基于家系和单体型的TIM-1及TIM-3基因多态性与变应性哮喘的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变应性哮喘是一种与免疫相关的复杂疾病,受遗传和环境等多种因素的共同影响而发病。个体的遗传因素在哮喘发病中起着十分重要的作用。应用全基因组扫描或定位克隆技术已发现多个染色体区域与哮喘连锁。其中以5q31-33区最受研究者的关注,因为该区域包含众多细胞因子的基因以及一些与免疫相关的基因,且在多个人群的关联研究中重复表现与哮喘高度的连锁。
     越来越多的研究表明T_H1/T_H2细胞及其分泌的细胞因子的失衡与哮喘的发病相关。最近研究显示表达在T细胞表面的Tims基因家族蛋白在调节T_H1和T_H2细胞介导的免疫应答中起重要的作用。在人类,Tim-1和Tim-3是Tims基因家族重要的两个成员,它们均位于与哮喘高度连锁的染色体5q31-33区域。Tim-1主要表达在T_H2细胞表面,调节T_H2细胞的免疫应答。而Tim-3主要表达在T_H1细胞表面,对T_H1细胞起负性免疫调节作用。基于Tim-1和Tim-3在T_H1/T_H2免疫调节中重要的功能,Tim-1和Tim-3基因已成为哮喘重要的易感候选基因。针对Tim-1和死Tim-3多态性与哮喘的关联研究虽已在多个人群中开展,但受多种因素的影响,这些研究的结果未能得到统一和重复。对Tim-1与Tim-3基因多态性与哮喘的关系,仍需进一步研究。
     本研究我们首先探讨了Tim-1与Tim-3基因的表达与变应性哮喘的关系,然后采用基于家系和单体型的关联研究方法,应用TDT和HRR检验来分析Tim-1和Tim-3基因的多态性及单体型与中国湖北地区变应性哮喘及相关表型的相关性。研究分为3个部分。
     第一部分Tim-1及Tim-3在变应性哮喘患者PBMC中的表达
     目的:探讨Tim-1和Tim-3 mRNA在变应性哮喘患者外周血单个核细胞的表达水平,为进一步阐明Tims基因与哮喘的关系奠定基础。
     方法:随机收集的尘螨过敏性哮喘患者,共计12例,哮喘诊断全部符合2003年中华医学会呼吸学分会哮喘学组制定的标准。同时选取性别和年龄匹配的健康体检者12例作为对照。实验分3组,分别为哮喘组,尘螨刺激组和正常对照组。Ficoll分离PBMC后,取24孔培养板,哮喘组和尘螨刺激组每孔分别加入10~6个病人分离的PBMC,正常对照组加入10~6个健康体检者的PBMC,对尘螨刺激组再加入终浓度为20μg/m1的尘螨抗原。然后置37℃5%CO_2培养箱中培养72 h,收集细胞,抽提总RNA。参照文献Tim-1、Tim-3引物序列,合成引物,采用实时荧光定量RT-PCR检测3组Tim-1和Tim-3的mRNA表达。
     结果:1.Tim-1 mRNA在尘螨过敏性哮喘患者外周血PBMC中相对表达值为0.27±0.09,显著高于健康对照组的0.13±0.03(P<0.05);患者PBMC在终浓度为20μg/m1的尘螨抗原刺激后,Tim-1表达明显升高,达0.59±0.22,与对照组和未刺激的哮喘组相比有显著差异(P<0.01);2.Tim-3 mRNA在哮喘患者外周血PBMC中相对表达值为0.39±0.09,明显高于健康对照组的0.18±0.06,差异有显著性(P<0.05),同样患者PBMC在尘螨抗原刺激后,Tim-3 mRNA的表达也出现明显的升高,达0.66±0.22,与对照组和未刺激组相比差异均有显著性(P<0.01);
     结论:Tim-1和Tim-3 mRNA在尘螨变应性哮喘患者中表达明显升高,Tim-1和Tim-3可能参与人类变应性哮喘的发生和发展。
     第二部分Tim-3基因多态性及其与变应性哮喘易感性的关系
     第一节Tim-3基因序列的测定及其多态性的确定
     目的:探讨湖北地区汉族人群Tim-3基因启动子区和编码区的多态性及其构成的单体型特征,为后续基于Tim-3基因多态性与相关疾病的关联研究奠定基础。
     方法:选取湖北地区30例正常汉族人和30例变应性哮喘患者作为研究对象。采用分段PCR扩增直接测序法检测这60名研究对象Tim-3基因的启动子区、全部的外显子区及部分内含子区的多态性变异。将测序结果与NCBI及HapMap数据库进行对比,确定湖北汉族人群Tim-3基因多态性的分布特征。采用Pearsonχ~2检验或Fisher's确切概率法比较各位点的基因型和等位基因的频率在哮喘组和正常人组的分布。采用Haploview软件对各位点进行LD分析、单体型的构建和tSNPs的筛选。
     结果:1.Tim-3基因区域共检出13个多态位点,其中有5个为新发现的位点。各位点基因型和等位基因频率在30例正常组和30例哮喘组中未见明显的统计学差异(P>0.05)。2.经与HapMap数据库比较,4个位点rs4704853、rs10515746、rs4704846、rs9313439等位基因的频率在湖北汉族人和北方汉族及日本人中的分布差异无统计学意义(P>0.05),而与欧洲人及非洲人的分布有明显的不同(P<0.01)。3.对7个频率大于5%的SNPs进行两两配对的LD分析显示其中6个位点之间呈现较强的连锁不平衡(D′和r~2均大于0.3)。单体型分析共发现有5种频率大于1%的常见单体型。4.在该单体型域中选出3个tSNPs:rs10053538、rs13170556和rs9313441用来代表该区域常见多态性变异。
     结论:湖北汉族人群Tim-3基因的SNPs分布有别于其他人种,基于这些SNPs构建的单体型和筛选出的tSNPs为研究湖北汉族人群Tim-3基因多态性与相关疾病的关系奠定了基础。
     第二节基于家系的Tim-3基因多态性与变应性哮喘的关联研究
     目的:探讨Tim-3基因的多态性及其单体型与湖北地区汉族人群变应性哮喘及相关表型的关系。
     方法:收集湖北地区118个完整的由一名患者及其双亲组成的变应性哮喘核心家系,共354名成员,均为汉族。应用PCR-RFLP方法,对118个核心家系Tim-3基因3个标签SNPs,rs10053538、rs13170556和rs9313441及1个启动子区的多态性rs10515746进行基因分型;采用基于单体型.标签SNP和家系资料的关联检验的方法(TDT,HRR,FBAT),分析Tim-3基因的多态性及其单体型与湖北地区汉族人群变应性哮喘及相关表型的关系。
     结果:1.Tim-3基因的4个SNPs单个位点TDT和HRR分析结果显示,Tim-3基因的这4个多态性与湖北汉族人变应性哮喘之间不存在连锁不平衡关系,P>0.05。2.应用TRANSMIT软件进行单体型的TDT分析结果显示,Tim-3基因的单体型与变应性哮喘有关联,Globalχ~2检验,χ~2=10.83,P=0.013。单个单体型TDT结果显示,父母传递给患病子女G-G-G单体型的观察值小于期望值,差异有显著性(χ~2=8.24,P=0.004)。单体型HRR分析显示G-G-G,具有较低的发病风险(HRR=0.49)。3.FBAT分析结果显示Tim-3基因的多态性及单体性与哮喘数量表型血清总IgE水平无关联。
     结论:Tim-3基因区域的多态性以单体型的形式影响哮喘的易感性,Tim-3基因本身或其附近的染色体区域内可能存在与变应性哮喘易感性相关的位点。单体型G-G-G可能作为用来对湖北汉族人群哮喘易感性进行预测为标志。
     第三部分基于家系的Tim-1基因多态性与变应性哮喘的关联研究
     目的:探讨Tim-1基因的多态性及其单体型与湖北地区汉族人群变应性哮喘及哮喘相关表型的关系。
     方法:收集湖北地区118个完整的由一名患者及其双亲组成的变应性哮喘核心家系,共354名成员,均为汉族。应用PCR—RFLP方法,对118个核心家系Tim-1基因3个标签SNPs(rs4704842、rs953569、rs2134230)和1个位于启动子区的多态位点-232 G>A以及1个位于外显子4区多态位点rs45623443进行基因分型;采用基于单体型.标签SNPs和家系资料的关联检验的方法(TDT,HRR;,FBAT),检测Tim-1基因的多态性及其单体型与湖北地区汉族人群变应性哮喘及哮喘相关表型的关系。
     结果:1.Tim-1基因的5个SNPs单个位点TDT和HRR分析结果显示均与哮喘无关联,P>0.05。2.单体型的TDT和HRR分析发现Tim-1基因区域的G-A-ins-C-G单体型与变应性哮喘有关联,P<0.05。该单体型由父母传递给患病子女的观察值高于期望值,是变应性哮喘发病的一个风险因素,HRR=1.91。3.FBAT分析结果显示Tim-1基因rs45623443多态性位点Ins等位基因与哮喘表型血清总IgE水平相关,P<0.05;4.Tim-1单体型的FBAT分析发现G-A-ins-C-G单体型与血清总IgE水平有关联,P<0.05。
     结论:Tim-1基因单体型影响湖北汉族变应性哮喘的易感性和血清IgE的水平。提示Tim-1基因内或其附近的基因区域可能存在与变应性哮喘和高IgE水平相关的疾病位点。Tim-1单体型G-A-ins-C-G可能用来对湖北汉族人群哮喘易感性和IgE水平进行预测的标志。
Allergic asthma is an immune- related complex disease caused by a combination ofgenetic and environmental factors.The individual genetic factors play an important role inthe development of asthma.By using genome-wide screens or positional cloningtechniques, several chromosomal regions have been found to have linkage with asthma.Among these regions, chromosome 5q31-33 has received the most attention, because itcontains a cluster of cytokines and other immune-related genes and has been repeatedlysuggested to be linked to asthma susceptibility in several populations.
     A growing body of evidence suggests that the imbalance of T_H1/T_H2 cells and theirsecretary cytokines is relatd with the development of asthma.It has been recently reportedthat the Tims gene family proteins are expressed on T cells and play an important role inregulating T_H1-and T_H2-cell-mediated immunity.In humans, Tim-1 and Tim-3 are the twoimportant members of Tim families.Both of them are located in the chromosome 5q31-33region.Tim-1 is expressed preferentially on T_H2 cells and involved in the development andregulation of T_H2-biased immune responses while Tim-3 is mainly expressed on T_H1 cellsand negatively regulate the T_H1 cell immune responses.In view of the important functionof Tim-1 and Tim-3 in T_H1/T_H2 immune regulation, Tim-1 and Tim-3 have become twogood candidate susceptibility genes for asthma.The association study based the Tim-1 andTim-3 polymorphisms with asthma have been conducted in several populations.However,the results are not unified and repeated because of many reasons.Therefore, therelationships of Tim-1 and Tim-3 polymorphisms and asthma need to be furtherinvestigated.
     In this study, we firstly investigated the expression of Tim-1 and Tim-3 mRNA inallergic asthma patients and thenby employing the TDT and HRR analysis, we conducted ahaplotype and family-based association study of Tim-1 and Tim-3 ploymorphisms in aChinese population from HuBei province with allergic asthma to examine the hypothesisthat polymorphisms in these two genes are associated with asthma.The total study may bedivided into the following three parts.
     PartⅠ.Expression of Tim-1 and Tim-3 mRNA in PBMC from allergicasthma patients
     AIM: To explore the expression of Tim-1 and Tim-3 mRNA in PBMC from allergicasthma patients, for luther clarifying the relationship between Tims genes and asthma.
     METHOD: A total of 12 patients with mite allergic asthma were collected in random.Asthma was diagnosed according to the criteria formulated by the Respiratory Branchasthma group of Chinese Medical Association in 2003.Another 12 gender and age-matchedhealthy people were selected as the controls.Experiments were divided into 3 groups forasthma, mite stimulation and control.PBMC were separatated by Ficoll separating medium,then taking a 24-hole plate, added 10~6 PBMC separatated from the patients to the hole ofthe asthma group and the mite stimulation group; Added 10~6 PBMC from the healthycontrol to the hole of the control group.Additionally, added a final concentration of 20μg/m1 dust mite antigen to the hole of the mite stimulation group.Place the plate in 37℃5% CO_2 incubator to foster for 72 h, then collected the cell and extracted the total RNA.According to the primers sequence from the references, synthesized the Tim-1 and Tim-3primers and then detected the expression of Tim-1 and Tim-3 mRNA by real-timequantitative RT-PCR.
     RESULT: 1.The relative expression of Tim-1 mRNA in the PBMC of patients with dustmite allergic asthma was 0.27±0.09, significantly higher than the healthy control group,0.13±0.03 (P<0.05); The Tim-1 expression was significantly higher for 0.59±0.22 afterthe PBMC from patients were Stimulated at a final concentration of dust mite antigen for 20μg/m1 for 72 hours.Compared with the control group and asthma group, there aresignificant difference (P<0.01); 2.The Tim-3 mRNA relative expression in the patientswas 0.39±0.09 which is obviously higher than the expression value 0.18±0.06 in thehealthy control (P<0.05).Coincidently, the Tim-3 expression levels also appearedsignificantly increased after stimulation of 20μg/m1 dust mite antigen for 72 hours,reached 0.66±0.22, Which compared with the control group and asthma group, there arealso significant difference (P<0.01);
     CONCLUSION: The expression Tim-1 and Tim-3 mRNA in the patients with dust miteallergic asthma was significantly increased.Tim-1 and Tim-3 may be involved in theoccurrence and development of human allergic asthma.
     PartⅡ.Tim-3 gene polymorphism and the relationship with thesusceptibility to allergic asthma
     SectionⅠ.Tim-3 sequence determination and identification of polymorphisms
     AIM: To explore Tim-3 gene promoter and coding region polymorphisms and haplotypecharcteristics in a Chinese Han population from Hubei province and lay a foundation forthe following association study based Tim-3 polymorphisms and some related diseases.
     METHOD: Randomly collected 30 cases of healthy people and 30 cases of allergicasthma patients from Hubei province as the research subjects.By using the PCRamplification and direct sequenceing technology, detected the polymorphisms in Tim-3promoter, all exons and parts of intron region from the 60 subjects.The sequencing resultswere compared with the HapMap and NCBI database to determinate the Tim-3ploymorphisms characteristic in Hubei Han population.The genotype and allele frequencyfor each locus were compared between the asthma group and control group by Pearsonχ~2test or Fisher's exact test.The LD analysis, haplotype construction and selection of tSNPswere conducted by the Haploview software.
     RESULT: 1.A total of 13 polymorphisms loci were detected in Tim-3 gene region and 5 ofthem were newly discovered.No statistically significant difference were found for thegenotype and allele frequency of each locus between the 30 cases of asthma patients and 30cases heathy people (P>0.05).2.By Comparing with HapMap database, the allelefrequency for rs4704853, rs10515746, rs4704846, rs9313439 between Hubei Hanpopulation and China North Han population and Japanese is not significantly different (P>0.05).However, there is significant difference for the 4 loci allele frequency between theHubei Han population and the Europeans or Africans (P<0.01).3.The LD analysis for 7SNPs with frequency greater than 5% showed that 6 of them has strong linkagedisequilibrium with D' and r~2 greater than 0.3.The haplotype analysis for the 6 SNPs found5 common haplotypes with frequency greater than 1% in this region.4.rs10053538,rs13170556 and rs9313441 were selected as tSNPs to represent the common variability inthe haplotype block region.
     CONCLUSION: The distribution of Tim-3 ploymorphisms in Hubei Han population isdifferent from other ethnics.The constructed haplotypes and selected tSNPs can be used forthe next association studies based Tim-3 ploymorphisms with related diseases in Hubei Hanpopulation.
     SectionⅡ.Family-based association study of Tim-3 polymorphisms and allergicasthma
     AIM: To investigate the relationship between Tim-3 polymorphisms and haplotypes andallergic asthma and asthma-related phenotype in Hubei Han population.
     METHOD: 118 complete trios of allergic asthma composed of a patients and theirbiological parents participated were collected from Hubei province, a total of 354 members.By using the PCR-RFLP technology, 3 tSNPs rs10053538, rs13170556 and rs9313441 anda promoter polymorphism rs10515746 were genotyped for the 118 trios; Thehaplotype-tSNPs-based method and family-based association test (TDT, HRR, FBAT) wereemployed to investigate the relationship between Tim-3 polymorphisms and haplotypes andallergic asthma and asthma-related phenotype in Hubei Han population.
     RESULT: 1.The 4 SNPs of Tim-3 gene single locus TDT and HRR analysis showed thatthere is no linkage disequilibrium between the 4 SNPs and the allergic asthma in Hubei Hanpopulation, P> 0.05.2.The haplotype TDT analysis by using TRANSMIT softwarerevealed that Tim-3 haplotypes are associated with allergic asthma, Globalχ~2 test,χ~2 =10.83, P=0.013.Single haplotype TDT results showed that G-G-G haplotype wasundertransmitted from parents to patients (χ~2=8.24, P=0.004).The haplotype HRRanalysis showed that G-G-G haplotype had a lower risk (HRR=0.49) and could be used asa protection factor for resistance to allergic asthma.3.FBAT analysis revealed that Tim-3polymorphisms and haplotypes were not associated with asthma phenotype of total serumIgE.
     CONCLUSION: Tim-3 gene polymorphisms could influence asthma susceptibility in theform of haplotypes, which means Tim-3 gene or the region nearby the Tim-3 may existsome SNPs locus associated with allergic asthma.As a logo the G-G-G Haplotype can beused for asthma susceptibility prediction in Hubei Han population.
     PartⅢ.Family-based association study of Tim-1 polymorphisms andallergic asthma
     AIM: To investigate the relationship between Tim-1 polymorphisms and haplotypes andallergic asthma and asthma-related phenotype in Hubei Han population.
     METHOD: 118 complete families of allergic asthma composed of a patients and theirbiological parents participated were collected from Hubei province, a total of 354 members.By using the PCR-RFLP technology, 3 tSNPs (rs4704842、rs953569、rs2134230) and apromoter polymorphism -232 G>A and a exon 4 polymorphism rs45623443 weregenotyped for the 118 trios; The haplotype-tSNPs-based method and family-basedassociation test (TDT,HRR, FBAT) were employed to investigate the relationship betweenTim-1 polymorphisms and haplotypes and allergic asthma and asthma-related phenotype inHubei Han population.
     RESULT: 1.The 5 SNPs of Tim-1 gene single locus TDT and HRR analysis showed thatthere is no association between the 5 SNPs and the allergic asthma in Hubei Han population,P> 0.05.2.The haplotype TDT and HRR analysis revealed that a haplotype G-A-ins-C-Gin Tim-1 gene region is associated with allergic asthma (P< 0.05).This haplotype wasovertransmitted from parents to asthma patients counld be as a risk factor for allergicasthma with a higher HRR=1.91.3.FBAT analysis revealed that the allele Ins of Tim-1rs45623443 polymorphisms was associated with asthma phenotype of total serum IgE, P<0.05.4.FBAT analysis of Tim-1 haplotypes showed that haplotype G-A-ins-C-G was alsoassociatied with total serum IgE level, P< 0.05.
     CONCLUSION: Tim-1 gene polymorphisms could influence asthma susceptibility in theform of haplotypes, which means Tim-3 gene or the region nearby the Tim-3 may existsome SNPs locus associated with allergic asthma and high serum total IgE level.As a logo,the G-A-ins-C-G haplotype can be used for asthma susceptibility and serum IgE levelprediction in Hubei Han population.
引文
1. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome [J]. Science, 2001, 291(5507):1304-51.
    2. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome [J]. Nature, 2001, 409(6822): 860-921.
    3. Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome J]. Nat Genet, 2001,29(2):229-32.
    4. Akey J, Jin L, Xiong M. Haplotypes vs single marker linkage disequilibrium tests: what do we gain? [J]. Eur J Hum Genet, 2001, 9(4):291-300.
    5. Zollner S, von Haeseler A. A coalescent approach to study linkage disequilibrium between single-nucleotide polymorphisms [J]. Am J Hum Genet, 2000, 66(2):615-28.
    6. Johnson GC, Esposito L, Barratt BJ, et al. Haplotype tagging for the identification of common disease genes [J]. Nat Genet, 2001,29(2): 233-7.
    7. Masoli M, Fabian D, Holt S, et al.The global burden of asthma: executive summary of the GINA Dissemination Committee report [J].Allergy, 2004,59(5):469-78.
    8. Beasley R. The burden of asthma with specific reference to the United States [J]. J Allergy Clin Immunol, 2002,109(5):S482-9.
    9. Cookson W. Genetics and genomics of asthma and allergic diseases [J]. Immunol Rev, 2002, 190(205):195-206.
    10. Los H, Koppelman GH, Postma DS. The importance of genetic influences in asthma [J]. Eur Respir J, 1999,14(5): 1210-27.
    11. Holgate ST. Genetic and environmental interaction in allergy and asthma [J]. J Allergy Clin Immunol, 1999,104(6):1139-46
    12. von Mutius E. Gene-environment interactions in asthma [J]. J Allergy Clin Immunol. 2009, 123(1):3-11.
    13. Malerba G, Pignatti PF. A review of asthma genetics: gene expression studies and recent candidates [J]. JAppl Genet, 2005, 46(1):93-104.
    14. Vercelli D. Discovering susceptibility genes for asthma and allergy [J]. Nat Rev Immunol, 2008, 8(3):169-82.
    15. Ober C, Abney M, Di Rienzo A, et al. Genome-wide search for asthma susceptibility loci in a founder population. The Collaborative Study on the Genetics of Asthma [J]. Hum Mol Genet, 1998,7(9):1393-8.
    16. Daniels SE, Bhattacharrya S, James A, et al. A genome-wide search for quantitative trait loci underlying asthma [J]. Nature, 1996,383(6597):247-50.
    17. Marsh DG, Neely JD, Breazeale DR, et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations [J]. Science, 1994, 264(5162):1152-6.
    18. Doull IJ, Lawrence S, Watson M, et al. Allelic association of gene markers on chromosomes 5q and 11q with atopy and bronchial hyperresponsiveness [J]. Am J Respir Crit Care Med, 1996, 153(4):1280-4.
    19. Noguchi E, Shibasaki M, Arinami T, et al. Evidence for linkage between asthma/atopy in childhood and chromosome 5q31-q33 in a Japanese population [J]. Am J Respir Crit Care Med, 1997, 156(5):1390-3.
    20. Yokouchi Y, Nukaga Y, Shibasaki M, et al. Significant evidence for linkage of mitesensitive childhood asthma to chromosome 5q31-q33 near the interleukin 12 B locus by a genome-wide search in Japanese families[J]. Genomics, 2000, 66(2):152-60.
    21. Shek LP, Tay AH, Chew FT, et al. Genetic susceptibility to asthma and atopy among Chinese in Singapore-linkage to markers on chromosome 5q31-33 [J]. Allergy, 2001,56(8): 749-53.
    22. Noguchi E, Yokouchi Y, Zhang J, et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33 [J]. Am J Respir Crit Care Med, 2005,172(2):183-8.
    23. McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family [J]. Nat Immunol, 2001, 2(12): 1109-16.
    24. Su EW, Lin JY, Kane LP. TIM-1 and TIM-3 proteins in immune regulation [J]. Cytokine, 2008, 44(1):9-13.
    25. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. The TIM gene family: emerging roles in immunity and disease [J]. Nat Rev Immunol, 2003, 3 (6): 454-62.
    26. Umetsu DT, Mclntire JJ, Akbari O, et al. Asthma: an epidemic of dysregulated immunity [J]. Nat Immunol, 2002, 3(8):715-20.
    27. Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance [J]. Nat Immunol, 2003, 4(11): 1093-101.
    28. Umetsu DT, Umetsu SE, Freeman GJ, et al. TIM gene family and their role in atopic diseases [J]. Curr Top Microbiol Immunol, 2008, 321:201-15.
    29. Chae SC, Song JH, Heo JC, et al. Molecular variations in the promoter and coding regions of human Tim-1 gene and their association in Koreans with asthma [J]. Hum Immunol, 2003, 64(12):1177-82.
    30. Chae SC, Song JH, Pounsambath P, et al. Molecular variations in TH1 specific cell surface gene Tim-3 [J]. Exp Mol Med, 2004, 36(3): 274-8.
    31. Mclntire JJ, Umetsu DT, DeKruyff RH. TIM-1, a novel allergy and asthma susceptibility gene[J]. Springer Semin Immunopathol, 2004,25(3-4): 335-48.
    32. Gao PS, Mathias RA, Plunkett B, et al. Genetic variants of the T cell immunoglobulin mucin 1 but not the T-cell immunoglobulin mucin 3 gene are associated with asthma in an African American population [J]. J Allergy Clin Immunol, 2005,115(5):982-8.
    33. Noguchi E, kayama J, mioka M, et al. Insertion/deletion coding polymorphisms in hHAVcr-1 are not associated with atopic asthma in the Japanese population [J]. Genes Immun, 2003,4(2):170-3.
    34. Chae SC, Song JH, Lee YC, et al. The association of the exon 4 variations of Tim-1 gene with allergic diseases in a Korean population [J]. Biochem Biophys Res Commun, 2003, 312(2):346-50.
    1. Steinke JW, Rich SS, Borish L. Genetics of allergic disease[J]. J Allergy Clin Immunol. 2008, 121(2 Suppl): S384-7.
    2. Romagnani S. Immunologic influences on allergy and the T_H1/T_H2 balance[J]. Allergy Clin Immunol, 2004, 113(3): 395-400.
    3. Meyers JH, Chakravarti S, Schlesinger D, et al. TIM-4 is the ligand for TIM-1 and the TIM-1-TIM-4 interaction regulates T cell proliferation[J]. Nat Immunol, 2005, 6(5): 455-64.
    4. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. The TIM gene family: emerging roles in immunity and disease[J]. Nat Rev Immunol, 2003, 3(6): 454-62.
    5. Umetsu DT, McIntire JJ, Akbari O, et al. Asthma: an epidemic of dysregulated immunity[J]. Nat Immunol, 2002, 3(8): 715-20.
    6. Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance[J]. Nat Immunol, 2003, 4(11): 1093-101.
    7.中华医学会呼吸病学分会哮喘学组.支气管哮喘防治指南[J].中华结核和呼吸杂志,2003,26(3):132-8.
    8.张胜桃,刘晓军,何培根,等.类风湿关节炎患者外周血CD4+T细胞Tim-3 mRNA的表达[J].中华风湿病学杂志,2006,10(1):30-2.
    9. Wang Y, Meng J, Wang X, et al. Expression of human TIM-1 and TIM-3 on lymphocytes from systemic lupus erythematosus patients[J]. Scand J Immunol, 2008, 67(1): 63-70.
    10. Gould HJ, Sutton BJ. IgE in allergy and asthma today[J]. Nat Rev Immunol, 2008, 8(3): 205-17.
    11. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes[J]. Nature, 1996, 383: 787-93.
    12. O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation[J]. Trends Cell Biol. 2000, 10: 542-50
    13. Del Prete G. The concept of type-1 and type-2 helper T cells and their cytokines in humans[J]. Int Rev Immunol, 1998, 16: 427-55.
    14. Meiler F, Zimmermann M, Blaser K, et al. T-cell subsets in the pathogenesis of human asthma[J]. Curr Allergy Asthma Rep, 2006, 6: 91-6.
    15. Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol, 2005, 6(12): 1245-52.
    16. Nagahara K, Arikawa T, Oomizu S, et al. Galectin-9 increases Tim-3+ dendritic Cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions[J] J Immunol, 2008, 181(11): 7660-9.
    17. Klibi J, Nild T, Riedel A, et al. Blood diffusion and T_H1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells[J]. Blood, 2009, 113(9): 1957-66.
    18. Frisancho-Kiss S, Nyland JF, Davis SE, et al. Cutting Edge: T cell Ig Mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity[J]. J Immunol, 2006, 176: 6411-5.
    19. Geng H, Zhang GM, Li D, et al. Soluble form of T cell Ig mucin 3 is an inhibitory molecule in T cell-mediated immune response[J]. J Immunol, 2006, 176(3): 1411-20.
    20. Xu G, Cheng L, Lu L, et al. Expression of T-cell immunoglobulin-and mucin-domain-containing molecule-1(TIM-1) is increased in a mouse model of asthma and relationship to GATA-3[J]. Life Sci, 2008, 82(11-12): 663-9.
    21. Kearley J, McMillan SJ, Lloyd CM. T_H2-driven, allergen-induced airway inflammation is reduced after treatment with anti-Tim-3 antibody in vivo[J]. J Exp Med, 2007, 204(6): 1289-94.
    22. de Souza AJ, Oriss TB, O'malley KJ, et al. T cell Ig and mucin 1(TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation[J]. Proc Natl Acad Sci USA, 2005, 102(47): 17113-8
    23. Encinas JA, Janssen EM, Weiner DB, et al. Anti-T-cell Ig and mucin domain-containing protein 1 antibody decreases T_H2 airway inflammation in a mouse model of asthma[J]. J Allergy Clin Immunol, 2005, 116(6): 1343-9.
    24. Wu WK, An YF, Zhao CQ. Immunoglobulin domain and mucin domain-1 in helper T lymphocytes in allergic rhinitis[J]. Zhonghua Yi Xue Za Zhi, 2008, 88(48): 3392-6.
    25. Feng BS, Chen X, He SH, et al. Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model[J]. J Allergy Clin Immunol, 2008, 122(1): 55-61.
    26. Fukushima A, Sumi T, Fukuda K, et al. Antibodies to T-cell Ig and mucin domain-containing proteins(Tim)-1 and -3 suppress the induction and progression of murine allergic conjunctivitis[J]. Biochem Biophys Res Commun, 2007, 353(1): 211-6.
    1. International HapMap Consortium. The International HapMap Project[J]. Nature, 2003, 426(6968): 789-96.
    2. International HapMap Consortium. A haplotype map of the human genome[J]. Nature, 2005, 437(7063): 1299-320.
    3. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI data base of genetic variation[J]. Nucleic Acids Res, 2001, 29(1): 308-11.
    4. Fredman D, Siegfried M, YuanYP, et al. HGVbase: a human sequence variation database emphasizing data quality and abroad spectrum of data sources[J]. Nucleic Acids Res, 2002, 30(1): 387-91.
    5. Hirakawa M, Tanaka T, HashimotoY, et al. JSNP: a database of common gene variations in the Japanese population[J]. Nucleic Acids Res, 2002, 30(1): 158-62.
    6. Reich DE, Gabriel SB, Altshuler D. Quality and completeness of SNP databases[J]. Nat Genet, 2003, 33(4): 457-8.
    7.陈炜,张戈,张思仲.人类基因组多态数据库Go!Poly及其应用[J].中华医学遗传学杂志,2001,18(6):482-5.
    8. Thorisson GA, Smith AV, Krishnan L, et al. The International HapMap Project Web site[J]. Genome Res, 2005, 15(11):1592-3
    9.中华医学会呼吸病学分会哮喘学组.支气管哮喘防治指南[J].中华结核和呼吸杂志,2003,26(3):132-8.
    10. Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics, 2005, 21(2): 263-5.
    11. Stram DO, Haiman CA, Hirschhorn JN, et al. Choosing haplotype tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study[J]. Hum Hered, 2003, 55(1): 27-36.
    12. Riseh N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281): 1516-7.
    13. Lander ES. The new genomics: global views of biology[J]. Science, 1996, 274(5287): 536-9.
    14. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes [J]. Nat Genet, 1999,22(2): 139-44.
    15. Lohmueller KE, Pearee CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution Of common variants to susceptibility to common disease [J]. Nat Genet, 2003, 33(2): 177-82.
    16. Kruglyak L. The use of a genetic map of biallelic markers in linkage studies [J]. Nat Genet, 1997, 17(1): 21-4.
    17. Collins FS, Guyer MS, Chakravarti A. Variations on a theme: cataloging human DNA sequence variation [J].Science, 1997,278(5343): 1580-1.
    18. Smith AV, Thomas DJ, Munro HM, et al. Sequence features in ragions of weak and strong linkage disequilibrium [J]. Genome Res, 2005,15(11): 1519-34
    19. Wail JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome J]. Nat Rev Genet, 2003,4(8): 587-97.
    20. Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles [J]. Genet Epidemiol, 2002, 23(3): 221-33.
    21. Home BD, Camp NJ. Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation [J]. Genet Epidemiol, 2004,26(1): 11-21.
    22. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past success for mendelian disease, future approaches for complex disease [J]. Nature Genet, 2003, 33: 228-37.
    23. Khademi M, Illes Z, Gielen AW, et al. T Cell Ig- and mucin-domain-containing molecule-3 ( TIM-3) and TIM-1 molecules are differentially expressed on human T_H1 and T_H2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis [J]. J Immunol, 2004, 172 (11): 7169-76.
    24. Sabatos CA, Chakravarti S, Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance [J]. Nat Immunol, 2003, 4(11):1102-10.
    25. Mclntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr (an airway hypeneactivity regulatory locus) and the linked Tim gene family [J].Nat Immunol, 2001, 2(12):1109-116.
    26. Yokouchi Y, Nukaga Y, Shibasaki M, et al. Significant evidence for linkage of mitesensitive childhood asthma to chromosome 5q31-q33 near the interleukin 12 B locus by a genome-wide search in Japanese families [J]. Genomics, 2000, 66(2): 152-60.
    27.胡丽华,崔天盆,张才成,等.湖北地区汉族变应性哮喘患儿Tim-3启动子区基因多态性研究[J].中华检验医学杂志,2006,29(2):125-7.
    28. Spielman RS, Ewens, WJ. The TDT and other family-based tests for linkage disequilibrium and association[J]. Am J Hum Genet, 1996, 59(5): 983-9.
    29. Knapp M, Seuchter SA, Baur MP. The haplotype-relative-risk(HRR) method for analysis of association in nuclear families[J]. Am J Hum Genet, 1993, 52(6): 1085-93.
    30. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci[J]. Cell Res, 2005, 15(2): 97-8.
    31. Clayton D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission[J]. Am J Hum Genet, 1999, 65(4): 1170-7.
    32. Lu AT, Cantor RM. Weighted variance FBAT: a powerful method for including covariates in FBAT analyses[J]. Genet Epidemiol, 2007, 31(4): 327-37.
    33. Horvath S, Xu X, Laird NM. The family based association test method: strategies for studying general genotype-phenotype associations[J]. Eur J Hum Genet, 2001, 9(4):301-6.
    34. Romagnani S.Immunologic influences on allergy and the T_H1/T_H2 balance[J]. Allergy Clin Immunol, 2004, 113(3): 395-400.
    35. Yang IA, Holloway JW. Asthma: advancing gene-environment studies[J]. Clin Exp Allergy, 2007, 37(9): 1320-5.
    36. Zhang J, Pare PD, Sandford AJ. Recent advances in asthma genetics[J]. Respir Res, 2008, 9(4): 21-9
    37. Carlson CS, Eberle MA, Kruglyak L, et al. Mapping complex disease loci in whole-genome association studies[J]. Nature, 2004, 429(6990): 446-52.
    38. Suh Y, Vijg J. SNP discovery in associating genetic variation with human disease phenotypes[J]. Mutat Res, 2005, 573(1-2): 41-53.
    39. Cardon LR, Palmer LJ. Population stratification and spurious allelic association[J]. Lancet, 2003, 36(1): 598-604.
    40. Lander ES, Schork NJ. Genetic dissection of complex traits[J]. Science, 1994, 265(5181): 2037-48.
    41. Risch NJ. Searching for genetic determinants in the new millennium[J]. Nature, 2000, 405(6788): 847-56.
    42. Tabor HK, Risch NJ, Myers RM. candidate-gene approaches for studying complex genetic traits: practical considerations[J]. Nat Rev Genet, 2002, 3(5): 391-7.
    43. Carlson CS, Ebede MA, ruglyak L, et al. Mapping complex disease loci in whole-genome association studies[J]. Nature, 2004, 429(6990): 446-52.
    44. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past success for mendelian disease, future approaches for complex disease[J]. Nature Genet, 2003, 33: 228-37.
    45.智联腾,周钢桥,贺福初.人类复杂疾病关联研究中群体分层的检出和校正[J].遗传,2007,29(1):3-7
    46. Risch NJ. Searching for genetic determinants in the new millennium[J]. Nature, 2000, 405(15): 847-56.
    47. Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies[J]. Nat Rev Genet, 2006, 7(5): 385-94.
    48. Laird NM, Lange C. Family-based methods for linkage and association analysis[J]. Adv Genet, 2008, 60: 219-52.
    49. Herbon N, Werner M, Braig C, et al. High-resolution SNP scan of chromosome 6p21 in pooled samples from patients with complex diseases[J]. Genomics, 2003, 81(5): 510-518
    50. Longmate JA. Complexity and power in case-control association studies[J]. Am J Hum Genet, 2001, 68(5): 1229-37.
    51. Carlson CS, Eberle MA, Rieder MJ, et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-gonome association studies in humans[J]. Nat Genet, 2003, 33(4): 518-21.
    52. Lai E, Bowman C, Bansal A, et al. Medical applications of haplotype-based SNP maps: learning to walk before we Run[J]. Nat Genet, 2002, 32(3): 353.
    1. Kaplan G, Totsuka A, Thompson P, et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus[J]. EMBO J, 1996, 15(16): 4282-96.
    2. Feigelstock D, Thompson P, Mattoo P, et al. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor[J]. J Virol, 1998, 72(8): 6621-8.
    3. Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1(KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury[J]. J Biol Chem, 1998, 273(7): 4135-42.
    4. Umetsu DT, McIntire JJ, Akbari O, et al. Asthma: an epidemic of dysregulated immunity[J]. Nat Immunol, 2002, 3: 715-20.
    5. McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr(an airway hyperreactivity regulatory locus) and the linked Tim gene family[J]. Nat Immunol, 2001, 2(12): 1109-16.
    6. Chae SC, Song JH, Heo JC, et al. Molecular variations in the promoter and coding regions of human Tim-1 gene and their association in Koreans with asthma. Hum Immunol, 2003, 64(12): 1177-82.
    7. Noguchi E, Nakayama J, Kamioka M, et al. Insertion/deletion coding polymorphisms in hHAVcr-1 are not associated with atopic asthma in the Japanese population[J]. Genes Immun, 2003, 4(2): 170-3.
    8. McIntire JJ, Umetsu DT, DeKruyff, RH. TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin[J]. Immunopathol, 2004, 25(3-4), 335-48.
    9. Gabriel SB, Sehafner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome[J]. Science, 2002, 296(21): 2225-9.
    10. Santiago C, Ballesteros A, Tami C, et al.Structures of T Cell Immunoglobulin Mucin Receptors 1 and 2 Reveal Mechanisms for Regulation of Immune Responses by the TIM Receptor Family[J]. Immunity, 2007,26(3): 299-310.
    11. Monney L, Sabatos CA, Gaglia JL, et al. T_H1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002, 415(1): 536-41.
    12. Silberstein E, Dveksler G, Kaplan GG. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1 [J]. J Virol, 2001, 75(2): 717-25.
    13. Silberstein E, Xing L, van de Beek W, et al. Alteration of hepatitis A virus (HAV) particles by a soluble form of HAV cellular receptor 1 containing the immunoglobin and mucin like regions [J]. J Virol, 2003,77(16): 8765-74.
    14. Meyers JH, Chakravarti S, Schlesinger D, et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation [J]. Nat Immunol, 2005, 6(5): 455-64.
    15. Rodriguez-Manzanet R, Meyers JH, Balasubramanian S,et al.TIM4 Expressed on APCs Induces T Cell Expansion and Survival [J]. J Immunol, 2008,180(7): 4706-13.
    16. Umetsu SE, Lee WL, Mclntire JJ, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance [J]. Nat Immunol, 2005,6(5): 447-54.
    17. Khademi M, Ill(?)s Z, Gielen A, et al. T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human T_H1 and T_H2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol, 2004, 172(11): 7169-76.
    18. Nakae S, Iikura M, Suto H, et al.TIM-1 and TIM-3 enhancement of T_H2 cytokine production by mast cells [J]. Blood, 2007,110(7): 2565-8.
    19. Chae SC, Song JH, Lee YC, et al. The association of the exon 4 variations of Tim-1 gene with allergic diseases in a Korean population [J]. Biochem Biophys Res Commun, 2003, 312(2):346-50.
    20. Gao PS, Mathias RA, Plunkett B, et al. Genetic variants of the T cell immunoglobulin mucin 1 but not the T-cell immunoglobulin mucin 3 gene are associated with asthma in an African American population [J].J Allergy Clin Immunol, 2005,115(5):982-8.
    21. Page NS, Jones G, Stewart GJ. Genetic association studies between the T cell immunoglobulin mucin (TIM) gene locus and childhood atopic dermatitis [J]. Int Arch Allergy Immunol, 2006, 141(4): 331-6.
    22. Chae SC, Park YR, Song JH, et al. The polymorphisms of Tim-1 promoter region are associated with rheumatoid arthritis in a Korean population. Immunogenetics. 2005; 56: 696-701.
    23. Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association studies. Theor Popul Biol, 2001, 60(3): 155-166.[DOI]
    24.智联滕,周钢桥,贺福初.人类复杂疾病关联研究中群体分层的检出和校正[J].遗传,2007,29(1):3-7.
    25.严卫丽,顾东风.复杂疾病关联研究若干问题[J].遗传学报,2004,31(5):533-537.
    26. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotypedata[J]. Genetics, 2000, 155(2): 945-959.
    27. Zhang S, Zhu X, Zhao H. On a semiparametric test to detect associations between quantitative traits and candidate genes using unrelated individuals[J]. Genet Epidemiol, 2003, 24(1): 44-56.
    28. Chen HS, Zhu X, Zhao H, Zhang S. Qualitative semi-parametric test for genetic associations in case-control designs under structured populations[J]. Ann Hum Genet, 2003, 67(Pt 3): 250-264.
    29. Van Steen K, McQueen MB, Herbert A, et al. Genomic screening and replication using the same data set in family-based association testing[J]. Nat Genet, 2005, 37(7): 683-91
    30.严卫丽.复杂疾病全基因组关联研究进展--遗传统计分析[J].遗传,2008,30(5):543-49.
    31.崔天盆,金晶,刘昌玉,等.湖北汉族儿童TIM-1基因多态性与变应性哮喘关系的研究[J].中华医学遗传学杂志,2004,21(4):403-6.
    32.崔天盆,巫学兰,吴健民,等.Tim-1基因多态性与湖北地区汉族成人变应性哮喘关系的研究[J].中国免疫学杂志,2004,20(6):396-9.
    33.严卫丽.复杂疾病全基因组关联研究进展--研究设计和遗传标记[J].2008,30(4):400-6.
    34. Meyers JH, Sabatos CA, Chakravarti S, et al. The TIM gene family regulates autoimmune and allergic diseases[J]. TRENDS in Molecular Medicine, 2005, 11(8): 362-9.
    35. McIntire JJ, Umetsu SE, Macaubas C, et al. Immuology: hepativis A virus link to atopic disease[J]. Nature, 2003, 425: 576.
    1. McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr(an airway hyperreactivity regulatory locus) and the linked Tim gene family[J]. Nat Immunol, 2001, 2(12): 1109-16.
    2. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. The TIM gene family: emerging roles in immunity and disease[J]. Nat Rev Immunol, 2003, 3(6), 454-62.
    3. Meyers JH, Sabatos CA, Chakravarti S, et al. The TIM gene family regulates autoimmune and allergic diseases[J]. TRENDS in Molecular Medicine, 2005, 11(8): 362-9.
    4.黄金波,胡丽华.Tim家族在免疫应答中的作用[J].现代免疫学,2006,26(5):434-7.
    5. Kaplan G, Totsuka A, Thompson P, et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus[J]. EMBO J, 1996, 15(16): 4282-96.
    6. Feigelstock D, Thompson P, Mattoo P, et al. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor[J]. J Virol, 1998, 72(8): 6621-8.
    7. Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury[J]. J Biol Chem, 1998, 273(7): 4135-42.
    8. Monney L, Sabatos CA, Gaglia JL, et al. T_H1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002,415(1): 536-41.
    9. Umetsu DT, McIntire JJ, Akbari O, et al. Asthma: an epidemic of dysregulated immunity [J]. Nat Immunol, 2002, 3:715-20.
    10. Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity [J]. Nat Immunol, 2005, 6(12): 1245-52.
    11. Su EW, Lin JY, Kane LP. TIM-1 and TIM-3 proteins in immune regulation [J]. Cytokine, 2008, 44(1): 9-13
    12. Santiago C, Ballesteros A, Tami C, et al.Structures of T Cell Immunoglobulin Mucin Receptors 1 and 2 Reveal Mechanisms for Regulation of Immune Responses by the TIM Receptor Family [J]. Immunity, 2007, 26(3): 299-310.
    13. Cao E, Zang X, Ramagopal UA, et al. T cell Immunoglobulin Mucin-3 Crystal Structure Reveals a Galectin-9-Independent Ligand-Binding Surface [J]. Immunity, 2007, 26(3): 311-21.
    14. Anderson AC, Xiao S , Kuchroo VK. Tim Protein Structures Reveal a Unique Face for Ligand Binding [J]. Immunity, 2007,26(3): 273-5.
    15. Bailly V, Zhang Z, Meier W, et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration [J]. J Biol Chem, 2002, 277(42): 39739-48.
    16. Silberstein E, Dveksler G, Kaplan GG. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1 [J]. J Virol, 2001, 75(2): 717-25.
    17. Silberstein E, Xing L, van de Beek W, et al. Alteration of hepatitis A virus (HAV) particles by a soluble form of HAV cellular receptor 1 containing the immunoglobin and mucin like regions [J]. J Virol, 2003, 77(16): 8765-74.
    18. Garner-Spitzer E, Kundi M, Rendi-Wagner P, et al. Correlation between humoral and cellular immune responses and the expression of the hepatitis A receptor HAVcr-1 on T cells after hepatitis A re-vaccination in high and low-responder vaccines [J]. Vaccine, 2009, 27(2): 197-204.
    19. Tami C, Silberstein E, Manangeeswaran M,et al.Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. J Virol, 2007, 81(7): 3437-46.
    20. Meyers JH, Chakravarti S, Schlesinger D, et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation[J]. Nat Immunol, 2005, 6(5): 455-64.
    21. Rodriguez-Manzanet R, Meyers JH, Balasubramanian S, et al. TIM-4 Expressed on APCs Induces T Cell Expansion and Survival[J]. J Immunol, 2008, 180(7): 4706-13.
    22. Xiao S, Najafian N, Reddy J. Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function[J]. J Exp Med, 2007, 204(7): 1691-702.
    23. Mizui M, Shikina T, Arase H et al. Bimodal regulation of T cell-mediated immune responses by TIM-4. Int Immunol, 2008, 20(5): 695-708.
    24. Miyanishi M, Tada K, Koike M, et al. Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450(7168): 435-9.
    25. Kobayashi N, Karisola P, Pe(?)a-Cruz V et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic ceils. Immunity, 2007, 27(6): 927-40.
    26 Savill J, Gregory C. Ap0ptotic PS to phagocyte TIM-4: eat me. Immunity, 2007, 27(6): 830-2.
    27. Santiago C, Ballesteros A, Martinez-Mu(?)oz L, et al. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds[J]. Immunity, 2007, 27(6): 941-51.
    28. Umetsu SE, Lee WL, McIntire JJ, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance[J]. Nat Immunol, 2005, 6(5): 447-54.
    29. Khademi M, Ill(?)s Z, Gielen A et al. T Cell Ig- and mucin-domain-containing molecule-3(TIM-3) and TIM-1 molecules are differentially expressed on human T_H1 and T_H2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol, 2004, 172(11): 7169-76.
    30. de Souza AJ, Oriss TB, O'malley KJ, et al. T cell Ig and mucin 1(TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci USA, 2005, 102(47): 17113-8.
    31. Binn(?) LL, Scott ML, Rennert PD. Human TIM-1 associates with the TCR complex and up-regulates T cell activation signals[J]. J Immunol, 2007, 178(7): 4342-50.
    32. Nakae S, Iikura M, Suto H, et al. TIM-1 and TIM-3 enhancement of T_H2 cytokine production by mast cells[J]. Blood, 2007, 110(7): 2565-8.
    33. Funauchi M, Ikoma S, Enomoto H, et al. Decreased T_H1-like and increased T_H2-like cells in systemic lupus erythematosus [J]. Scand J Rheumatol, 1998, 27(3): 219-24.
    34. Wang Y, Meng J, Wang X, et al. Expression of human TIM-1 and TIM-3 on lymphocytes from systemic lupus erythematosus patients [J]. Scand J Immunol, 2008, 67(1): 63-70.
    35. Gielen AW, Lobell A, Lidman O, et al. Expression of T cell immunoglobulin- and mucin-domain-containing molecules-1 and -3 (TIM-1 and -3) in the rat nervous and immune systems [J]. J Neuroimmunol, 2005,164(1-2): 93-104.
    36. Umetsu DT, Umetsu SE, Freeman GJ, et al. TIM gene family and their role in atopic diseases [J]. Curr Top Microbiol Immunol, 2008, 321:201-15.
    37. Matricardi PM, Rosmini F, Ferrigno L, et al. Cross sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis A virus [J]. Br Med J, 1997, 314(7086), 999-1003.
    38. Matricardi, PM, Rosmini F, Panetta V, et al. Hay fever andasthma in relation to markers of infection in the United States [J]. J Allergy Clin.Immunol, 2002,110(3), 381-7.
    39. McIntire JJ, Umetsu SE, Macaubas C, et al. Immunology: hepatitis A virus link to atopic disease [J]. Nature, 2003,425(6958):576.
    40. Mclntire JJ, Umetsu DT, DeKruyff, RH. TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin [J]. Immunopathol, 2004, 25(3-4), 335-48.
    41. Geng Xu, Lei Cheng, Ling Lu, et al. Expression of T-cell immunoglobulin- and mucin-domain-containing molecule-1 (TIM-1) is increased in a mouse model of asthma and relationship to GATA-3. Life Sci, 2008, 82(11-12): 663-9.
    42. Encinas JA, Janssen EM, Weiner DB. Anti-T-cell Ig and mucin domain- containing protein 1 antibody decreases T_H2 airway inflammation in a mouse model of asthma [J]. J Allergy Clin Immunol, 2005,116(6): 1343-9.
    43. Wu WK, An YF, Zhao CQ. Immunoglobulin domain and mucin domain-1 in helper T lymphocytes in allergic rhinitis [J]. Zhonghua Yi Xue Za Zhi, 2008, 88(48): 3392-6.
    44. Hein RM, Woods ML. TIM-1 regulates macrophage cytokine production and B7 family member expression [J]. Immunol Lett, 2007, l08(l):103-8.
    45. Feng BS, Chen X, He SH, et al. Disruption of T-cell immunoglobulin and mucin domain molecule (TTM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model [J]. J Allergy Clin Immunol, 2008, 122(1):55-61.
    46. Han WK, Bailly V, Abichandani R, et al. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int, 2002, 62(1): 237-44.
    47. Vaidya VS, Ramirez V, Ichimura T, et al. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol, 2006,290(2): F517-29.
    48. van Timmeren MM, van den Heuvel MC, Bailly V, et al.Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol, 2007, 212(2): 209-17.
    49. Ichimura T, Hung CC, Yang SA, et al. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury [J]. Am J Physiol Renal Physiol. 2004, 286(3): F552-63.
    50. Prozialeck WC, Vaidya VS, Liu J, et al. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity [J]. Kidney Int, 2007, 72(8): 985-93.
    51. Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium [J]. Toxicol Sci, 2008,101(1):159-70.
    52. Bonventre JV. Diagnosis of acute kidney injury: from classic parameters to new biomarkers. Contrib Nephrol, 2007,156:213-9.
    53. Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure [J]. J Am Soc Nephrol, 2007,18(3): 904-12.
    54. Han WK, Alinani A, Wu CL, et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma [J]. J Am Soc Nephrol, 2005,16(4): 1126-34.
    55. Lin F, Zhang PL, Yang XJ, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma [J]. Am J Surg Pathol, 2007, 31(3):371-81.
    56. van Timmeren MM, Vaidya VS, van Ree RM, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation, 2007, 84(12):1625-30.
    57. Zhang PL, Rothblum LI, Han WK, et al.Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury [J]. Kidney Int, 2008, 73(5): 608-14.
    58. Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells [J]. J Clin Invest, 2008, 118(5):1657-68
    59. Chae SC, Song JH, Heo JC, et al. Molecular variations in the promoter and coding regions of human Tim-1 gene and their association in Koreans with asthma[J]. Hum Immunol, 2003, 64(12): 1177-82.
    60. Noguchi E, Nakayama J, Kamioka M, et al. Insertion/deletion coding polymorphisms in hHAVcr-1 are not associated with atopic asthma in the Japanese population[J]. Genes Immun, 2003, 4(2): 170-3.
    61. Chae SC, Song JH, Lee YC, et al. The association of the exon 4 variations of Tim-1 gene with allergic diseases in a Korean population[J]. Biochem Biophys Res Commun, 2003, 312(2): 346-50.
    62. Chae SC, Song JH, Shim SC, et al. The exon 4 variations of Tim-1 gene are associated with rheumatoid arthritis in a Korean population[J]. Biochem Biophys Res Commun, 2004, 315(4): 971-5.
    63. Li JS, Liu QJ, Wang P, et al. Absence of association between two insertion/ deletion coding genetic polymorphisms of TIM-1 gene and asthma in Chinese Han population[J]. Int J Immunogenet, 2006, 33(6): 417-22.
    64. Gao PS, Mathias RA, Plunkett B, et al. Genetic variants of the T cell. immunoglobulin mucin 1 but not the T-cell immunoglobulin mucin 3 gene are associated with asthma in an African American population[J]. J Allergy Clin Immunol, 2005, 115(5): 982-8.
    65. Page NS, Jones G, Stewart GJ. Genetic association studies between the T cell immunoglobulin mucin(TIM) gene locus and childhood atopic dermatitis[J]. Int Arch Allergy Immunol, 2006, 141(4): 331-6.
    66.崔天盆,金晶,刘昌玉,等.湖北汉族儿童TIM-1基因多态性与变应性哮喘关系的研究[J].中华医学遗传学杂志,2004,21(4):403-6.
    67.崔天盆,巫学兰,吴健民,等.Tim-1基因多态性与湖北地区汉族成人变应性哮喘关系的研究[J].中国免疫学杂志,2004,20(6):396-9.
    68. Liu Q, Shang L, Li J, et al. A functional polymorphism in the TIM-1 gene is associated with asthma in a Chinese Han population[J]. Int Arch Allergy Immunol, 2007, 144(3): 197-202.
    69. Sabatos CA, Chakravarti S, Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance[J]. Nat Immunol, 2003, 4(11): 1102-10.
    70.张胜桃,刘晓军,金霞,等.TIM-3 mRNA在外周血单个核细胞不同细胞亚群及活化的T细胞上的表达[J].中华微生物学和免疫学杂志,2006,26(5):442-5.
    71. van de Weyer PS, Muehlfeit M, Klose C, et al. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9[J]. Biochem Biophys Res Commun, 2006, 351(2): 571-6.
    72.王毓琴,杨培增.T细胞免疫球蛋白粘蛋白分子-3与免疫调节的研究进展[J].国际免疫学杂志 2006,29(2):107-11.
    73.汪峰,陈忠华.Tim-3,一个T_H1相关的免疫调节分子[J].现代免疫学,2007,27(2):169-72.
    74. Sanchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune responses and promotes immunological tolerance[J]. Nat Immunol, 2003, 4(11): 1093-101.
    75. Sehrawat S, Suryawanshi A, Hirashima M, et al. Role of Tim-3/galectin-9 inhibitory interaction in viral-induced immunopathology: shifting the balance toward regulators[J]. J Immunol, 2009, 182(5): 3191-201.
    76. Nagahara K, Arikawa T, Oomizu S, et al. Galectin-9 increases Tim-3~+ dendritic cells and CD8~+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions[J] J Immunol, 2008, 181(11): 7660-9.
    77. Klibi J, Niki T, Riedel A, et al. Blood diffusion and T_H1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells[J]. Blood, 2009, 113(9): 1957-66.
    78. Frisancho-Kiss S, Nyland JF, Davis SE, et al. Cutting Edge: T cell Ig Mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity[J]. J Immunol, 2006, 176: 6411-5.
    79. Geng H, Zhang GM, Li D, et al. Soluble form of T cell Ig mucin 3 is an inhibitory molecule in T cell-mediated immune response[J]. J Immunol, 2006, 176(3): 1411-20.
    80. Koguchi K, Anderson DE, Yang L, et al. Dysregulated T cell expression of TIM-3 in multiple sclerosis[J]. J Exp Med, 2006, 203: 1413-8.
    81. Yang L, Anderson DE, Kuchroo J, et al. Lack of TIM-3 immunoregulation in multiple sclerosis[J] J Immunol, 2008, 180(7): 4409-14.
    82.张胜桃,刘晓军,何培根,等.类风湿关节炎患者外周CD4~+T细胞TIM-3 mRNA的表达[J].中华风湿病学杂志,2006,10(1):30-32.
    83. Oikawa T, Kamimura Y, Akiba H, et al. Preferential involvement of Tim-3 in the regulation of hepatic CD8+ T cells in murine acute graft-versus-host disease[J]. J Immunol, 2006, 177(7): 4281-7.
    84. Wang F, He W, Zhou H, et al. The Tim-3 ligand galectin-9 negatively regulates CD8+ alloreactive T cell and prolongs survival of skin graft[J]. Cell Immunol, 2007, 250(1-2): 68-74
    85. Ponciano VC, Renesto PG, Nogueira E, et al. Tim-3 expression in human kidney allografts[J]. Transpl Immunol, 2007, 17(3): 215-222.
    86. Mariat C, Sanchez-Fueyo A, Alexopoulos SP, et al. Regulation of T cell dependent immune responses by TIM family members[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1461): 1681-5.
    87. Nakayama M, Akiba H, Takeda K, et al. Tim-3 mediates phagocytosis of apoptotic cells and the cross-presentation[J]. Blood, 2009, 17.
    88. Kearley J, McMillan SJ, Lloyd CM. T_H2-driven, allergen-induced airway inflammation is reduced after treatment with anti-Tim-3 antibody in vivo[J]. J Exp Med, 2007, 204(6): 1289-94.
    89. Fukushima A, Sumi T, Fukuda K, et al. Antibodies to T-cell Ig and mucin domain-containing proteins(Tim)-1 and -3 suppress the induction and progression of murine allergic conjunctivitis[J]. Biochem Biophys Res Commun, 2007, 353(1): 211-6.
    90. Marsh DG, Neely JD, Breazeale DR, et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations[J]. Science, 1994, 264(5162): 1152-6.
    91. Doull IJ, Lawrence S, Watson M, et al. Allelic association of gene markers on chromosomes 5q and 11q with atopy and bronchial hyperresponsiveness[J]. Am J Respir Crit Care Med, 1996, 153(4 pt 1): 1280-4.
    92. Noguchi E, Shibasaki M, Arinami T, et al. Evidence for linkage between asthma/atopy in childhood and chromosome 5q31-q33 in a Japanese population[J]. Am J Respir Crit Care Med 1997, 156(5): 1390-3.
    93. Yokouchi Y, Nukaga Y, Shibasaki M, et al. Significant evidence for linkage of mitesensitive childhood asthma to chromosome 5q31-q33 near the interleukin 12 B locus by a genome-wide search in Japanese families[J]. Genomics 2000; 66(2): 152-60.
    94. Shek LP, Tay AH, Chew FT, et al. Genetic susceptibility to asthma and atopy among Chinese in Singapore-linkage to markers on chromosome 5q31-33[J]. Allergy, 2001, 56(8): 749-53
    95.武其文,胡丽华,蔡鹏程.湖北汉族人群Tim-3基因启动子及编码区的分子突变[J].中国免疫学杂志,2008,24(8):721-4.
    96. Chae SC, Song JH, Pounsambath P, et al. Molecular variations in T_H1 specific cell surface gene Tim-3[J]. Exp Mol Med, 2004, 36(3): 274-8.
    97. Chae SC, Park YR, Lee YC, et al. The association of TIM-3 gene polymorphism with atopic disease in Korean population[J]. Hum Immunol, 2004, 65(12): 1427-31.
    98. Chae SC, Park YR, Shim SC, et al. The polymorphisms of T_H1 cell surface gene Tim-3 are associated in a Korean population with rheumatoid arthritis[J]. Immunol Lett, 2004, 95(1): 91-5.
    99.胡丽华,崔天盆,张才成,等.湖北地区汉族变应性哮喘患儿Tim-3启动子区基因多态性研究[J].中华检验医学杂志,2006,29(2):125-7.
    100.李际盛,刘奇迹,王频,等.中国山东汉族人群TIM-3基因启动子区域两单核苷酸多态与支气管哮喘的相关性[J].山东大学学报,2006,44(11):1159-63.
    101.张才成,吴健民,崔天盆,等.湖北汉族人群TIM-3基因多态性与变应性哮喘的相关性[J].中华医学遗传学杂志,2006,23(1):74-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700