用户名: 密码: 验证码:
胆管癌67kDa层粘素受体调控Fas配体表达的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:Fas配体(FasL)是一种分子量约4万道尔顿的跨膜蛋白,属于肿瘤坏死因子超家族,当其与受体Fas结合后能够启动细胞凋亡。目前,大量研究显示:FasL不但在激活的T淋巴细胞上表达,而且在多种肿瘤细胞中表达,在人胆管癌细胞中,FasL也呈过表达。我们的研究及其它一些研究均显示,当高表达FasL的肿瘤细胞与Fas +的T淋巴细胞共培养时,可诱导Fas +的T淋巴细胞发生凋亡。这些研究结果提示肿瘤细胞的免疫逃逸与肿瘤细胞表达FasL有关。然而,关于肿瘤细胞FasL表达的信号调节及转录调控,目前研究仍不透彻。我们以往的研究显示在人胆管癌细胞中67kDa的层粘素受体( 67kDa laminin receptor,67-kDa LNR)过表达可诱导FasL的表达,但其信号调节及转录调控机制目前不清楚。
     67 kDa层粘素受体( 67kDa laminin receptor,67-kDa LNR)广泛存在于上皮细胞、内皮细胞、周围神经细胞、巨噬细胞及大部分肿瘤细胞表面,结合位点为LNβ1链的YIGSR序列。67-kDa LNR的高表达,可使癌细胞与基底膜的黏附力增强,有利于肿瘤的侵袭和转移。67-kDa LNR与LN的结合诱导了一系列跨膜信号传导系统的变化,最近的一项研究发现,层粘连蛋白的信号通路参与了有丝分裂原活化蛋白激酶(MAPK的)级联反应。这些结果提示:67-kDa LNR表达上调可能激活MAPK信号转导通路,且MAPK/ERK1/2被激活后,可将信号传递到细胞核内转录因子,从而增加与DNA的结合,促进和调节有关的基因表达。而肿瘤细胞67-kDa LNR激活MAPK信号转导通路是否可调节肿瘤细胞FasL的表达目前还不清楚。
     在T淋巴细胞中,FasL基因表达是受转录因子调控,包括NF-KB,AP-1,c-Myc等。然而,在肿瘤细胞中,FasL的转录调控受哪些转录因子的影响目前仍不清楚。c-Myc是一种原癌基因,与肿瘤的分化和发展密切相关,它和异二聚体Max一起形成转录因子复合体,介导了许多肿瘤生长基因的表达。而且,c-Myc不但可以引起细胞的增殖,且可以诱导凋亡,而其诱导凋亡的作用与Fas和FasL的表达有关,Brunner etal.揭示了c-Myc通过直接与FasL启动子相互作用,诱导活化T细胞FasL表达。在肿瘤细胞中,c-Myc是否可以调控FasL的表达目前还知之甚少。
     基于以上研究结果和思路,所以在本实验中,我们主要应用MAPK/ERKkinase(MEK)特异抑制剂PD98059,来观察肿瘤细胞67-kDa LNR能否通过MAPK/ERK1 /2信号通路,影响转录因子c-Myc的活性,从而调控人胆管癌细胞FasL的表达,进而影响Jurkat T细胞的凋亡。
     来材料与方法:
     1.用RT-PCR和Western-bolt检测PD98059处理组及未处理组人胆管癌细胞(QBC939)中c-Myc、p-c-Myc和FasL的表达。
     2.采用脂质体转染法转染c-Myc干扰质粒至人胆管癌细胞,用RT-PCR和Western-bolt检测c-Myc和FasL的表达。
     3.构建含FasL启动子及c-Myc结合位点(-127/-121)的FasL启动子的突变体的荧光素酶报告基因质粒,分别与pRL-TK表达质粒一起瞬时转染人胆管癌细胞,检测荧光素酶相对活性,比较PD98059处理组及PD98059未处理组人胆管癌细胞FasL启动子活性的变化情况;比较c-Myc结合位点突变前后的FasL启动子活性变化。
     4.染色质免疫共沉淀(ChIP)技术分析p-c-Myc与活体人胆管癌细胞中FasL基因启动子的结合情况。
     5.建立人胆管癌细胞与人Jurkat T细胞Transwell?小室旁分泌共培养模型,用TUNEL法检测胆管癌细胞PD98059处理组及PD98059未处理组对Jurkat T细胞凋亡的影响。
     结果:
     1. PD98059处理组人胆管癌细胞(QBC939细胞)磷酸化c-Myc(p-c-Myc)和FasL的表达均明显降低,而c-Myc未见明显变化;c-Myc干扰组胆管癌细胞c-Myc和FasL的表达均明显降低。
     2.构建包含FasL启动子的PGL3- FasL-pro荧光素酶报告质粒并有c-Myc结合位点突变的PGL3- FasL-proM荧光素酶报告质粒,均经酶切及测序鉴定,表明PGL3-FasL-pro和PGL3- FasL-proM荧光素酶报告载体质粒构建成功。
     3.运用荧火虫酶活性分析技术证实PD98059处理组人胆管癌细胞(QBC939细胞)荧光素酶活性(FasL基因启动子活性)与对照组相比明显下降;c-Myc干扰组及突变体组荧光素酶活性(FasL基因启动子活性)与对照组相比分别下降约80%和70%。
     4.用染色质免疫共沉淀技术证实了在人胆管癌细胞(QBC939细胞)中,p-c-Myc与FasL基因启动子存在结合关系。
     5.人胆管癌细胞(QBC939细胞)与Jurkat T细胞共培养后,Jurkat T细胞的凋亡指数明显增加;而PD98059处理人胆管癌细胞(QBC939细胞)后,JurkatT细胞的凋亡指数明显降低。
     结论:
     1.人胆管癌细胞(QBC939细胞)中,MAPK-ERK是67kDa层粘素受体(67-kDaLNR)诱导FasL的表达进而诱导Jurkat T细胞凋亡的主要信号通路之一。
     2.人胆管癌细胞(QBC939细胞)中,67-kDa LNR诱导增强FasL基因启动子的活性有赖于转录因子c-Myc的参与,且可能与MAPK-ERK信号通路的活化后增强c-Myc的磷酸化有关。
Backbround: Fas ligand (FasL) is an approximately 40-kDa transmembrane proteinbelongings to the tumor necrosis factor(TNF) superfamily that can trigger apoptotic celldeath by binding to its receptor,Fas (CD95/APO-1) . FasL is expressed not only byactivated T cells but also by various tumors . We have found that a humancholangiocarcinoma cell line (QBC-939 cells) expresses various levels of functional FasL.We have also observed that higher expression levels of FasL in QBC-939 cells resulted inincreased apoptosis of T lymphocytes when both cell types were co-cultured. This result isconsistent with the hypothesis that tumors gain immune privilege by upregulating FasLexpression in order to“counterattack”and kill Fas-expressing infiltrating lymphocytes.Moreover,our previous study showed that 67-kDa laminin receptor(67-kDa LNR) andLn-1 play a definite role in the upregulation of FasL in QBC-939 cells.
     67-kDa laminin receptor (67-kDa LNR) is thought to be a major laminin receptor thatis upregulated in neoplastic cells compared to their normal counterparts. Our previous studyshowed that human cholangiocarcinoma cells expressed a higher level of 67-kDa LNR thannormal epithelial cells. It has been shown that a cell-laminin interaction via the 67-kDaLNR is an important step in signal transduction pathways and that laminin and 67-kDa LNRare likely involved in MAPK (mitogen-activated protein kinase)- and DUSP(dual-specificity MAPK phosphatase)-mediated laminin signaling in human melanomacells . In human glioma cell lines,MEK inhibitors have been shown to decreasephosphorylated extracellular signal-regulated kinase (pERK) levels caused by stimulationwith either ligand or activating antibody to Fas. Based on our previous studies and the workof other researchers,we investigated the effect of the MAPK-ERK cascade on 67-kDaLNR- and Ln-1-induced FasL upregulation in QBC-939 cells.
     FasL gene expression is controlled by transcription factor–DNA interactions at the FasL promoter. c-Myc belongs to the Myc family of transcription factors and c-Myc mRNAand protein are overexpressed in many cancer cells,including human cholangiocarcinomacells. Numerous signal transduction pathways are involved in the control of c-Myctranscription. Bermudez et al. reported that EGF activates c-Myc transcription via theRas/MEK/ERK pathway. Because relatively little is known about c-Myc regulation of FasLexpression outside of the immune system,we focused on the role of c-Myc in 67-kDaLNR and laminin-induced FasL upregulation in QBC-939 cells. And in other aspect,weset out to investigate the role of MAPK-ERK pathway in 67-kDa LNR induced FasLexpression and FasL-mediated apoptosis in human cholangiocarcinoma cells.
     MethodsMethods: (1) The parent QBC-939 cells were pretreated with or without PD98059 (20μM) or DMSO (Vehicle) for 4 h and then incubated with Ln-1 (100μg/ml) for 24 h,theexpression of c-Myc and FasL were analyzed by immunohistochemistry,RT-PCR andWestern blotting. (2) To assess FasL promoter activity,the construct of pGL3-FasL-Prluciferase reporter gene vector and mutant construct were generated and wereco-transfected into QBC-939 cells with pRL-TK plasmid for 24h respectively. After that,the luciferase activity were measured using a luminometer. (3) Chromatinimmunoprecipitation assays was used to show the binding of phosphorylated c-Myc to thehuman FasL promoter in vivo. (4) We also examined the human cholangiocarcinomacells-induced apoptosis of Fas-sensitive Jurkat T cells using TUNEL assay after the parentQBC-939 cells were pretreated with or without PD98059 (20μM) or DMSO (Vehicle) for 4h and then incubated with Ln-1 (100μg/ml) for 24 h.
     Results : (1) PD98059 significantly attenuated phosphorylation of c-Myc on Ser-62and FasL upregulation in QBC-939 cells and these cells showed decreased cytotoxicityagainst Fas-sensitive Jurkat T cells. (2) A luciferase reporter assay revealed that levels ofFasL promoter activity were significantly reduced after the parent QBC-939 cells werepretreated with PD98059 (20μM) . (3) Furthermore,mutational analysis of the c-Mycsites located on FasL promoter suggested that these sites are required for FasL promoteractivity in QBC-939 cells. (4) In addition,chromatin immunoprecipitation assays showedthe binding of phosphorylated c-Myc to the human FasL promoter in vivo.
     ConclusionsConclusions: Based on these results,we conclude that:
     1. MAPK-ERK pathway in 67-kDa LNR induced FasL expression and FasL-mediatedapoptosis take an important role in human cholangiocarcinoma cells.
     2. 67-kDa LNR may increase the activation of the FasL promoter by phosphorylatingof c-Myc on Ser-62 to bind to the human FasL promoter in vivo in humancholangiocarcinoma cells.
引文
1. Méndez R.,Ruiz-Cabello F.,Rodríguez T.,et al. Identification of different tumorescape mechanisms in several metastases from a melanoma patient undergoingimmunotherapy. Cancer Immunology,Immunotherapy .2007;56:1 (88-94) .
    2. Spengler U. and Nattermann J. Immunopathogenesis in hepatitis C virus cirrhosis.Clinical Science . 2007;112:3-4 (141-155) .
    3. Inukai T.,Zhang X.,Goto M.,et al. Resistance of infant leukemia with MLLrearrangement to tumor necrosis factor-related apoptosis-inducing ligand: A possiblemechanism for poor sensitivity to antitumor immunity. Leukemia. 2006;20:12(2119-2129).
    4. Whiteside T.L. The role of death receptor ligands in shaping tumor microenvironment.Immunological Investigations. 2007;36:1 (25-46) .
    5. Adachi K.,Fujino M.,Kitazawa Y,et al. Exogenous Expression of Fas-Ligand orCrmA Prolongs the Survival in Rat Liver Transplantation. Transplantation Proceedings.2006;38:8 (2710-2713).
    6. Gopalan B,Litvak A,Sharma S,Mhashilkar AM,Chada S,Ramesh R.Activationof the Fas-FasL signaling pathway by MDA-7/IL-24 kills human ovarian cancer cells.Cancer Res. 2005;Apr 15;65(8):3017-24
    7. An S.-J,Chen J.-K,Chen H.J,Chang W,Jiang YG,Wei Q-Y. and Chen X-M.Characterization of 67 kD laminin receptor,a protein whose gene is overexpressed ontreatment of cells with anti-benzo[a]pyrene-7,8-Diol-9,10-epoxide. ToxicologicalSciences. 2006;90:2 (326-330) .
    8. Nakamura M,Nagano H,Sakon M,Yamamoto T,et al. Role of the Fas/FasLpathway in combination therapy with interferon-αand fluorouracil againsthepatocellular carcinoma in vitro. Journal of Hepatology. 2007;46:1 (77-88) .
    9. Von Knebel Doeberitz M. Is progression of HPV-infected cells within the cervicalepithelium linked to modified interaction with the extracellular matrix- The potentialrole of the 67-kd nonintegrin laminin receptor 67LR. Acta Cytologica 2006;50:1(1-2).
    10. Bosque A.,Marzo I.,Naval J. and Anel A. Apoptosis by IL-2 deprivation in humanCD8+ T cell blasts predominates over death receptor ligation,requires Bim expressionand is associated with Mcl-1 loss. Molecular Immunology. 2007;44:6 (1446-1453).
    11. Zuccato E,Blott E.J,Holt O,Sigismund S,Shaw M and Griffiths G.M. Sortingof Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation andphosphorylation. Journal of Cell Science. 2007;120:1(191-199) .
    12. Lazou A,Sugden PH,Clerk A. Activation of mitogen-activated proteinkinases(p38-MAPKs,SAPKs/JNKs and ERKs) by the G-protein-coupled receptoragonist phenylephrine in the perfused rat heart.Biochem J 1998;332:459-65.
    13. Haq SE,Clerk A,Sugden PH. Activation of mitogen-activated protein kinases(p38-MAPKs,SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart.FEBSLett 1998;434:305-8
    14. Pereira DB,Carvalho AP,Duarte cb.Non-specific effects of the MEK inhibitorsPD98059 and U0126 on glutamate release from hippocampal Synaptosomes.Neuropharmacology 2002;42:9-19
    15. Gould MC,Stephano JL.MAP Kinase,meiosis and sperm centrosome suppression inUrechis caupo.Dev Biol 1999;216:348-58
    16.王曙光,韩本立等.肝外胆管癌细胞系的建立.中华实验外杂志.1997;14(2):67-69.
    17. Kohno M,Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway:application as anticancer drugs. Prog Cell Cycle Res. 2003;5:219–224.
    18. Gao ZF,Li TY,Gao YH,et al. Overexpression of laminin receptor in up regulatingFas ligand in cells of cholangiocarcinoma. Chin J Dig Surg. 2008;6:53-55.
    19. Patarroyo M,Tryggvason K,Virtanen I. Laminin isoforms in tumor invasion,angiogenesis and metastasis. Semin Cancer Biol. 2002;12:197-207.
    20. B. Amati,K. Alevizopoulos and J. Vlach,Myc and the cell cycle. Front. Biosci. 3(1998),pp. D250–D268.
    21. E.V. Schmidt,The role of c-myc in cellular growth control. Oncogene 18 (1999),pp.2988–2996.
    22. L.M. Boxer and C.V. Dang,Translocations involving c-myc and c-myc function.Oncogene 20 (2001),pp. 5595–5610.
    23. L.M. Facchini and L.Z. Penn,The molecular role of Myc in growth andtransformation: recent discoveries lead to new insights. FASEB J. 12 (1998),pp.633–651.
    24. G.I. Evan,A.H. Wyllie,C.S. Gilbert,T.D. Littlewood,H. Land,M. Brooks,C.M. Waters,L.Z. Penn and D.C. Hancock,Induction of apoptosis in fibroblasts byc-myc protein. Cell 69 (1992),pp. 119–128.
    25. A.O. Hueber,M. Zornig,D. Lyon,T. Suda,S. Nagata and G.I. Evan,Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis.Science 278 (1997),pp. 1305–1309.
    26. Kavurma M M,Khachigian L M .Signaling and transcriptional control of Fas ligandgene expression. Cell Death and Differentiation 2003;10: 36–44.
    27. Zoltan Wiener,Edgar C. Ontsouka,et al. Synergistic induction of the Fas (CD95)ligand promoter by Max and NFκB in human non-small lung cancer cells. Exp Cell Res2004;299(1): 227-35.
    28. Benassi B,Fanciulli M,Fiorentino F,et al. c-Myc phosphorylation is required forcellular response to oxidative stress. Mol Cell 2006;21: 509–19.
    29. Watnick,RS,Cheng YN,Rangarajan A,et al. Ras modulates Myc activity torepress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell2003;3: 219–31
    30. Alam J,Cook JL. Reporter genes: application to the study of mammalian genetranscription[J]. Anal Biochem,1990,188(2): 245-254.
    31. Kasibhatla S,Brunner T,Genestier L,Echeverri F,Mahboubi A and Green DR(1998) DNA damaging agents induce expression of Fas ligand and subsequentapoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1:543–551.
    32. Kasibhatla S,Beere HM,Brunner T,Echeverri F and Green DR (2000) A'non-canonical' DNA-binding element mediates the response of the Fas-Ligandpromoter to c-Myc. Curr. Biol. 10: 1205–1208.
    33. Wood KV. Firefly luciferase: A new tool for molecular geologists[J]. Promega Notes,1990,28: 1-3.
    34. Naylor LH. Reporter gene technology: the future looks bright[J]. Biochem Pharmacol,1999,58(5): 749-757.
    35. Samantha E. George,Peter J. Bungay,and Louise H. Naylor.Evaluation of aCRE-Directed Luciferase Reporter Gene Assay as an Alternative to Measuring cAMPAccumulation.J Biomol Screen 1997;2: 235 - 240.
    36. Yoshiko Aoki,Shiken Sha,Hidehito Mukai,and Yoshisuke Nishi. Selectivestimulation of G-CSF gene expression in macrophages by a stimulatory monoclonalantibody as detected by a luciferase reporter gene assay. J Leukoc Biol 2000;68: 757.
    37. Stephanie LW,NB Harris,and RG Barletta. Development of a FireflyLuciferase-Based Assay for Determining Antimicrobial Susceptibility ofMycobacterium avium subsp paratuberculosis. J Clin Microbiol 1999;37: 304 - 309.
    38. Orlando V,Strutt H,Paro R. Analysis of chromatin structure by in vivoformaldehyde crosslinking. Methods 1997;11 (2) : 205-214
    39. Kuo MH,Allis CD. In vivo cross2linking and immunoprecipitation for studyingdynamic protein:DNA associations in a chromatin environment. Methods 1999;19:425~433.
    40. Hecht A,Grunstein M. Mapping DNA interaction sites of chromosomal proteinsusing immunoprecipitation and polymerase chain reaction. Methods Enzymol 1999;304: 399~414.
    41. Orlando V. Mapping chromosomal proteins in vivo by formaldehyde crosslinkedchromatin immunoprecipitation. Trends Biochem Sci 2000;25 (3) : 99~104
    42. Johnson KD,Bresnick EH. Dissecting long-range transcriptional mechanisms bychromatin immunoprecipitation. Methods 2002;26 (1) :27~36.
    43. Liu JJ,Nilsson A,Oredsson S,et al. Boswellic acids trigger apoptosis via apathway dependent on caspase28 activation but independent on Fas/Fas ligandinteraction in colon cancer HT229 cells [J]. Carcinogenesis,2002,23(12):2087-2093.
    44. Green DR. Death deceiver[ J ]. Nature,1998,396 (6712): 629-630.
    45. CefaiD,Favre L,Wattendorf E,et al. Role of FasLigand expression in promotingescape from immune rejection in a spontaneous tumor model[ J ]. Int J Cancer,2001,91 (4) : 529-537.
    46. O’Connell J, O’Sullivan GC, Collins JK, et al. The Fas counterattack: Fas-mediatedTcell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996,184:1075-1082.
    47. Okada K, Komuta K, Hashimoto S, et al.Frequency of apoptosis of tumor-infiltratinglymphocytes induced by fas counterattack in human colorectal carcinoma and itscorrelation with prognosis. Clin Cancer Res 2000, 6:3560-3564.
    48. Zheng HC, Sun JM, Wei ZL, et al. Expression of Fas ligand and caspase-3contributesto formation of immune escape in gastric cancer. World J Gastroenterol2003,9:1415-1420.
    49. Bennett MW, O’Connell J, O’Sullivan GC, et al. The Fas counterattack in vivo:apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligandexpression by human esophageal carcinoma. J Immunol 1998, 160:5669-5675.
    50. Stohl W, Xu D, Starling GC, et al. Promotion of activated human B cell apoptosisandinhibition of Ig production by soluble CD95 ligand: CD95-based downregulation ofIgproduction need not culminate in activated B cell death. Cell Immunol 2000,203:1-11.
    51. Rabinowich H, Reichert TE, Kashii Y, et al.Lymphocyte apoptosis induced byFasligand- expressing ovarian carcinoma cells. Implications for altered expression of Tcellreceptor in tumor-associated lymphocytes. J Clin Invest 1998, 101:2579-2588.
    52. Taylor DD, Gercel-Taylor C, Lyons KS, et al. T-cell apoptosis and suppression of T-cellreceptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovariantumors. Clin Cancer Res 2003, 9:5113-5119.
    53. Lambert C, Landau AM, Desbarats J. Fas-beyond death: a regenerative role for Fas inthe nervous system. Apoptosis 2003, 8:551-562.
    1. Nagata S (1999) Fas ligand-induced apoptosis. Annu. Rev. Genet. 33: 29–55
    2. O'Connell J,Bennett MW,O'Sullivan GC,Collins JK and Shanahan F (1999) TheFas counterattack: cancer as a site of immune privilege. Immunol. Today 20: 46–52
    3. Tanaka M,Suda T,Haze K,Nakamura N,Sato K,Kimura F,Motoyoshi K,Mizuki M,Tagawa S,Ohga S,Hatake K,Drummond AH and Nagata S (1996)Fas ligand in human serum. Nat. Med. 2: 317–322
    4. Tanaka M,Suda T,Takahashi T and Nagata S (1995) Expression of the functionalsoluble form of human fas ligand in activated lymphocytes. EMBO J. 14: 1129–1135
    5. Orlinick JR,Elkon KB and Chao MV (1997) Separate domains of the human FasLigand dictate self-association and receptor binding. J. Biol. Chem. 272: 32221–32229
    6. Blott EJ,Bossi G,Clark R,Zvelebil M and Griffiths GM (2001) Fas Ligand istargeted to secretory lysosomes via a proline-rich domain in the cytoplasmic tail. J. Cell.Sci. 114: 2405–2416
    7. Wenzel J,Sanzenbacher R,Ghadimi M,Lewitzky M,Zhau Q,Kaplan DR,Kabelitz D,Feller SM and Janssen O (2001) Multiple interactions of the cytosolicpolypropoline region of the CD95 ligand: hints for the reverse signal transductioncapacity of a death factor. FEBS Lett. 509: 255–262
    8. Budihardjo I,Oliver H,Lutter M,Luo X and Wang X (1999) Biochemical pathwaysof caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15: 269–290
    9. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem. J. 326: 1–16 |
    10. Huang DCS,Hahne M,Schroter M,Frei K,Fontana A,Villunger A,NewtonK,Tschopp J and Strasser A (1999) Activation of Fas by FasL induces apoptosis by amechanism that cannot be blocked by Bcl-2 or Bcl-xL. Proc. Natl. Acad. Sci. USA 96:14871–14876
    11. Dhein J,Walczak H,Baumler C,Debatin KM and Krammer PH (1995) AutocrineT-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438–441
    12. Brunner T,Mogil RJ,LaFace D,Yoo NJ,Mahboubi A,Echeverri F,MartinSJ,Force WR,Lynch DH,Ware CF and Green DR (1995) Cell-autonomous Fas(CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cellhybridomas. Nature 373: 441–444
    13. Ju ST,Panka DJ,Cui H,Ettinger R,el-Khatib M,Sherr DH,Stanger BZ andMarshak-Rothstein A (1995) Fas(CD95) FasL interactions required for programmedcell death after T-cell activation. Nature 373: 444–448
    14. Russell JH,Rush B,Weaver C and Wang R (1993) Mature T cells of autoimmunelpr/lpr mice have a defect in antigen-stimulated suicide. Proc. Natl. Acad. Sci. USA 90:4409–4413 |
    15. Giese T and Davidson WF (1994) Chronic treatment of C3H-lpr/lpr and C3H-gld/gldmice with anti-CD8 monoclonal antibody prevents the accumulation of double negativeT cells but not autoantibody production. J. Immunol. 152: 2000–2010
    16. Watanabe D,Suda T and Nagata S (1995) Expression of Fas in B cells of the mousegerminal center and Fas-dependent killing of activated B cells. Int. Immunol. 7:1949–1956
    17. Rathmell JC,Cooke MP,Ho WY,Grein J,Townsend SE,Davis MM andGoodnow CC (1995) CD95 (Fas)-dependent elimination of self-reactive B cells uponinteraction with CD4+ T cells. Nature 376: 181–184
    18. Fukuyama H,Adachi M,Suematsu S,Miwa K,Suda T,Yoshida N and NagataS (2002) Requirement of Fas expression in B cells for tolerance induction. Eur. J.Immunol. 32: 223–230
    19. Smyth MJ,Kelly JM,Sutton VR,Davis JE,Browne KA,Sayers TJ and TrapaniJA (2001) Unlocking the secrets of cytotoxic granule proteins. J. Leuk. Biol. 70: 18–29
    20. Shi L,Mai S,Israels S,Browne K,Trapani JA and Greenberg AH (1997)Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiatesapoptosis and GraB nuclear localization. J. Exp. Med. 185: 855–866
    21. Shi L,Chen G,He D,Bosc DG,Litchfield DW and Greenberg AH (1996)Granzyme B induces apoptosis and cyclin A-associated cyclin-dependent kinaseactivity in all stages of the cell cycle. J. Immunol. 157: 2381–2385
    22. Barry M,Heibein JA,Pinkoski MJ,Lee SF,Moyer RW,Green DR andBleackley RC (2000) Granzyme B short-circuits the need for caspase 8 activity duringgranule-mediated cytotoxic. T-lymphocyte killing by directly cleaving Bid. Mol. Cell.Biol. 20: 3781–3794
    23. Pinkoski MJ and Green DR (1999) Fas ligand,death gene. Cell Death Differ. 6:1174–1181
    24. Crabtree GR and Clipstone NA (1994) Signal transmission between the plasmamembrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63: 1045–1083
    25. Latinis KM,Norian LA,Eliason SL and Koretzky GA (1997) Two NFATtranscription factor binding sites participate in the regulation of CD95 (Fas) ligandexpression in activated human T cells. J. Biol. Chem. 272: 31427–31434
    26. Rivera I,Harhaj EW and Sun S-C (1998) Involvement of NF-AT in type I humanT-cell leukemia virus Tax-mediated Fas ligand promoter transactivation. J. Biol. Chem.273: 22382–22388
    27. Li XX and Stark GR (2002) NF kappa B-dependent signaling pathways. Exp. Hematol.30: 285–296
    28. Lee JI and Burckart GJ (1998) Nuclear factor kappa B: important transcription factorand therapeutic target. J. Clin. Pharmacol. 38: 981–993
    29. Matsui K,Fine A,Zhu B,Marshak-Rothstein A and Ju ST (1998) Identification oftwo NF-kappa B sites in mouse CD95 ligand (Fas ligand) promoter: functional analysisin T cell hybridoma. J. Immunol. 161: 3469–3473
    30. Kasibhatla S,Brunner T,Genestier L,Echeverri F,Mahboubi A and Green DR(1998) DNA damaging agents induce expression of Fas ligand and subsequentapoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1:543–551
    31. Kasibhatla S,Genestier L and Green DR (1999) Regulation of fas-ligand expressionduring activation-induced cell death in T lymphocytes via nuclear factor kappaB. J.Biol. Chem. 274: 987–992
    32. Kavurma MM,Santiago FS,Bonfoco E and Khachigian LM (2001) Sp1phosphorylation regulates apoptosis via extracellular FasL–Fas engagement. J. Biol.Chem. 276: 4964–4971
    33. Kavurma MM,Bobryshev U and Khachigian LM (2002) Ets-1 positively regulatesFas ligand transcription via co-operative interactions with Sp1. J. Biol. Chem. (inpress)
    34. Xiao S,Matsui K,Fine A,Zhu B,Marshak-Rothstein A,Widom RL and Ju ST(1999) FasL promoter activation by IL-2 through SP1 and NFAT but not Egr-2 andEgr-3. Eur. J. Immunol. 29: 3456–3465
    35. Mittelstadt PR and Ashwell JD (1998) Cyclosporin A-sensitive transcription factorEgr-3 regulates Fas ligand expression. Mol. Cell. Biol. 18: 3744–3751
    36. Silverman ES and Collins T (1999) Pathways of Egr-1-mediated gene transcription invascular biology. Am. J. Pathol. 153: 665–670
    37. Li-Webber M,Laur O and Krammer PH (1999) Novel Egr/NF-AT composite sitesmediate activation of the CD95 (APO-1/Fas) ligand promoter in response to T cellstimulation. Eur. J. Immunol. 29: 3017–3027
    38. Mittelstadt PR and Ashwell JD (1999) Role of Egr-2 in up-regulation of Fas ligand innormal T cells and aberrant double-negative 1pr and gld T cells. J. Biol. Chem. 274:3222–3227
    39. Rengarajan J,Mittelstadt PR,Mages HW,Gerth AJ,Kroczek RA,Ashwell JDand Glimcher LH (2000) Sequential involvement of NFAT and Egr transcription factorsin FasL regulation. Immunity 12: 293–300
    40. Yang Y,Dong B,Mittelstadt PR,Xiao H and Ashwell JD (2002) HIV Tat binds Egrproteins and enhances Egr-dependent transactivation of the Fas Ligand promoter. J.Biol. Chem. 277: 19482–19487
    41. Chow WA,Fang JJ and Yee JK (2000) The IFN regulatory factor family participatesin regulation of Fas ligand gene expression in T cells. J. Immunol. 164: 3512–3518
    42. Kirschhoff S,Sebens T,Baumann S,Krueger A,Zawatzky R,Li-Webber M,Meinl E,Neipel F,Fleckenstein B and Krammer PH (2002) Viral IFN-regulatoryfactors inhibit activation-induced cell death via two positive regulatory IFN-regulatoryfactor 1-dependent domains in the CD95 ligand promoter. J. Immunol. 168: 1226–1234
    43. Evan GI,Wyllie AH,Gilbert CS,Littlewood TD,Land H,Brooks M,WatersCM,Penn LZ and Hancock DC (1992) Induction of apoptosis in fibroblasts by c-mycprotein. Cell 69: 119–128
    44. Shi Y,Glynn JM,Guilbert LJ,Cotter TG,Bissonnette RP and Green DR (1992)Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science257: 212–214
    45. Bissonnette RP,McGahon A,Mahboubi A and Green DR (1994) FunctionalMyc-Max heterodimer is required for activation-induced apoptosis in T cellhybridomas. J. Exp. Med. 180: 2413–2418
    46. Hueber AO,Zornig M,Lyon D,Suda T,Nagata S and Evan GI (1997)Requirement for the CD95 receptor-ligand pathway in c-Myc-induced apoptosis.Science 278: 1305–1309
    47. Brunner T,Kasibhatla S,Pinkoski MJ,Frutschi C,Yoo NJ,Echeverri F,Mahboubi A and Green DR (2000) Expression of Fas ligand in activated T cells isregulated by c-Myc. J. Biol. Chem. 275: 9767–9772
    48. Kasibhatla S,Beere HM,Brunner T,Echeverri F and Green DR (2000) A'non-canonical' DNA-binding element mediates the response of the Fas-Ligandpromoter to c-Myc. Curr. Biol. 10: 1205–1208
    49. Genestier L,Kasibhatla S,Brunner T and Green DR (1999) Transforming growthfactor-1 inhibits Fas ligand expression and subsequent activation-induced cell death inT cells via downregulation of c-Myc. J. Exp. Med. 189: 231–239
    50. Brunet A,Bonni A,Zigmond MJ,Lin MZ,Juo P,Hu LS,Anderson MJ,Arden KC,Blenis J and Greenberg ME (1999) Akt promotes cell survival byphosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868
    51. Suhara T,Kim H-S,Kirshenbaum LA and Walsh K (2002) Suppression of Aktsignaling induces Fas Ligand expression: involvement of caspase and Jun kinaseactivation in Akt-mediated FasL regulation. Mol. Cell. Biol. 22: 680–691
    52. Faris M,Latinis KM,Kempiak SJ,Koretzky GA and Nel A (1998) Stress-inducedFas ligand expression in T cells is mediated through a MEK kinase 1-regulatedresponse element in the Fas ligand promoter. Mol. Cell. Biol. 18: 5414–5424
    53. Le-Niculescu H,Bonfoco E,Kasuya Y,Claret F-X,Green DR and Karin M (1999)Withdrawal of survival factors results in activation of the JNK pathway in neuronalcells leading to Fas ligand induction and cell death. Mol. Cell. Biol. 19: 751–763
    54. Akbar AN,Borthwick NJ,Wickremasinghe RG,Panayoitidis P,Pilling D,BofillM,Krajewski S,Reed JC and Salmon D (1996) Interleukin-2 receptor commongamma-chain signaling cytokines regulate activated T cell apoptosis in response togrowth factor withdrawal: selective induction of anti-apoptotic (bcl-2,bcl-xL) but notpro-apoptotic (bax,bcl-xS) gene expression. Eur. J. Immunol. 26: 294–299
    55. Radvanyi LG,Raju K,Spaner D,Mills GB and Miller RG (1998) Interleukin-2reverses the defect in activation-induced apoptosis in T cells from autoimmune 1prmice. Cell. Immunol. 183: 1–12
    56. Horak I,Lohler J,Ma A and Smith KA (1995) Interleukin-2 deficient mice: a newmodel to study autoimmunity and self-tolerance. Immunol. Rev. 148: 35–44
    57. Haux J,Johnsen AC,Steinkjer B,Egeberg K,Sundan A and Espevik T (1999) Therole of interleukin-2 in regulating the sensitivity of natural killer cells for Fas-mediatedapoptosis. Cancer Immunol. Immunother. 48: 139–146
    58. Refaeli Y,Vanparijs L,London CA,Tschopp J and Abbas AK (1998) Biochemicalmechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8: 615–623
    59. Ayroldi E,Zollo O,Cannarile L,D'Adamio F,Grohmann U,Delfino DV andRiccardi C (1998) Interleukin-6 (IL-6) prevents activation-induced cell death:IL-2-independent inhibition of Fas/FasL expression and cell death. Blood 92:4212–4219
    60. Teague TK,Marrack P,Kappler JW and Vella AT (1997) IL-6 rescues resting mouseT cells from apoptosis. J. Immunol. 158: 5791–5796
    61. Massague J (1990) The transforming growth factor-beta family. Annu. Rev. Cell Dev.Biol. 6: 597–641
    62. Cerwenka A,Kovar H,Majdic O and Holter W (1996) Fas- and activation-inducedapoptosis are reduced in human T cells preactivated in the presence of TGF-beta 1. J.Immunol. 156: 459–464
    63. Schlapbach R,Spanaus K-S,Malipiero U,Lens S,Tasinato A,Tschopp J andFontana A (2000) TGF-βinduces the expression of the FLICE-inhibitory protein andinhibits Fas-mediated apoptosis of microglia. Eur. J. Immunol. 30: 3680–3688
    64. Dünker N,Schmitta K and Krieglsteina K (2002) TGF-βis required for programmedcell death in interdigital webs of the developing mouse limb. Mech. Dev. 113: 111–120
    65. Arsura M,Wu M and Sonenshein GE (1996) TGF- TGF-β1 inhibits NF-kB/Relactivity inducing apoptosis of B cells: transcriptional activation of IB. Immunity 5:31–40
    66. Yang Y,Mercep M,Ware CF and Ashwell JD (1995) Fas and activation-induced Fasligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression byretinoic acid and glucocorticoids. J. Exp. Med. 181: 1673–1682
    67. Lee MO,Kang HJ,Kim YM,Oum JH and Park J (2002) Repression of FasLexpression by retinoic acid involves a novel mechanism of inhibition of transactivationfunction of the nuclear factors of activated T-cells. Eur. J. Biochem. 269: 1162–1170
    68. Yang Y,Minucci S,Ozato K,Heyman RA and Ashwell JD (1995) Efficientinhibition of activation-induced Fas ligand up-regulation and T cell apoptosis byretinoids requires occupancy of both retinoid X receptors and retinoic acid receptors. J.Biol. Chem. 270: 18672–18677
    69. Melino G,Bernassola F,Catani MV,Rossi A,Corazzari M,Sabatini S,VilboisF and Green DR (2000) Nitric oxide inhibits apoptosis via AP-1-dependent CD95Ltransactivation. Cancer Res. 60: 2377–2383
    70. Cippitelli M,Fionda C,Di Bona D,Di Rosa F,Lupo A,Piccoli M and FraSantoni A (2002) Negative regulation of CD95 ligand gene expression by vitamin D3 inT lymphocytes. J. Immunol. 168: 1154–1166
    71. Bodor J,Bodorova J,Bare C,Hodge DL,Young HA and Gress RE (2002)Differential inducibility of the transcriptional repressor ICER and its role in modulationof Fas ligand expression in T and NK lymphocytes. Eur. J. Immunol. 32: 203–212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700