ting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes.Biochem Biophys Res Commun, 2006 Jan 6,339(1):430-436
    [37] Kl?ting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun, 2006, 339: 430– 436
    [38] Fain JN, Buehrer B, Bahouth SW, et al.Comparison of messenger RNA distribution for 60 proteins in fat cells vs the nonfat cells of human omental adipose tissue.Metabolism, 2008 Jul,57(7):1005-1015
    [39] Horn R, Geldszus R, Potter E, et al.Radioimmunoassay for the detection of leptin in human serum. Exp Clin Endocrinol Diabetes ,1996,104: 454– 458
    [40] Ma Z, Gingerich RL, Santiago JV, et al. Radioimmunoassay of leptin in human plasma.Clin Chem, 1996, 42: 942– 946
    [41] Sennello JA, Fayad R, Morris AM, et al. Regulation of T cell-mediated hepaticinflammation by adiponectin and leptin. Endocrinology 2005;146:2157–64.
    [42] Youn BS, Kl?ting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes.Diabetes, 2008 Feb,57(2):372-377
    [43] Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissue of obese subjects release interleukin 6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab, 1998, 83: 847– 850
    [44] Febbraio MA, Steensberg A, Starkie RL, et al.Skeletal muscle interleukin-6 and tumor necrosis factor-αrelease in healthy subjects and patients with type 2 diabetes at rest and during exercise. Metabolism, 2003, 52: 939– 944.
    [45] Ahima RS, Osei SY. Adipokines in obesity. Front Horm Res,2008,36:182-197
    [46] Moller DE. Potential role of TNF-αin the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab, 2000, 11: 212–217
    [47] Muise ES, Azzolina B, Kuo DW,et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol,2008 Aug;74(2):403-412
    [48] Gettins PG. Serpin structure, mechanism, and function. Chem Rev, 2002, 102: 4751– 4804
    [49] Hida K, Wada J, Eguchi J, et al.Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity.Proc Natl Acad Sci U S A. 2005 Jul 26,102(30):10610-10615
    [50] Zvonic S, Lefevre M, Kilroy G, et al. Secretome of primary cultures of human adipose-derived stem cells. Mol Cell Proteomics, 2007, 6: 18– 28
    [51] Matarese G, Carrieri PB, La Cava A, et al. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc Natl Acad Sci 2005;102:5150–5.
    [52] Zulet MA, Puchau B, Navarro C, et al.Inflammatory biomarkers: the link between obesity and associated pathologies.Nutr Hosp,2007 Sep-Oct,22(5):511-527
    [53] Alessi MC, Peiretti F, Morange P, et al.Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes ,1997,46: 860– 867
    [54] Lago F, Dieguez C, Gómez-Reino J, et al.The emerging role of adipokines as mediators of inflammation and immune responses.Cytokine Growth Factor Rev, 2007 Jun-Aug,18(3-4): 313-325
    [55] Aust G, Richter O, Rohm S,et al.Vaspin serum concentrations in patients with carotid stenosis.Atherosclerosis, 2008 Sep 2. [Epub ahead of print]PMID: 18848328
    [56] Gulcelik NE, Karakaya J, Gedik A, et al. Serum vaspin levels in type 2 diabetic women in relation to microvascular complications. Eur J Endocrinol,2009 Jan,160(1):65-70
    [57] Seeger J, Ziegelmeier M, Bachmann A, et al.Serum levels of the adipokine vaspin in relation to metabolic and renal parameters.J Clin Endocrinol Metab,2008 Jan,93(1):247- 251
    [58] Seeger J, Ziegelmeier M, Bachmann A, et al.Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab, 2008,93: 247– 251
    [59] Campos DB, Palin MF, Bordignon V,et al.The 'beneficial' adipokines in reproduction and fertility. Int J Obes (Lond), 2008 Feb,32(2):223-231
    [60] Ibá?ez L, López-Bermejo A, Díaz M, et al.Low-dose pioglitazone and low-dose flutamide added to metformin and estro-progestagens for hyperinsulinemic women with androgen excess: add-on benefits disclosed by a randomized double-placebo study over 24 months.Clin Endocrinol (Oxf). 2008 Nov 5. [Epub ahead of print]PMID: 19018783
    [61] Nishizawa H, Shimomura I, Kishida K, et al.Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.Diabetes, 2002, 51: 2734– 2741.
    [62] Tan BK, Heutling D, Chen J, et al. Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement in insulin sensitivity and a decrease in insulin resistance.Diabetes, 2008 Jun,57(6):1501-1507
    [63] Kempf K, Rose B, Illig T, et al.Vaspin (SERPINA12) Genotypes and Risk of Type 2 Diabetes: Results from the MONICA/KORA studies.Exp Clin Endocrinol Diabetes,2008 Aug 25. [Epub ahead of print]PMID: 18726871
    [64] Guillemin I, Bouchier C, Garrigues T, et al.Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, Vaspis zinnikeri and Vipera berus berus venom. Identification of the origin of a new viper population based on ammodytin I1 heterogeneity.Eur J Biochem, 2003 Jul,270(13):2697-2706
    [65] Sale MM, Rich SS.Genetic contributions to type 2 diabetes: recent insights.Expert Rev Mol Diagn, 2007 Mar,7(2):207-217
    [66] K.N. Frayn, Visceral fat and insulin resistance-causative or correlative Br. J. Nutri. 2000;83 (Suppl. 1) 71–77.
    [67] Trayhurn P, Bing C, Wood IS. Adipose tissue and adipokines—energy regulation from the human perspective. J Nutr 2006;136(7):1935S–9.
    [68] Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor–dependent clearance of early apoptotic bodies. J Clin Invest 2007, 25 January.
    [69] Ehling A, Schaffler A, Herfarth H, et al. The potential of adiponectin in driving arthritis. JImmunol 2006;176(7):4468S–78S.
    [70] Senolt L, Housa D, Vernerova Z, et al. Resistin is abundantly present in rheumatoid arthritis synovial tissue, synovial fluid, and elevated serum resistin reflects disease activity. Ann Rheum Dis 2007;66(4):458–63.
    [71] Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006;339: 430–6.
    [72] Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 2008;57:372–7.
    [73] B.L. Wajchenberg, Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome, Endocr. Rev. 2000;21: 697–738.
    [74] A. Thorne, F. Lonnqvist, J. Apelman, G. Hellers, P. Arner, A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding, Int. J. Obes. Relat. Metab. Disord. 2002; 26:193–199.
    [75] S. Klein, L. Fontana, V.L. Young, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease, N. Engl. J. Med. 2004;350: 2549–2557.
    [76] V. Van Harmelen, S. Reynisdottir, P. Eriksson,et al. Leptin secretion from subcutaneous and visceral adipose tissue in women, Diabetes 1998;47:913–917.
    [77] C.T. Montague, J.B. Prins, L. Sanders, et al.Depot-related gene expression in human subcutaneous and omental adipocytes, Diabetes 1998;47:1384–1391.
    [78] M.C. Alessi, F. Peiretti, P. Morange, M. Henry, et al.Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease, Diabetes 1997;46: 860–867.
    [79] S.K. Fried, D.A. Bunkin, A.S. Greenberg, Omental and subcutaneous adipose tissue of obese sunjects release interleukin 6: depot difference and regulation by glucocorticoid, J. Clin. Endocrinol. Metab.1998; 83847–850.
    [80] A. Fukuhara, M. Matsuda, M. Nishizawa, K. Segawa,et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin, Science 2005;307:426–430.
    [81] J. S. Kralisch, P. Kovacs, M. Fasshauer, et al.Plasma visfatin concentrations and fat depot specific mRNA expression in humans, Diabetes2005; 54:2911–2916.
    [82] K. Hida, J. Wada, J. Eguchi, H. Zhang, et al.Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity, Proc. Natl. Acad. Sci. USA 2005;102:10610–10615.
    [83] S. Fujioka, Y. Matsuzawa, K. Tokunaga, S. Tarui, Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity,Metabolism1987;36: 54–59.
    [84] Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellituss, Diabetes Care 2000;23: (Suppl. 1) S4–S19.
    [85] R.A. DeFronzo, J.D. Tobin, R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance, Am. J. Physiol.1979;.237: E214–E223.
    [86] R. Unger, F. Rassoul, V. Richter, R. Paschke, Relation between glycaemic control, hyperinsulinaemia, and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or type II diabetes, Diabetologia 2002; 45:210–216.
    [87] J. Laborda, 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO.Nucleic Acids Res. 1991;19: 3998.
    [88] K. Kawano, T. Hirashima, S. Mori, Y. Saitoh, et al.Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long–Evans Tokushima Fatty (OLETF)strain, Diabetes 1992;41:1422–1428.
    [1] Zhang Y, Proenca R, Maffei M,et al.Positional cloning of the mouse obese gene and its human homologue.Nature 1994;372(6505):425–32.
    [2] Otero M, Lago R, Lago FJJ, et al. Leptin, from fat to inflammation: old questions and new insights. FEBS Lett 2005;579(2):295–301.
    [3] Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004;92(3):347–55.
    [4] Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005;33(Pt 5):1078–81.
    [5] Lau DC, Dhillon B, Yan H, et al.Adipokines:molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol 2005;288(5):H2031–4.
    [6] Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259(5091): 87–91.
    [7] Trayhurn P, Bing C, Wood IS. Adipose tissue and adipokines—energy regulation from the human perspective. J Nutr 2006;136(7):1935S–9.
    [8] Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting.Nature 1996;382:250–2.
    [9] Chan JL, Heist K, DePaoli AM,et al. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 2003;111:1409–21.
    [10] Zakrzewska KE, Cusin I, Sainsbury A, et al.Glucocorticoids as counterregulatory hormones of leptin:toward an understanding of leptin resistance. Diabetes 1997;46: 717–9.
    [11] Boden G, Chen X, Kolaczynski JW, Polansky M. Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects. J Clin Inv 1997;100:1107–13.
    [12] Sarraf P, Frederich RC, Turner EM, Ma G, Jaskowiak NT, Rivet 3rd DJ, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med1997;185:171–5.
    [13] Gualillo O, Eiras S, Lago F, Dieguez C, Casanueva FF. Elevated serum leptin concentrations induced by experimental acute inflammation. Life Sci 2000;67:2433–41.
    [14] Blum WF, Englaro P, Hanitsch S, et al. Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. Clin Endocrinol Metab 1997;82:2904–10.
    [15] Otero M, Lago R, Gomez R, et al. Towards a pro-inflammatory and immunomodulatoryemerging role of leptin. Rheumatology (Oxford) 2006;45(8): 944–50.
    [16] Fruhbeck G. Intracellular signalling pathways activated by leptin.Biochem J 2006;393:7–20.
    [17] Bates SH, Stearns WH, Dundon TA, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003;421(6925):856–9.
    [18] Gualillo O, Eiras S, White DW, et al. Leptin promotes the tyrosine phosphorylation of SHC proteins and SHC association with GRB2. Mol Cell Endocrinol 2002;190:83–9.
    [19] Prodi F, Obici S. The brain as a molecular target for diabetic therapy. Endocrinology 2006;147(6):2664–9.
    [20] Bjorbaek C, Elmquist JK, Frantz JD, Flier JS. The role of SOCS3 in leptin signalling and leptin resistance. J Biol Chem 1999;274:30059–65.
    [21] Kimura M, Tanaka S, Isoda F,et al lymphopenia in obese diabetic (db/db) mice is non-selective and thymus independent. Life Sci 1998;62:1243–50.
    [22] Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006;6:772–83.
    [23] Matarese G, Moschos S, Mantzoros CS. Leptin in immunology. J Immunol 2005;174:3137–42.
    [24] Zarkesh-Esfahani H, Pockley G, Metcalfe RA, Bidlingmaier M,Wu Z, Ajami A, et al. High-dose leptin activates human leukocytes via receptor expression on monocytes. J Immunol 2001;167:4593–9.
    [25] Mancuso P, Canetti C, Gottschalk A,et al. Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2(cPLA2gamma) protein expression. Am J Physiol Lung Cell Mol Physiol 2004;287:497–502.
    [26] Raso GM, Pacilio M, Esposito E,et al..Leptin potentiates IFN-gamma-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A. 1. Br J Pharmacol 2002;137:799–804.
    [27] Caldefie-Chezet F, Poulin A, Tridon A,et al. Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action? J Leukoc Biol 2001;69: 414–8.
    [28] Caldefie-Chezet F, Poulin A, Vasson MP. Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radic Res 2003;37:809–14.
    [29] Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 2002;298:297–302.
    [30] Lam QLK, Liu S, Cao X, Lu L. Involvement of leptin signaling in the survival andmaturation of bone marrow-derived dendritic cells. Eur J Immunol 2006;36(12):3118–30.
    [31] Farooqi IS, Matarese G, Lord GM,et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002;110:1093–103.
    [32] Lord GM, Matarese G, Howard JK, et al.Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998;394: 897–901.
    [33] Howard JK, Lord GM, Matarese G, et al. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest1999;104: 1051–9.
    [34] Ruter J, Hoffmann T, Demuth HU,et al. Evidence for an interaction between leptin, T cell costimulatory antigens CD28, CTLA-4 and CD26 (dipeptidyl peptidase IV) in BCG-induced immune responses of leptin- and leptin receptor-deficient mice. Biol Chem 2004;385:537–41.
    [35] Sanna V, Di Giacomo A, La Cava A, et al. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest 2003;111:241–50.
    [36] Faggioni R, Feingold KR, Grunfeld C. Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 2001;14: 2565–71.
    [37] Faggioni R, Fantuzzi G, Gabay C, et al. Leptin deficiency enhances sensitivity to endotoxininduced lethality. Am J Physiol 1999;276:136–42.
    [38] Williams L, Bradley L, Smith A, Foxwell B. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol 2004;172:567–76.
    [39] Busso N, So A, Chobaz-Peclat V, et al. Leptin signaling deficiency impairs humoral and cellular immune responses and attenuates experimental arthritis. J Immunol 2002;168: 875–82.
    [40] Siegmund B, Sennello JA, Jones-Carson J, et al. Leptin receptor expression on T lymphocytes modulates chronic intestinal inflammation in mice. Gut 2004;53:965–72.
    [41] Barbier M, Cherbut C, Aube AC, et al. Elevated plasma leptin concentrations in early stages of experimental intestinal inflammation in rats. Gut 1998;43: 783–90.
    [42] Tuzun A, Uygun A, Yesilova Z, et al. Leptin levels in the acute stage of ulcerative colitis. J Gastroenterol Hepatol 2004;19:429–32.
    [43] Matarese G, Carrieri PB, La Cava A, et al. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc Natl Acad Sci 2005;102:5150–5.
    [44] Matarese G, Di Giacomo A, Sanna V, et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol 2001;166:5909–16.
    [45] Fantuzzi G, Sennello JA, Batra A, et al. Defining the role of T cell-derived leptin in the modulation of hepatic or intestinal inflammation in mice. Clin Exp Immunol 2005; 142:31–8.
    [46] Matarese G, Sanna V, Lechler RI, et al. Leptin accelerates autoimmune diabetes in female NOD mice. Diabetes 2002;51:1356–61.
    [47] Palmer G, Aurrand-Lions M, Contassot E, et al. Indirect effects of leptin receptor deficiency on lymphocyte populations and immune response in db/db mice. J Immunol 2006;177(5):2899–907.
    [48] Canavan B, Salem RO, Schurgin S, et al. Effects of physiological leptin administration on markers of inflammation, platelet activation, and platelet aggregation duringcaloric deprivation. J Clin Endocrinol Metab 2005;90:5779–85.
    [49] Sennello JA, Fayad R, Morris AM, et al. Regulation of T cell-mediated hepatic inflammation by adiponectin and leptin. Endocrinology 2005;146:2157–64.
    [50] Fraser DA, Thoen J, Reseland JE,Decreased CD4+ lymphocyte activation and increased interleukin-4 production in peripheral blood of rheumatoid arthritis patients after acute starvation. Clin Rheumatol 1999;18:394–401.
    [51] Otero M, Lago R, Gomez R, et al. Changes in fat-derived hormones plasma concentrations: adiponectin, leptin, resistin and visfatin in rheumatoid arthritis subjects. Ann Rheum Dis 2006;65(9):1198–201.
    [52] Bokarewa M, Bokarew D, Hultgren O, Tarkowski A. Leptin consumption in the inflamed joints of patients with rheumatoid arthritis.Ann Rheum Dis 2003;62:952–6.
    [53] Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum 2000;43:1916–26.
    [54] Goldring MB, Berenbaum F. The regulation of chondrocyte function by pro- inflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res 2004; 427:37–46.
    [55] Dumond H, Presle N, Terlain B, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 2003;48:3118–29.
    [56] Teichtahl AJ, Wluka AE, Proietto J, Cicuttini FM. Obesity and the female sex, risk factors for knee osteoarthritis that may be attributable to systemic or local leptin biosynthesis and its cellular effects. Med Hypotheses 2005;65:312–5.
    [57] Otero M, Gomez Reino JJ, Gualillo O. Synergistic induction of nitric oxide synthase type II: in vitro effect of leptin and interferon-gamma in human chondrocytes and ATDC5chondrogenic cells. Arthritis Rheum 2003;48:404–9.
    [58] Otero M, Lago R, Lago F,et al. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res Ther 2005;7:581–91.
    [59] Kadowaki T, Yamauchi T, Kubota N, et al.Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006;116(7): 1784–92.
    [60] Ronti T, Lupattelli G, Mannarino E. The endocrine role of adipose tissue: an update. Clin Endocrinol 2006;64:355–65.
    [61] Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005;96(9):939–49.
    [62] Whitehead JP, Richards AA, Hickman IJ, et al.Adiponectin a key adipokine in the metabolic syndrome. Diab Obes Metab 2006;8:264–80.
    [63] Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26:439–51.
    [64] Tan KC, Xu C, Chow WS, et al. Hypoadiponectinemia is associated with impaired endotheliumdependent vasodilation. J Clin Endocrinol Metab 2004;89:760–5.
    [65] Fasshuer M, Kralish S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by IL-6 in 3T3-L1 adipocytes. Biochem Biophys Res Comm 2003;301:1045–50.
    [66] Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue derived cytokines:in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 2003;285:E527–33.
    [67] Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, et al. Adiponectin modulates inflammatory reactions via calreticulin receptor–dependent clearance of early apoptotic bodies. J Clin Invest 2007, 25 January.
    [68] Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001;50(9):2094–9.
    [69] Funahashi T, Nakamura T, Shimomura I, et al. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999;38(2): 202–6.
    [70] Pischon T, Girman CJ, Hotamisligil GS, et al.Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004;291(14):1730–7.
    [71] Ehling A, Schaffler A, Herfarth H, et al. The potential of adiponectin in driving arthritis. J Immunol 2006;176(7):4468S–78S.
    [72] Schaffler A, Ehling A, Neumann E, et al. Adipocytokines in synovial fluid. JAMA 2003;290:1709–10.
    [73] Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005;115(5):911–9.
    [74] Xu A, Wang Y, Keshaw H,et al. The fatderived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003;112(1):91–100.
    [75] Kamada Y, Tamura S, Kiso S, et al.Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003;125(6):1796–807.
    [76] Masaki T, Chiba S, Tatsukawa H, et al. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004;40(1): 177–84.
    [77] Housa D, Housova J, Vernerova Z, Haluzik M. Adipocytokines and cancer. Physiol Res 2006;55(3):233–44.
    [78] Kato H, Kashiwagi H, Shiraga M,et al. Adiponectin acts as an endogenous antithrombotic factor. Arterioscler Thromb Vasc Biol 2006;26(1):224–30.
    [79] Holcomb IN, Kabakoff RC, Chan B, et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J 2000;19(15):4046–55.
    [80] Rajala MW, Obici S, Scherer PE, Rossetti L. Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. J Clin Invest 2003; 111(2):225–30.
    [81] Gerstmayer B, Kusters D, Gebel S, et al. Identification of RELM gamma, a novel resistin-like molecule with a distinct expression pattern. Genomics 2003;81(6): 588–95.
    [82] Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin– the classical. Resistin– the controversical, adiponectin– the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005;19: 525–46.
    [83] Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001;409(6818):307–12.
    [84] Pang S, Le Y. Role of Resistin in inflammation and inflammation related diseases. Cell Mol Immunol 2006;3(1):29–34.
    [85] Bokarewa M, Nagaev I, Dahlberg L,et al. Resistin an adipokine with potent pro-inflammatory properties. J Immunol 2005;174(9):5789–95.
    [86] Lehrke M, Reilly MP, Millington SC,et al. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med 2004;1(2):e45.
    [87] Harsch IA, Koebnick C, Wallaschofski H, et al. Resistin levels in patients withobstructive sleep apnoea syndrome—the link to subclinical inflammation? Med Sci Monit 2004;10(9):CR510–5.
    [88] Reilly MP, Lehrke M, Wolfe ML, et al.Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005;111(7):932–9.
    [89] Verma S, Li SH, Wang CH, et al. Resistin promotes endothelial cell activation: further evidence ofadipokine-endothelial interaction. Circulation 2003;108(6): 736–40.
    [90] Kawanami D, Maemura K, Takeda N, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 2004;314(2):415–9.
    [91] Burnett MS, Lee CW, Kinnaird TD, et al. The potential role of resistin in atherogenesis. Atherosclerosis 2005;182(2):241–8.
    [92] Senolt L, Housa D, Vernerova Z, et al. Resistin is abundantly present in rheumatoid arthritis synovial tissue, synovial fluid, and elevated serum resistin reflects disease activity. Ann Rheum Dis 2007;66(4):458–63.
    [93] Schaffler A, Ehling A, Neumann E, et al. Adipocytokines in synovial fluid. JAMA 2003;290(13):1709–10.
    [94] Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005;307(5708):426–30.
    [95] Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 2004;113(9): 1318–27.
    [96] Moschen AR, Kaser A, Enrich B, et al. Visfatin an adipocytokine with pro-inflammatory and immunomodulating properties. J Immunol 2007;178(3):1748–58.
    [97] Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol 2007;27:996–1003.
    [98] Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006;64:355–65.
    [99] Karaduman M, Oktenli C, Musabak U, et al. Leptin, soluble interleukin-6 receptor, C-reactive protein and soluble vascular cell adhesion molecule-1 levels in human coronary atherosclerotic plaque. Clin Exp Immunol 2006;143: 452–7.
    [100] Karaduman M, Sengul A, Oktenli C, et al. Tissue levels of adiponectin, tumour necrosis factor-alpha, soluble intercellular adhesion molecule-1 and heart-type fatty acid-binding protein in human coronary atherosclerotic plaques. Clin Endocrinol 2006;64:196–202.
    [101] Redgrave JN, Lovett JK, Gallagher PJ, Rothwell PM. Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms:the Oxford plaque study. Circulation 2006;113:2320–8.
    [102] Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 2005;102:10610–5.
    [103] Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006;339:430–6.
    [104] Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 2008;57:372–7.
    [105] Handa N, Matsumoto M, Maeda H, et al. Ultrasonic evaluation of early carotid atherosclerosis. Stroke 1990;21:1567–72.
    [106] U-King-Im JM, Graves MJ, Cross JJ, et al. Internal carotid artery stenosis: accuracy of subjective visual impression for evaluation with digital subtraction angiography and contrast-enhanced MR angiography. Radiology 2007;244: 213–22.
    [107] Bjorntorp P. Metabolic implication of body fat distribution. Diabetes Care 1991;14:1132–43.
    [108] Frayn KN. Visceral fat and insulin resistance-causative or correlative? Br J Nutr 2000;83(Suppl. 1):71–7.
    [109] Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.
    [110] Ohashi N, Yamamoto H, Horiguchi J, et al. Visceral fat accumulation as a predictor of coronary artery calcium as assessed by multislice computed tomography in Japanese patients. Atherosclerosis 2008. Apr 24.
    [111] Kawamoto R, Ohtsuka N, Ninomiya D, Nakamura S. Association of obesity and visceral fat distribution with intima-media thickness of carotid arteries in middle-aged and older persons. Intern Med 2008;47:143–9.
    [112] Kawano K, Hirashima T, Mori S, et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992;41:1422–8.
    [113] Schofer K, Halle M, Goeschen C, et al. Leptin promotes vascular remodeling and neointimal growth in mice. Arterioscler Thromb Vasc Biol 2004;24:112–7.
    [114] Bodary PF, Gu S, Shen Y, et al. Recombinant leptin promotes atherosclerosis and thrombosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2005;25:119–22.
    [115] Norata GD, Raselli S, Grigore L, et al. Leptin:adiponectin ratio is an independentpredictor of intimamedia thickness of the common carotid artery. Stroke 2007;38:2844–6.
    [116] Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995;1:1155–61.
    [117] Jander S, Sitzer M, Schumann R, et al. Inflammation in high-grade carotid stenosis: a possible role formacrophages and T cells in plaque destabilization. Stroke 1998;29: 1625–30.
    [118] Lehtonen-Smeds EM, Mayranpaa M, Lindsberg PJ, et al. Carotid plaque mast cells associate with atherogenic serum lipids, high grade carotid stenosis and symptomatic carotid artery disease. Results from the Helsinki carotid endarterectomy study. Cerebrovasc Dis 2005;19:291–301.
    [119] Cipollone F, Mezzetti A, Fazia ML, et al. Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler Thromb Vasc Biol 2005;25: 1665–70.
    [120] Hida K,Wada J, Eguchi J, Zhang H, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulinsensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 2005;102:10610–5.
    [121] Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun 2006;339(1):430–6.
    [122] Braunwald E: Shattuck lecture. Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med1997; 337:1360–69,
    [123] Berg AH, Scherer PE: Adipose Tissue, Inflammation, and Cardiovascular Disease. Circulation Research 96:939-49, 2005.
    [124] Berndt J, Kloting N, Kralisch S, et al. Plasma visfatin concentrations and fat-specific mRNA expression in humans. Diabetes 2005; 54:2911–16.
    [125] Tan BK, Chen J, Digby JE, et al.Increased visfatin messenger ribonucleic acid and protein levels in adipose tissue and adipocytes in women with polycystic ovary syndrome: parallel increase in plasma visfatin. J Clin Endocrinol Metab 2006; 91:5022-8.
    [126] Chen MP, Chung FM, Chang DM, et al.Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2006; 91:295–9.
    [127] Dahl TB, Yndestad A, Skjelland M, et al.Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammationand plaque destabilization. Circulation 2007;115:972-80.
    [128] Adya R, Chen J, Tan BK, Randeva HS: Visfatin increases vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP-2,-9), inducing angiogenesis in human umbilical vein endothelial cells (HUVEC): involovement of PI3Kinase, p38 and ERK1/2 pathways. 89th Annual Meeting, American Endocrine Society, Toronto P1-2, 2007
    [129] De Winther MP, Kanters E, Kraal G, Hofker MH: Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25:904-14,
    [130] B. Chandrasekar, S. Mummidi, L. Mahimainathan, et al.W.C. Greene and A.J. Valente: Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin, J Biol Chem 2006 281:15099–109.
    [131] Spranger J, Kroke A, Mohlig M, et al.Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.Diabetes 2003; 52:812–17,
    [132] Collins T, Read MA, Neish AS, et al.Transcriptional regulation of endothelial cell adhesion molecules:NF-kB and cytokine-inducible enhancers FASEB J 1995; 9:899-909,
    [133] Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocytesecreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7:947-53.
    [134] Yamauchi T, Kamon J, Waki H et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-6.
    [135] Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem (Tokyo) 1996;120:803-12.
    [136] Pajvani UB, Du X, Combs TP et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin: implications for metabolic regulation and bioactivity. J Biol Chem 2003;278:9073-85.
    [137] Tsao TS, Tomas E, Murrey HE et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity: different oligomers activate different signal transduction pathways. J Biol Chem 2003;278: 50810-17.
    [138] Waki H, Yamauchi T, Kamon J et al. Impaired multimerization of human adiponectin mutants associated with diabetes: molecular structure and multimer formation of adiponectin. J Biol Chem 2003;278:40352–63.
    [139] Fruebis J, Tsao TS, Javorschi S et al. Proteolytic cleavage product of 30-kDa adipocytecomplement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001;98:2005-10.
    [140] Waki H, Yamauchi T, Kamon J et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 2005;146: 790-6.
    [141] Pajvani UB, Hawkins M, Combs TP et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedionemediated improvement in insulin sensitivity. J Biol Chem 2004;279:12152-62.
    [142] Tonelli J, Li W, Kishore P et al. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes 2004;53:1621-9.
    [143] Hattori Y, Hattori S, Kasai K. Globular adiponectin activates nuclear factor-{kappa}B in vascular endothelial cells, which in turn inducesexpression of proinflammatory and adhesion molecule genes. Diabetes Care 2006;29: 139-41.
    [144] Hattori Y, Hattori S, Akimoto K et al. Globular adiponectin activates nuclear factor-{kappa}B and activating protein-1 and enhances angiotensin II-induced proliferation in cardiac fibroblasts. Diabetes 2007;56:804-08.
    [145] Scherer PE. Adipose tissue: lipid storage compartment to endocrine organ. Diabetes 2006;55:1537-45.
    [146] Hattori Y, Suzuki M, Hattori S, Kasai K. Vascular smooth muscle cell activation by glycated albumin (Amadori adducts). Hypertension 2002;39:22-8.
    [147] Pierce JW, Schoenleber R, Jesmok G. Novel inhibitors of cytokineinduced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 1997;272: 21096-103.
    [148] Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs, 2008 Mar,17(3):327-333
    [149] Zvonic S, Lefevre M, Kilroy G,et al. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics, 2007 Jan,6(1):18-28
    [150] Fain JN, Buehrer B, Bahouth SW, et al.Comparison of messenger RNA distribution for 60 proteins in fat cells vs the nonfat cells of human omental adipose tissue.Metabolism, 2008 Jul,57(7):1005-1015
    [151] Youn BS, Kl?ting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes ,2008, 57: 372– 377
    [152] Youn BS, Kl?ting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes.Diabetes, 2008 Feb,57(2):372-377
    [153] Moller DE. Potential role of TNF-αin the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab, 2000, 11: 212–217
    [154] Muise ES, Azzolina B, Kuo DW,et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol,2008 Aug;74(2):403-412
    [155] Hida K, Wada J, Eguchi J, et al.Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity.Proc Natl Acad Sci U S A. 2005 Jul 26,102(30):10610-10615
    [156] Zvonic S, Lefevre M, Kilroy G, et al. Secretome of primary cultures of human adipose-derived stem cells. Mol Cell Proteomics, 2007, 6: 18– 28
    [157] Lago F, Dieguez C, Gómez-Reino J, et al. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev, 2007,18: 313– 325
    [158] Zulet MA, Puchau B, Navarro C, et al.Inflammatory biomarkers: the link between obesity and associated pathologies.Nutr Hosp,2007 Sep-Oct,22(5): 511-527
    [159] Lago F, Dieguez C, Gómez-Reino J, et al.The emerging role of adipokines as mediators of inflammation and immune responses.Cytokine Growth Factor Rev, 2007 Jun-Aug,18(3-4):313-325
    [160] Aust G, Richter O, Rohm S,et al.Vaspin serum concentrations in patients with carotid stenosis.Atherosclerosis, 2008 Sep 2. [Epub ahead of print]PMID: 18848328
    [161] Gulcelik NE, Karakaya J, Gedik A, et al. Serum vaspin levels in type 2 diabetic women in relation to microvascular complications. Eur J Endocrinol,2009 Jan,160(1):65-70
    [162] Seeger J, Ziegelmeier M, Bachmann A, et al.Serum levels of the adipokine vaspin in relation to metabolic and renal parameters.J Clin Endocrinol Metab,2008 Jan,93(1): 247-251
    [163] Seeger J, Ziegelmeier M, Bachmann A, et al.Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab, 2008,93: 247– 251
    [164] Campos DB, Palin MF, Bordignon V,et al.The 'beneficial' adipokines in reproduction and fertility. Int J Obes (Lond), 2008 Feb,32(2):223-231
    [165] Sale MM, Rich SS.Genetic contributions to type 2 diabetes: recent insights. Expert Rev Mol Diagn, 2007 Mar,7(2):207-217
    [166] Nishizawa H, Shimomura I, Kishida K, et al.Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.Diabetes, 2002, 51: 2734– 2741.
    [167] Tan BK, Heutling D, Chen J, et al. Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement ininsulin sensitivity and a decrease in insulin resistance.Diabetes, 2008 Jun,57(6):1501-1507
    [168] Kempf K, Rose B, Illig T, et al.Vaspin (SERPINA12) Genotypes and Risk of Type 2 Diabetes: Results from the MONICA/KORA studies.Exp Clin Endocrinol Diabetes,2008 Aug 25. [Epub ahead of print]PMID: 18726871
    [169] Guillemin I, Bouchier C, Garrigues T, et al.Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, V. aspis zinnikeri and Vipera berus berus venom. Identification of the origin of a new viper population based on ammodytin I1 heterogeneity.Eur J Biochem, 2003 Jul,270(13):2697-2706
    [170] Wickremasinshe MI,Thomas LH,Ffiedland JS.Pulmonary epithelial cells ale a~urce of IL-8 in the response to Mycobacteriumtuberculosis:essential role of IL-1 from infected monocytes in a NF-KBdependent network.J Immunol,1999,163:3936-3947
    [171] Fairchild KD,SinshIS,Patel S,et a1.Hypothermia prolongs activation of NF-KB and augments generation of inflammatory cytokines.Am J Physiol Cel Physiol,2004,287: C422-C431
    [172] Saatian B,Zhao Y,He D,et a1.Transcriptional regulation of lysophosphatidic acid induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial ceils.Biochem J,2005,393:657-668
    [1] Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med, 1989, 149: 1514– 1520
    [2] Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med ,1993; 44: 121– 131.
    [3] Van Harmelen V, Reynisdottir S, Eriksson P, et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes, 1998,47: 913– 917
    [4] Rabe K, Lehrke M, Parhofer KG, et al. Adipokines and insulin resistance. Mol Med, 2008 Nov-Dec,14(11-12):741-751
    [5] Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab, 2002, 13: 84– 89
    [6] Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature, 2001, 409: 307– 312
    [7] Hida K, Wada J, Eguchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA, 2005, 102: 10610– 10615
    [8] Kawano K, Hirashima T, Mori S, et al.Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes, 1992, 41: 1422– 1428
    [9] Li Q, Chen R, Moriya J, et al. A novel adipocytokine, visceral adipose tissue-derived serine protease inhibitor (vaspin), and obesity. J Int Med Res,2008Jul-Aug,36(4):625-629
    [10] Silverman GA, Bird PI, Carrell RW, et al. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition,novel functions, and a revised nomenclature. J Biol Chem 2001, 276: 33293– 33296
    [11] Gettins PG. Serpin structure, mechanism, and function. Chem Rev, 2002, 102: 4751– 4804
    [12] Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs, 2008 Mar,17(3):327-333
    [13] Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell, 2004,116: 337– 350
    [14] Zvonic S, Lefevre M, Kilroy G,et al. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics, 2007 Jan,6(1):18-28
    [15] Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes.Biochem Biophys Res Commun, 2006 Jan 6,339(1):430-436
    [16] Kloting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun, 2006, 339: 430– 436
    [17] Fain JN, Buehrer B, Bahouth SW, et al.Comparison of messenger RNA distribution for 60 proteins in fat cells vs the nonfat cells of human omental adipose tissue.Metabolism, 2008 Jul,57(7):1005-1015
    [18] Horn R, Geldszus R, Potter E, et al.Radioimmunoassay for the detection of leptin in human serum. Exp Clin Endocrinol Diabetes ,1996,104: 454– 458
    [19] Ma Z, Gingerich RL, Santiago JV, et al. Radioimmunoassay of leptin in human plasma.Clin Chem, 1996, 42: 942– 946
    [20] Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes ,2008, 57: 372– 377
    [21] Youn BS, Kloting N, Kratzsch J, et al. Serum vaspin concentrations in human obesity and type 2 diabetes.Diabetes, 2008 Feb,57(2):372-377
    [22] Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissue of obese subjects release interleukin 6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab, 1998, 83: 847– 850
    [23] Febbraio MA, Steensberg A, Starkie RL, et al.Skeletal muscle interleukin-6 and tumor necrosis factor-αrelease in healthy subjects and patients with type 2 diabetes at rest and during exercise. Metabolism, 2003, 52: 939– 944.
    [24] Ahima RS, Osei SY. Adipokines in obesity. Front Horm Res,2008,36:182-197
    [25] Moller DE. Potential role of TNF-αin the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab, 2000, 11: 212–217
    [26] Muise ES, Azzolina B, Kuo DW,et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol,2008 Aug;74(2):403-412
    [27] Gettins PG. Serpin structure, mechanism, and function. Chem Rev, 2002, 102: 4751– 4804
    [28] Hida K, Wada J, Eguchi J, et al.Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity.Proc Natl Acad Sci U S A. 2005 Jul 26,102(30):10610-10615
    [29] Zvonic S, Lefevre M, Kilroy G, et al. Secretome of primary cultures of human adipose-derived stem cells. Mol Cell Proteomics, 2007, 6: 18– 28
    [30] Lago F, Dieguez C, Gómez-Reino J, et al. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev, 2007,18: 313– 325
    [31] Zulet MA, Puchau B, Navarro C, et al.Inflammatory biomarkers: the link between obesity and associated pathologies.Nutr Hosp,2007 Sep-Oct,22(5):511-527
    [32] Alessi MC, Peiretti F, Morange P, et al.Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes ,1997,46: 860– 867
    [33] Lago F, Dieguez C, Gómez-Reino J, et al.The emerging role of adipokines as mediators of inflammation and immune responses.Cytokine Growth Factor Rev, 2007 Jun-Aug,18(3-4) 313-325
    [34] Aust G, Richter O, Rohm S,et al.Vaspin serum concentrations in patients with carotid stenosis.Atherosclerosis, 2008 Sep 2. [Epub ahead of print]PMID: 18848328
    [35] Gulcelik NE, Karakaya J, Gedik A, et al. Serum vaspin levels in type 2 diabetic women in relation to microvascular complications. Eur J Endocrinol,2009 Jan,160(1):65-70
    [36] Seeger J, Ziegelmeier M, Bachmann A, et al.Serum levels of the adipokine vaspin in relation to metabolic and renal parameters.J Clin Endocrinol Metab,2008 Jan,93(1): 247-251
    [37] Seeger J, Ziegelmeier M, Bachmann A, et al.Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab, 2008,93: 247– 251
    [38] Campos DB, Palin MF, Bordignon V,et al.The 'beneficial' adipokines in reproduction and fertility. Int J Obes (Lond), 2008 Feb,32(2):223-231
    [39] Ibá?ez L, López-Bermejo A, Díaz M, et al.Low-dose pioglitazone and low-dose flutamide added to metformin and estro-progestagens for hyperinsulinemic women with androgen excess: add-on benefits disclosed by a randomized double-placebo study over 24 months.Clin Endocrinol (Oxf). 2008 Nov 5. [Epub ahead of print]PMID: 19018783
    [40] Nishizawa H, Shimomura I, Kishida K, et al.Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.Diabetes, 2002, 51: 2734– 2741.
    [41] Tan BK, Heutling D, Chen J, et al. Metformin decreases the adipokine vaspin in overweight women with polycystic ovary syndrome concomitant with improvement in insulin sensitivity and a decrease in insulin resistance.Diabetes, 2008 Jun,57(6):1501-1507
    [42] Kempf K, Rose B, Illig T, et al.Vaspin (SERPINA12) Genotypes and Risk of Type 2 Diabetes: Results from the MONICA/KORA studies.Exp Clin Endocrinol Diabetes,2008 Aug 25. [Epub ahead of print]PMID: 18726871
    [43] Guillemin I, Bouchier C, Garrigues T, et al.Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, V. aspis zinnikeri and Vipera berus berus venom. Identification of the origin of a new viper population based on ammodytin I1 heterogeneity.Eur J Biochem, 2003 Jul,270(13):2697-2706
    [44] 4Sale MM, Rich SS.Genetic contributions to type 2 diabetes: recent insights.Expert Rev Mol Diagn, 2007 Mar,7(2):207-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700