小鼠多潜能成体干细胞生物学特性及向树突状细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越多的研究发现成体干细胞具有跨系甚至跨胚层分化的特性,即成体干细胞具有可塑性,而对于可塑性的原因和机制,目前更多的学者认为在成体组织中可能存在着原始的多潜能干细胞,我们命名为胚胎后亚全能干细胞。对于亚全能干细胞的分离与鉴定不论对于基础研究还是临床应用都具有非常重要的意义和不可低估的价值。
     本文的第一部分,是从小鼠胚胎成纤维细胞中成功分离出一群原始的Sca-1~((+))CD117~((-))Lin~((-))多潜能干细胞,对于其生物学特性进行了全面而细致的研究。发现该细胞群表达胚胎干细胞相关的转录因子,具有朝三胚层细胞分化的能力,并且拥有免疫调节性能。在体实验表明该细胞群能够延长异基因来源的皮肤移植物的存活时间,皮肤烧伤实验证明其能够显著促进皮肤损伤的愈合。我们的实验为胚胎后亚全能干细胞在体内的存在提供了进一步的支持证据,丰富了成体干细胞可塑性的基本理论。第二部分目的是考察Sca-1~((+))CD117~((-))Lin~((-))多潜能干细胞是否能够在体外朝造血细胞分化。使用合适的诱导条件,我们诱导Sca-1~((+))CD117~((-))Lin~((-))分化为具有免疫调节功能的树突状细胞,对于分化而来的树突状细胞我们详细的考察了其生物学特性。进一步发现,这些树突状细胞通过Notch-Jagged信号通路的调节而发挥免疫抑制的效应。提示这类诱导的树突状细胞有可能在临床上具有治疗免疫相关性疾病的前景。
Most of the adult stem cells not only generate those mature cell types corresponding to their tissue of origin, but also cross tissue (or germ layer) boundaries to generate cell types of different lineages, which was named as adult stem cell plasticity, however, the explanations of adult stem cell plasticity remain a point of discussion and controversy. One well accepted possible mechanism for observation of adult stem cell plasticity relates to the action of rare pluripotent stem cells (PSCs) present in the test cell population.
     In the first part, we have succeeded in isolating Sca-l~+CD117~-Lin~- primitive pluripotent stem cells from the mouse embryonic fibroblast populaiton. This cell population possesses the main characteristics of primitive pluripotent stem cells, including expression of embryonic stem cells (ESCs) marker, ability of giving rise to multiple types of three germ layers and potential of immunoregulation. In vivo studies indicated that the cell population could prolong the survival of allogeneic skin grafts, and strikingly promote the skin burn would healing by differentiating into multiple types of cells in the dermal and epidermal tissues. Our study will help us better understand the properties of plasticity and may greatly contribute to the use of stem cells as a target for cell transplantation and gene therapy.
     The second part indicated that the Sca-1~+CD117~-Lin~- pluripotent stem cells could be induced to differentiate into CD11b~(high) Ia~(low)CD11c~(low) dendritic cells (DCs) with strong regulatory functions capable of suppressing mixed lymphocyte reaction, allogeneic delayed type-hypersensitivity and rejection of allogeneic skin grafts. The immune regulatory functions of these dendritic cells were found to be mediated by Jagged-2. Our studies revealed that ESC-like pluripotent stem cells exist in freshly isolated mouse embryonic fibroblast population and they can differentiate into DCs with strong regulatory functions.
引文
1. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts.Science, 1998. 282(5391): p. 1145-7.
    
    2. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000. 18(4): p. 399-404.
    
    3. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow.Nature, 2002. 418(6893): p. 41-9.
    
    4. Blanpain, C., et al., Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 2004. 118(5): p. 635-48.
    
    5. Asakura, A., M. Komaki, and M. Rudnicki, Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation.Differentiation, 2001. 68(4-5): p. 245-53.
    
    6. Rodriguez, L.V., et al., Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A, 2006.103(32): p. 12167-72.
    
    7. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007. 449(7165): p. 1003-7.
    
    8. Seaberg, R.M., et al., Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol, 2004.22(9): p. 1115-24.
    
    9. Messina, E., et al., Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res, 2004. 95(9): p. 911-21.
    
    10. Hermann, A., et al., Multipotent neural stem cells from the adult tegmentum with dopaminergic potential develop essential properties of functional neurons. Stem Cells, 2006. 24(4): p. 949-64.
    
    11. Schmelzer, E., et al., Human hepatic stem cells from fetal and postnatal donors. J Exp Med, 2007. 204(8): p. 1973-87.
    12. Blau, H.M., T.R. Brazelton, and J.M. Weimann, The evolving concept of a stem cell:entity or function? Cell, 2001. 105(7): p. 829-41.
    
    13. Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p.639-48.
    
    14. Ratajczak, M.Z., et al., A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia, 2007. 21(5): p. 860-7.
    
    15. Karnieli, O., et al., Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 2007. 25(11): p.2837-44.
    
    16. Tropel, P., et al., Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 2006. 24(12): p. 2868-76.
    
    17. Vogel, W., et al., Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica, 2003. 88(2): p. 126-33.
    
    18. Kucia, M., et al., Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia, 2005. 19(7): p. 1118-27.
    
    19. Kucia, M., et al., A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia,2006. 20(5): p. 857-69.
    
    20. D'Ippolito, G, et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 2004. 117(Pt 14): p. 2971-81.
    
    21. Yoon, Y.S., et al., Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest,2005. 115(2): p. 326-38.
    
    22. Mayumi, H., K. Nomoto, and R.A. Good, A surgical technique for experimental free skin grafting in mice. Jpn J Surg, 1988. 18(5): p. 548-57.
    
    23. Brazelton, T.R., et al., From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000. 290(5497): p. 1775-9.
    24. Lagasse, E., et al., Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med, 2000. 6(11): p. 1229-34.
    
    25. Orlic, D., et al., Bone marrow cells regenerate infarcted myocardium. Nature, 2001.410(6829): p. 701-5.
    
    26. Krause, D.S., et al., Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001. 105(3): p. 369-77.
    
    27. Wagers, A.J., et al., Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 2002. 297(5590): p. 2256-9.
    
    28. Murry, C.E., et al., Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004. 428(6983): p. 664-8.
    
    29. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p.663-76.
    
    30. Okada, S., et al., In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood, 1992. 80(12): p. 3044-50.
    
    31. Matsuzaki, Y., et al., Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 2004. 20(1): p. 87-93.
    
    32. Xiao, Q., et al., Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol, 2006. 26(10): p. 2244-51.
    
    33. Yin, X., et al., Proteomic dataset of Sca-1+ progenitor cells. Proteomics, 2005.5(17): p. 4533-45.
    
    34. Jiang, Y., et al., Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 2002. 30(8): p. 896-904.
    
    35. Peister, A., et al., Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 2004. 103(5): p. 1662-8.
    
    36. Niwa, H., J. Miyazaki, and A.G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 2000. 24(4):p. 372-6.
    
    37. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003. 17(1): p. 126-40.
    
    38. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
    
    39. Bartholomew, A., et al., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002. 30(1): p. 42-8.
    
    40. Le Blanc, K., et al., Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 2004. 363(9419): p. 1439-41.
    
    41. Kataoka, K., et al., Participation of adult mouse bone marrow cells in reconstitution ofskin.Am J Pathol,2003. 163(4): p. 1227-31.
    
    42. Sasaki, M., et al., Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol, 2008. 180(4): p. 2581-7.
    1. Karman, J., et al., Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol, 2004. 173(4): p. 2353-61.
    
    2. Sato, K. and S. Fujita, Dendritic cells: nature and classification. Allergol Int, 2007.56(3): p. 183-91.
    
    3. Steinman, R.M. and M.C. Nussenzweig, Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A, 2002. 99(1): p. 351-8.
    
    4. Sato, K., et al., Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood, 2003. 101(9): p. 3581-9.
    
    5. Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells.Annu Rev Immunol, 2003. 21: p. 685-711.
    
    6. Tang, H., et al., Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood, 2006. 108(4): p.1189-97.
    
    7. Wakkach, A., et al., Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity, 2003. 18(5): p. 605-17.
    
    8. Zhang, M., et al., Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol, 2004. 5(11): p. 1124-33.
    
    9. Hirata, S., et al., Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with TRAIL or programmed death-1 ligand. J Immunol, 2005. 174(4): p. 1888-97.
    
    10. Senju, S., et al., Generation and genetic modification of dendritic cells derived from mouse embryonic stem cells. Blood, 2003. 101(9): p. 3501-8.
    
    11. Slukvin, II, et al., Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J Immunol, 2006. 176(5): p.2924-32.
    12. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow.Nature, 2002. 418(6893): p. 41-9.
    
    13. Kucia, M., et al., A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia,2006. 20(5): p. 857-69.
    
    14. Fang, B., et al., Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flkl+/CD31-/CD34- Progenitors. J Hematother Stem Cell Res,2003. 12(6): p. 603-13.
    
    15. Bartholomew, A., et al., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002. 30(1): p. 42-8.
    
    16. Charbonnier, L.M., et al., Immature dendritic cells suppress collagen-induced arthritis by in vivo expansion of CD49b+ regulatory T cells. J Immunol, 2006.177(6): p. 3806-13.
    
    17. Amsen, D., et al., Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 2004. 117(4): p. 515-26.
    
    18. Sato, K., et al., Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity, 2003. 18(3): p. 367-79.
    
    19. Akbari, O., R.H. DeKruyff, and D.T. Umetsu, Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol,2001. 2(8): p. 725-31.
    
    20. Tu, L., et al., Notch signaling is an important regulator of type 2 immunity. J Exp Med,2005. 202(8): p. 1037-42.
    
    21. Tsukumo, S. and K. Yasutomo, Notch governing mature T cell differentiation. J Immunol, 2004. 173(12): p. 7109-13.
    1. Pereira, R.F., et al., Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A, 1995. 92(11): p. 4857-61.
    
    2. Eglitis, M.A. and E. Mezey, Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A, 1997. 94(8): p.4080-5.
    
    3. Ferrari, G., et al., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998. 279(5356): p. 1528-30.
    
    4. Jackson, K.A., et al., Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest, 2001. 107(11): p. 1395-402.
    
    5. Petersen, B.E., et al., Bone marrow as a potential source of hepatic oval cells.Science, 1999. 284(5417): p. 1168-70.
    
    6. Li, H., H. Liu, and S. Heller, Pluripotent stem cells from the adult mouse inner ear.Nat Med, 2003. 9(10): p. 1293-9.
    
    7. Orlic, D., et al., Bone marrow cells regenerate infarcted myocardium. Nature, 2001.410(6829): p. 701-5.
    
    8. Krause, D.S., et al., Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001. 105(3): p. 369-77.
    
    9. Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p.639-48.
    
    10. Lagasse, E., et al., Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med, 2000. 6(11): p. 1229-34.
    
    11. Mezey, E., et al., Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000. 290(5497): p. 1779-82.
    
    12. Brazelton, T.R., et al., From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000. 290(5497): p. 1775-9.
    
    13. Reyes, M, et al., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001. 98(9): p. 2615-25.
    
    14. Karnieli, O., et al., Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 2007. 25(11): p.2837-44.
    
    15. Tropel, P., et al., Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 2006. 24(12): p. 2868-76.
    
    16. Deng, J., et al., Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells, 2006. 24(4): p.1054-64.
    
    17. Nishiyama, N., et al., The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells, 2007. 25(8): p.2017-24.
    
    18. Seaberg, R.M. and D. van der Kooy, Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyms contains restricted progenitors. J Neurosci, 2002. 22(5): p. 1784-93.
    
    19. Rietze, R.L., et al., Purification of a pluripotent neural stem cell from the adult mouse brain. Nature, 2001. 412(6848): p. 736-9.
    
    20. Bjornson, C.R., et al., Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science, 1999. 283(5401): p. 534-7.
    
    21. Clarke, D.L., et al., Generalized potential of adult neural stem cells. Science, 2000.288(5471): p. 1660-3.
    
    22. Adachi, N., et al., Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol, 2002. 29(9): p. 1920-30.
    
    23. Jackson, K.A., T. Mi, and M.A. Goodell, Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A, 1999. 96(25): p.14482-6.
    24. Gussoni, E., et al., Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999. 401(6751): p. 390-4.
    
    25. Yang, L., et al., In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci U S A, 2002.99(12): p. 8078-83.
    
    26. Dabeva, M.D., et al., Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc Natl Acad Sci U S A, 1997.94(14): p. 7356-61.
    
    27. Herrera, M.B., et al., Isolation and characterization of a stem cell population from adult human liver. Stem Cells, 2006. 24(12): p. 2840-50.
    
    28. Seaberg, R.M., et al., Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol, 2004.22(9): p. 1115-24.
    
    29. Lako, M., et al., Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci, 2002. 115(Pt 20): p. 3967-74.
    
    30. Goodell, M.A., Stem-cell "plasticity": befuddled by the muddle. Curr Opin Hematol, 2003. 10(3): p. 208-13.
    
    31. Raff, M., Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol, 2003.19:p. 1-22.
    
    32. Anderson, D.J., F.H. Gage, and I.L. Weissman, Can stem cells cross lineage boundaries? Nat Med, 2001. 7(4): p. 393-5.
    
    33. Ito, M, et al., Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Dev Growth Differ, 1999. 41(4):p. 429-40.
    
    34. Wagers, A.J. and I.L. Weissman, Differential expression of alpha2 integrin separates long-term and short-term reconstituting Lin-/loThy1.1(lo)c-kit+ Sca-1+ hematopoietic stem cells. Stem Cells, 2006. 24(4): p. 1087-94.
    
    35. Murry, C.E., et al., Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004. 428(6983): p. 664-8.
    
    36. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p.663-76.
    
    37. Alvarez-Dolado, M., et al., Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 2003. 425(6961): p. 968-73.
    
    38. Vassilopoulos, G., P.R. Wang, and D.W. Russell, Transplanted bone marrow regenerates liver by cell fusion. Nature, 2003. 422(6934): p. 901-4.
    
    39. Wang, X., et al., Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003. 422(6934): p. 897-901.
    
    40. Weimann, J.M., et al., Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol, 2003. 5(11): p.959-66.
    
    41. Terada, N., et al., Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002. 416(6880): p. 542-5.
    
    42. Ying, Q.L., et al., Changing potency by spontaneous fusion. Nature, 2002.416(6880): p. 545-8.
    
    43. Korbling, M., et al., Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med, 2002. 346(10): p. 738-46.
    
    44. Kucia, M., et al., Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia, 2005. 19(7): p. 1118-27.
    
    45. Wright, D.E., et al., Physiological migration of hematopoietic stem and progenitor cells. Science, 2001. 294(5548): p. 1933-6.
    
    46. Ratajczak, M.Z., et al., A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia, 2007. 21(5): p. 860-7.
    
    47. Jiang, Y, et al., Pluripotency of mesenchymal stem cells derived from adult marrow.Nature, 2002. 418(6893): p. 41-9.
    
    48. Kucia, M., et al., A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia,2006. 20(5): p. 857-69.
    
    49. D'Ippolito, G, et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 2004. 117(Pt 14): p. 2971-81.
    
    50. Yoon, Y.S., et al., Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest,2005. 115(2): p. 326-38.
    1. Li, T., et al., Nicastrin is required for assembly of presenilin/gamma-secretase complexes to mediate Notch signaling and for processing and trafficking of beta-amyloid precursor protein in mammals. J Neurosci, 2003. 23(8): p. 3272-7.
    
    2. Wu, L., et al., Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol, 2002. 22(21): p.7688-700.
    
    3. Messina, E., et al., Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res, 2004. 95(9): p. 911-21.
    
    4. Martinez Arias, A., V. Zecchini, and K. Brennan, CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev, 2002. 12(5): p. 524-33.
    
    5. Yun, T.J. and M.J. Bevan, Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J Immunol, 2003. 170(12): p. 5834-41.
    
    6. Kumano, K., et al., Notchl but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity, 2003. 18(5): p. 699-711.
    
    7. Stier, S., et al., Notchl activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood, 2002. 99(7): p.2369-78.
    
    8. Varnum-Finney, B., C. Brashem-Stein, and I.D. Bernstein, Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood, 2003. 101(5): p. 1784-9.
    
    9. Calvi, L.M., et al., Osteoblastic cells regulate the haematopoietic stem cell niche.Nature, 2003. 425(6960): p. 841-6.
    
    10. Reya, T., et al., A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003. 423(6938): p. 409-14.
    11. Tanigaki, K. and T. Honjo, Regulation of lymphocyte development by Notch signaling. Nat Immunol, 2007. 8(5): p. 451-6.
    
    12. Harman, B.C., E.J. Jenkinson, and G. Anderson, Entry into the thymic microenvironment triggers Notch activation in the earliest migrant T cell progenitors. J Immunol, 2003. 170(3): p. 1299-303.
    
    13. de La Coste, A. and A.A. Freitas, Notch signaling: distinct ligands induce specific signals during lymphocyte development and maturation. Immunol Lett, 2006.102(1): p. 1-9.
    
    14. Han, H., et al., Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol, 2002. 14(6): p. 637-45.
    
    15. Nie, L., et al., Regulation of lymphocyte development by cell-type-specific interpretation of Notch signals. Mol Cell Biol, 2008. 28(6): p. 2078-90.
    
    16. de La Coste, A., et al., In vivo and in absence of a thymus, the enforced expression of the Notch ligands delta-1 or delta-4 promotes T cell development with specific unique effects. J Immunol, 2005. 174(5): p. 2730-7.
    
    17. Lehar, S.M., et al., Notch ligands Delta 1 and Jaggedl transmit distinct signals to T-cell precursors. Blood, 2005. 105(4): p. 1440-7.
    
    18. Dallas, M.H., et al., Density of the Notch ligand Deltal determines generation of B and T cell precursors from hematopoietic stem cells. J Exp Med, 2005. 201(9): p.1361-6.
    
    19. Schmitt, T.M. and J.C. Zuniga-Pflucker, Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity, 2002. 17(6): p.749-56.
    
    20. Jaleco, A.C., et al., Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med, 2001. 194(7): p. 991-1002.
    
    21. Maeda, T., et al., Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science, 2007. 316(5826): p. 860-6.
    22. Sambandam, A., et al., Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol, 2005. 6(7): p. 663-70.
    
    23. Jiang, R., et al., Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev, 1998. 12(7): p. 1046-57.
    
    24. Weerkamp, F., et al., Identification of Notch target genes in uncommitted T-cell progenitors: No direct induction of a T-cell specific gene program. Leukemia, 2006.20(11): p. 1967-77.
    
    25. Washburn, T., et al., Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell, 1997. 88(6): p. 833-43.
    
    26. Garbe, A.I. and H. von Boehmer, TCR and Notch synergize in alphabeta versus gammadelta lineage choice. Trends Immunol, 2007. 28(3): p. 124-31.
    
    27. Garbe, A.I., et al., Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. J Exp Med, 2006. 203(6): p.1579-90.
    
    28. Laky, K., C. Fleischacker, and B.J. Fowlkes, TCR and Notch signaling in CD4 and CD8 T-cell development. Immunol Rev, 2006. 209: p. 274-83.
    
    29. Robey, E., et al., An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell, 1996. 87(3): p. 483-92.
    
    30. Yasutomo, K., et al., The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature, 2000. 404(6777): p. 506-10.
    
    31. Wolfer, A., et al., Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat Immunol, 2001. 2(3): p. 235-41.
    
    32. Rutz, S., et al., Notch ligands Delta-likel, Delta-like4 and Jaggedl differentially regulate activation of peripheral T helper cells. Eur J Immunol, 2005. 35(8): p.2443-51.
    
    33. Palaga, T., et al., TCR-mediated Notch signaling regulates proliferation and IFN-gamma production in peripheral T cells. J Immunol, 2003. 171(6): p. 3019-24.
    
    34. Yvon, E.S., et al., Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood, 2003. 102(10): p. 3815-21.
    
    35. Osborne, B.A. and L.M. Minter, Notch signalling during peripheral T-cell activation and differentiation. Nat Rev Immunol, 2007. 7(1): p. 64-75.
    
    36. Bheeshmachar, G., et ah, Evidence for a role for notch signaling in the cytokine-dependent survival of activated T cells. J Immunol, 2006. 177(8): p.5041-50.
    
    37. Maekawa, Y., et ah, Deltal-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity, 2003. 19(4): p. 549-59.
    
    38. Murphy, K.M. and S.L. Reiner, The lineage decisions of helper T cells. Nat Rev Immunol, 2002. 2(12): p. 933-44.
    
    39. Mowen, K.A. and L.H. Glimcher, Signaling pathways in Th2 development.Immunol Rev, 2004. 202: p. 203-22.
    
    40. Amsen, D., et ah, Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity, 2007. 27(1): p. 89-99.
    
    41. Fang, T.C., et ah, Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity, 2007. 27(1): p. 100-10.
    
    42. Amsen, D., et ah, Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell, 2004. 117(4): p. 515-26.
    
    43. Sun, J., C.J. Krawczyk, and E.J. Pearce, Suppression of Th2 cell development by Notch ligands Deltal and Delta4. J Immunol, 2008. 180(3): p. 1655-61.
    
    44. Tacchini-Cottier, F., et ah, Notchl expression on T cells is not required for CD4+ T helper differentiation. Eur J Immunol, 2004. 34(6): p. 1588-96.
    
    45. Wong, K.K., et ah, Notch ligation by Deltal inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J Clin Invest,2003. 112(11): p. 1741-50.
    
    46. Tanigaki, K., et ah, Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity, 2004. 20(5): p. 611-22.
    47. Minter, L.M., et al., Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol, 2005. 6(7): p. 680-8.
    
    48. Tu, L., et al., Notch signaling is an important regulator of type 2 immunity. J Exp Med, 2005. 202(8): p. 1037-42.
    
    49. Rutz, S., et al., Notch regulates IL-10 production by T helper 1 cells. Proc Natl Acad Sci U S A, 2008. 105(9): p. 3497-502.
    
    50. Adler, S.H., et al., Notch signaling augments T cell responsiveness by enhancing CD25 expression. J Immunol, 2003. 171(6): p. 2896-903.
    
    51. Radtke, F., et al., The role of Notch signaling during hematopoietic lineage commitment. Immunol Rev, 2002. 187: p. 65-74.
    
    52. Kostianovsky, A.M., et al., Up-regulation of gene related to anergy in lymphocytes is associated with Notch-mediated human T cell suppression. J Immunol, 2007.178(10): p. 6158-63.
    
    53. Anastasi, E., et al., Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol, 2003. 171(9): p. 4504-11.
    
    54. Kared, H., et al., Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity, 2006. 25(5): p.823-34.
    
    55. Ng, W.F., et al., Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood, 2001. 98(9): p. 2736-44.
    
    56. Ostroukhova, M., et al., Treg-mediated immunosuppression involves activation of the Notch-HESl axis by membrane-bound TGF-beta. J Clin Invest, 2006. 116(4): p.996-1004.
    
    57. Wakkach, A., et al., Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity, 2003. 18(5): p. 605-17.
    
    58. Cotta, C.V., et al., Pax5 determines B- versus T-cell fate and does not block early
    ??myeloid-lineage development.Blood,2003.101(11):p.4342-6.
    
    59. Kuroda,K.,et al.,Regulation of marginal zone B cell development by MINT,asuppressor of Notch/RBP-J signaling pathway.Immunity,2003.18(2):p.301-12.
    
    60. Tanigaki,K.,et al.,Regulation of B cell development by Notch/RBP-J signaling.Semin Immunol,2003.15(2):p.113-9.
    
    61. Hozumi,K.,et al.,Delta-like 1 is necessary for the generation of marginal zone Bcells but not T cells in vivo.Nat Immunol,2004.5(6):p.638-44.
    
    62. Kawamata,S.,et al.,Overexpression of the Notch target genes Hes in vivo induceslymphoid and myeloid alterations.Oncogene,2002.21(24):p.3855-63.
    
    63. Morimura,T.,et al.,Cell cycle arrest and apoptosis induced by Notchl in B cells.JBiol Chem,2000.275(47):p.36523-31.
    
    64. Santos,M.A.,et al.,Notchl engagement by Delta-like-1 promotes differentiation ofB lymphocytes to antibody-secreting cells.Proc Natl Acad Sci USA,2007.104(39):p.15454-9.
    
    65. Thomas,M.,et al.,Notch activity synergizes with B-cell-receptor and CD40signaling to enhance B-cell activation.Blood,2007.109(8):p.3342-50.
    
    66. DeHart,S.L.,M.J.Heikens,and S.Tsai,Jagged2 promotes the development ofnatural killer cells and the establishment of functional natural killer cell lines.Blood,2005.105(9):p.3521-7.
    
    67. Rolink,A.G.,et al.,The potential involvement of Notch signaling in NK celldevelopment.Immunol Lett,2006.107(1):p.50-7.
    
    68. Steinman,R.M.,Some interfaces of dendritic cell biology.Apmis,2003.111(7-8):p.675-97.
    
    69. Banchereau,J.,et al.,Immunobiology of dendritic cells.Annu Rev Immunol,2000.18:p.767-811.
    
    70. Shortman,K.and Y.J.Liu,Mouse and human dendritic cell subtypes.Nat RevImmunol,2002.2(3):p.151-61.
    
    71. Vuckovic,S.,G.J.Clark,and D.N.Hart,Growth factors,cytokines and dendritic cell development. Curr Pharm Des, 2002. 8(5): p. 405-18.
    
    72. MacDonald, H.R., A. Wilson, and F. Radtke, Notch 1 and T-cell development: insights from conditional knockout mice. Trends Immunol, 2001. 22(3): p. 155-60.
    
    73. Radtke, F., et al., Notchl deficiency dissociates the intrathymic development of dendritic cells and T cells. J Exp Med, 2000. 191(7): p. 1085-94.
    
    74. Milner, L.A., et al., Inhibition of granulocytic differentiation by mNotchl. Proc Natl Acad Sci U S A, 1996. 93(23): p. 13014-9.
    
    75. Schroeder, T. and U. Just, mNotchl signaling reduces proliferation of myeloid progenitor cells by altering cell-cycle kinetics. Exp Hematol, 2000. 28(11): p.1206-13.
    
    76. Cheng, P., et al., Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol, 2001. 167(8): p. 4458-67.
    
    77. Ohishi, K., et al., The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells.Blood, 2001. 98(5): p. 1402-7.
    
    78. Olivier, A., et al., The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood, 2006. 107(7): p. 2694-701.
    
    79. Cheng, P., et al., Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood, 2003. 102(12): p. 3980-8.
    
    80. Cheng, P., et al., Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood, 2007. 109(2): p. 507-15.
    
    81. Li, Y.P., et al., Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol, 2008. 180(3): p. 1598-608.
    
    82. Skokos, D. and M.C. Nussenzweig, CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med, 2007. 204(7): p. 1525-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700