下咽癌FADU细胞系中CD133阳性细胞的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景与目的]
     下咽癌是一种头颈部恶性肿瘤,是上消化道及上呼吸道恶性程度最高的肿瘤之一,其发生的机制并不清楚。预后差的主要原因包括局部复发、易发生淋巴结转移及远处转移。由于临床后果差,对患者生命及生活质量影响严重,是当前耳鼻咽喉-头颈外科的研究重点。
     肿瘤干细胞是近年来对肿瘤发生发展过程的一种新的理论观点,新观点认为肿瘤组织中只有极少量的肿瘤细胞有干细胞样作用,它们是一群数量较少但具有无限自我更新潜能并能促使肿瘤形成的细胞,在肿瘤生长中起着决定性作用。这类细胞有较强的抗拒放疗及化疗的作用,并可能与免疫逃逸,生长信号异常传递等多种肿瘤的重要生物学特点有关。目前已从脑肿瘤,白血病,乳腺癌,喉癌,肺癌等多种肿瘤组织中提取到了肿瘤干细胞,并进行了相关细胞学及分子生物学研究。从当前的研究结果来看,不同的肿瘤中,尽量其肿瘤干细胞生物学特性有共同点,如无限自我更新潜能,分化能力等,但肿瘤干细胞其表面标志物是不尽相同的,这提示我们需要对不同的肿瘤进行相应研究,了解不同肿瘤中肿瘤干细胞的标志物特点。
     近年来,许多研究证实,CD133是肿瘤干细胞的重要标志物之一。CD133是一种分子量为120kDa,具有5个跨膜区的糖蛋白,属于一种早期抗原。在2000年英国举行的第7届国际人类白细胞分化抗原研讨会上被正式命名为CD133。它是一种正常的造血干细胞表面标志物,它的一个显著特点就是:CD133的表达随着细胞的分化迅速下调,选择性地在骨髓和外周血造血干细胞及内皮祖细胞表达,但在成熟内皮细胞上不表达,是一个重要的分离和鉴定造血干或祖细胞的分子标志。
     侵袭能力是恶性肿瘤的标志性行为特点之一,是当前研究恶性肿瘤行为特点的一个重要方向。目前利用Transwell小室是体外研究肿瘤细胞侵袭和转移行为的简便且快速的方法。
     本研究拟以CD133为分选标志物,从人类FADU细胞系中分选出CD133阳性细胞,研究其数量分布特点,形态学特点,并拟通过应用Transwell小室的研究方法,研究在FADU细胞系中CD133阳性细胞的侵袭能力,从而为未来完善对CD133阳性细胞拥有的细胞学特点研究提供相应的细胞学实验室基础。
     第一部分
     下咽癌FADU细胞系中CD133表达情况研究
     [目的]研究下咽癌FADU细胞系中CD133表达情况。
     [方法]对下咽癌FADU细胞进行培养和传代,分别应用免疫细胞化学和流式细胞仪的方法对下咽癌FADU细胞系中CD133表达情况进行研究。
     [结果]免疫细胞化学的方法发现,在下咽癌FADU细胞中CD133阳性细胞仅占少数,而在利用流式细胞仪的方法研究后发现,FADU细胞中CD133阳性细胞比例仅为2.01%。
     [结论]CD133阳性细胞数量在FADU细胞系中占少数。
     第二部分
     下咽癌FADU细胞系中CD133阳性细胞的分选
     [目的]应用可靠的分选手段,从下咽癌FADU细胞系中分选CD133阳性细胞并鉴定。
     [方法]对下咽癌FADU细胞进行培养和传代,应用免疫磁珠分选技术进行CD133阳性细胞的分选。
     [结果]应用免疫磁珠分选技术后,可很好地分选出CD133阳性细胞,其分选后CD133阳性细胞纯度可达91.2%。
     [结论]免疫磁珠分选技术可很好地应用于下咽癌FADU细胞系中CD133阳性细胞的分选。
     第三部分
     下咽癌FADU细胞系中CD133阳性细胞的侵袭能力研究
     [目的]研究下咽癌FADU细胞系中CD133阳性细胞的侵袭能力。
     [方法]对应用免疫磁珠分选技术进行分选后的CD133阳性细胞、阴性细胞分别应用Transwell小室进行侵袭能力研究,倒置相差显微镜下照相,计数迁移到上室基质膜外表面的细胞数目,以能穿过基质膜的细胞数目多少表示细胞的侵袭能力强弱。每个样本计数5个视野(×200)的细胞数,取其平均值进行比较。
     [结果]与CD133阴性细胞相比,CD133阳性细胞透膜数量较阴性细胞明显高,其穿过基质膜的细胞数分别为54.0±2.3,17.0±1.1,其差异具有统计学意义,P<0.01。
     [结论]在下咽癌FADU细胞系中CD133阳性细胞比阴性细胞侵袭能力强。
Hypopharyngeal cancer is one of head and neck malignant tumor, which is also one of the highest level of malignant tumor in upper digestive tract and upper respiratory tract. The mechanism isn't clear.The reasons of poor prognosis include: local recurrence, lymphatic metastasis and metastasis.Because of poor prognosis,and may affect the quality of patient's life severely, hypopharyngeal cancer is one of the research priorities in otorhinolaryngology.
     Cancer stem cells is a new theoretical perspective, the new view is that only a very small amount of tumor cells have stem cell-like role,.they have potential for unlimited self-renewal and promote tumor formation, The cells play a decisive role in tumor growth. Such cells have a strong resistance to radiation therapy and chemotherapy, and may be related to immune escape, the growth of abnormal signal transmission and many other important feature of the tumor. At present, cancer stem cells have been identified in brain neoplasms, leukemia, breast cancers laryngeal cancer and lung cancer through an experimental strategy. From the current research results, the different tumors, as some biological characteristics have in common, such as the unlimited self-renewal potential and differentiation capacity, but the cancer stem cell markers on its surface is not the same, which prompt us to the need for accordingly different tumor research, find the different tumor markers of cancer stem cells in different tumors.
     In recent years, many studies have confirmed that, CD 133 is one of the important markers for cancer stem cells,. CD133 is an early antigen whose molecular weight is 120 kDa, with five transmembrane glycoprotein. In 2000, the antigen was officially named CD133 in the United Kingdom at the 7th session of the International seminar on human leukocyte differentiation.CD133 is a normal surface markers for hematopoietic stem cell.one of its important features is:CD133 expresses with cell differentiation and down rapidly.It selectively expressed in stem cells in the bone marrow and peripheral blood and endothelial progenitor cells, but never in mature endothelial cells.CD133 is an important separation and identification marker for hematopoietic stem or progenitor cell.
     Invasion capacity is a sign of behavior characteristics of malignant tumors.It is one of the important direction in current study of the characteristics of malignant tumors. Transwell chamber is currently using in vitro for the study of tumor cell invasion and metastasis behavior.
     This study is intended to CD133 as a sorting marker of cell lines from human FADU cell line.CD133-positive cells were selected to study the distribution of their number, morphological characteristics, and intends to study the FADU cell lines CD133-positive cells in the invasion capacity through Transwell chamber.
     PartⅠ
     Study of the expressions of CD133 in FADU cell line
     Objective:Study of the expressions of CD 133 in FADU cell line.
     Methods:FADU cells are cultured and passaged, the expression of CD133 was studied by immunocytochemistry and flow cytometry methods.
     Results:CD133-positive cells accounted for only a small number of the FADU cells by mmunocytochemistry method, while the ratio of CD133-positive cell in FADU cell line is only 2.01% in the use of flow cytometry method.
     Conclusion:The number of CD133-positive cells accounted for a small number of cell lines FADU.
     PartⅡ
     Cells sorting of CD133-positive in Hypopharyngeal FADU cell line
     Objective:Applied with the magnetic cell sorting(MACS) technology, we purified CD133-positive cells from a FADU cell line and identified.
     Methods:FADU cells are cultured and passaged, we purified CD133-positive cells from a FADU cell line by magnetic cell sorting(MACS) technology and identified.
     Results:Application of magnetic cell sorting(MACS) technology, may be a good choice for purifying of CD133-positive cells, purity of the CD133-positive cells after sorting is 91.2%.
     Conclusion:Application of magnetic cell sorting(MACS) technology, may be a good choice for purifying of CD133-positive cells
     PartⅢ
     Invasion of the CD133 positive cells in FADU cell line
     Objective:To investigate the Invasion of the CD 133 positive cells in FADU cell line.
     Methods:In our study, Immunomagnetic beads were applied to purify CD133-positive cells in FADU cell line. Invasion of CD133-positive, CD133-negative cells were was measured by Transwell experiment.
     Results:The cell number that infiltrated Transwell membrane in CD133-positive group (54±2.3) was significantly higher than that in CD133-negative group (17±1.1).
     Conclusion:CD133-positive cells in FADU cell line show higher Invasion.
引文
[1]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.1994.367(6464): 645-8.
    [2]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.1997. 3(7):730-7.
    [3]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005. 65(23):10946-51.
    [4]Bhatt RI, Brown MD, Hart CA, et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A.2003.54(2): 89-99.
    [5]Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004.117(Pt 16):3539-45.
    [6]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A.2003.100(7):3983-8.
    [7]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003.63(18):5821-8.
    [8]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature.2004.432(7015):396-401.
    [9]Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A.2003. 100(7):3547-9.
    [10]Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res.2010.16(3):876-87.
    [11]Friedrichs K, Franke F, Lisboa BW, et al. CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res.1995.55(22):5424-33.
    [12]Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD 133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope.2007.117(3):455-60.
    [13]Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD 133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol.2004.57(9):965-9.
    [14]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood.2000.95(3):952-8.
    [15]Shmelkov SV, Jun L, St CR, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood.2004.103(6): 2055-61.
    [16]Fargeas CA, Florek M, Huttner WB, Corbeil D. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem.2003.278(10):8586-96.
    [17]Yu Y, Flint A, Dvorin EL, Bischoff J. AC 133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem.2002.277(23):20711-6.
    [18]Fargeas CA, Corbeil D, Huttner WB. AC133 antigen, CD133, prominin-1, prominin-2, etc.:prominin family gene products in need of a rational nomenclature. Stem Cells.2003.21(4):506-8.
    [1]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood.2000.95(3):952-8.
    [2]Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem.1981.50:349-83.
    [3]Shmelkov SV, St CR, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol.2005.37(4):715-9.
    [4]Fargeas CA, Florek M, Huttner WB, Corbeil D. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem.2003.278(10):8586-96.
    [5]Yu Y, Flint A, Dvorin EL, Bischoff J. AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem.2002.277(23):20711-6.
    [6]Kania G, Corbeil D, Fuchs J, et al. Somatic stem cell marker prominin-1/CD 133 is expressed in embryonic stem cell-derived progenitors. Stem Cells.2005.23(6):791-804.
    [7]Lang P, Bader P, Schumm M, et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol.2004.124(1):72-9.
    [8]Fargeas CA, Corbeil D, Huttner WB. AC133 antigen, CD133, prominin-1, prominin-2, etc.:prominin family gene products in need of a rational nomenclature. Stem Cells.2003.21(4):506-8.
    [9]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003.63(18):5821-8.
    [10]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature.2004.432(7015):396-401.
    [11]Wuchter C, Ratei R, Spahn G, et al. Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica. 2001.86(2):154-61.
    [12]Toren A, Bielorai B, Jacob-Hirsch J, et al. CD133-positive hematopoietic stem cell "sternness" genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells.2005.23(8):1142-53.
    [13]Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene.2004.23(43):7267-73.
    [14]Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun.2006.351(4):820-4.
    [15]Tanaka S, Yamamoto T, Tanaka H, et al. Potentiality of combined hepatocellular and intrahepatic cholangiocellular carcinoma originating from a hepatic precursor cell:Immunohistochemical evidence. Hepatol Res.2005. 32(1):52-7.
    [16]Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology.2007.132(7): 2542-56.
    [17]Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD 133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope.2007.117(3):455-60.
    [18]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005. 65(23):10946-51.
    [19]Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res.2007.67(7):3153-61.
    [20]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene.2006.25(12): 1696-708.
    [1]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.2001.414(6859):105-11.
    [2]Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev.2005. 15(1):87-96.
    [3]Li Y, Shang P, Qian AR, Wang L, Yang Y, Chen ZN. Inhibitory effects of antisense RNA of HAb18G/CD147 on invasion of hepatocellular carcinoma cells in vitro. World J Gastroenterol.2003.9(10):2174-7.
    [4]王春梅,高凌寒.应用重组基底膜侵袭技术对人肺腺肝癌细胞侵袭能力的研究.哈尔滨医科大学学报.2000.34(5):313-314.
    [5]张均田.药理实验方法[上].北京.中国协和医科大学北京医科大学联合出版社.935-937.
    [6]司徒镇强.细胞培养:186-187.
    [7]Kibbey MC, Grant DS, Kleinman HK. Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth:an in vivo Matrigel model. J Natl Cancer Inst.1992.84(21):1633-8.
    [8]DeRoock IB, Pennington ME, Sroka TC, et al. Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. Cancer Res. 2001.61(8):3308-13.
    [9]Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res.2007. 67(10):4827-33.
    [10]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003.63(18):5821-8.
    [11]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature.2004.432(7015):396-401.
    [12]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005. 65(23):10946-51.
    [13]Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res.2007.67(7):3153-61.
    [14]Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun.2006.351(4):820-4.
    [15]Tanaka S, Yamamoto T, Tanaka H, et al. Potentiality of combined hepatocellular and intrahepatic cholangiocellular carcinoma originating from a hepatic precursor cell:Immunohistochemical evidence. Hepatol Res.2005. 32(1):52-7.
    [16]Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology.2007.132(7): 2542-56.
    [17]Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope.2007.117(3):455-60.
    [18]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.2004.64(19):7011-21.
    [1]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.1994.367(6464): 645-8.
    [2]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.1997. 3(7):730-7.
    [3]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.2001.414(6859):105-11.
    [4]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005. 65(23):10946-51.
    [5]Bhatt RI, Brown MD, Hart CA, et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A.2003.54(2): 89-99.
    [6]Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004.117(Pt 16):3539-45.
    [7]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A.2003.100(7):3983-8.
    [8]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003.63(18):5821-8.
    [9]Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.2008.15(3): 504-14.
    [10]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007. 445(7123):106-10.
    [11]Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD 133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope.2007.117(3):455-60.
    [12]Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun.2006.351(4):820-4.
    [13]Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology.2007.132(7): 2542-56.
    [14]Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle.2004.3(4):414-5.
    [15]Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrahe hematopoietic stem cell antigen:isolation, characterization, and molecular cloning. Blood.1997.90(12):5013-21.
    [16]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature.2004.432(7015):396-401.
    [17]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood.2000.95(3):952-8.
    [18]Kania G, Corbeil D, Fuchs J, et al. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells.2005.23(6):791-804.
    [19]Fargeas CA, Corbeil D, Huttner WB. AC133 antigen, CD133, prominin-1, prominin-2, etc.:prominin family gene products in need of a rational nomenclature. Stem Cells.2003.21(4):506-8.
    [20]Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem.1981.50:349-83.
    [21]Shmelkov SV, St CR, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol.2005.37(4):715-9.
    [22]Fargeas CA, Florek M, Huttner WB, Corbeil D. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem.2003.278(10):8586-96.
    [23]Yu Y, Flint A, Dvorin EL, Bischoff J. AC133-2, a novel isoform of human AC 133 stem cell antigen. J Biol Chem.2002.277(23):20711-6.
    [24]Shmelkov SV, Jun L, St CR, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood.2004.103(6): 2055-61.
    [25]Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A.1997.94(23):12425-30.
    [26]Lang P, Bader P, Schumm M, et al. Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol.2004.124(1):72-9.
    [27]Wuchter C, Ratei R, Spahn G, et al. Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica. 2001.86(2):154-61.
    [28]Toren A, Bielorai B, Jacob-Hirsch J, et al. CD133-positive hematopoietic stem cell "sternness" genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells.2005.23(8):1142-53.
    [29]Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A.2003.100(25): 15178-83.
    [30]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.2004.64(19):7011-21.
    [31]Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.2007.67(9):4010-5.
    [32]Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature.2007.445(7123):111-5.
    [33]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007. 445(7123):106-10.
    [34]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz iAA. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol.2007.17(2):165-72.
    [35]Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell.2007.1(3):313-23.
    [36]Florek M, Haase M, Marzesco AM, et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res.2005.319(1):15-26.
    [37]Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature.2005. 438(7069):820-7.
    [38]Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol.2004.57(9):965-9.
    [39]Bruno S, Bussolati B, Grange C, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol.2006.169(6):2223-35.
    [40]Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007.43(5):935-46.
    [41]Friedrichs K, Franke F, Lisboa BW, et al. CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res.1995.55(22):5424-33.
    [42]Woodman AC, Sugiyama M, Yoshida K, et al. Analysis of anomalous CD44 gene expression in human breast, bladder, and colon cancer and correlation of observed mRNA and protein isoforms. Am J Pathol.1996.149(5):1519-30.
    [43]Garraway IP, Sun W, Tran CP, et al. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate.2010.70(5):491-501.
    [44]Walia V, Elble RC. Enrichment for breast cancer cells with stem/progenitor properties by differential adhesion. Stem Cells Dev.2010.
    [45]Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL. In Situ Identification of Putative Cancer Stem Cells by Multiplexing ALDH1, CD44, and Cytokeratin Identifies Breast Cancer Patients with Poor Prognosis. Am J Pathol.2010.
    [46]Oliveira LR, Jeffrey SS, Ribeiro-Silva A. Stem cells in human breast cancer. Histol Histopathol.2010.25(3):371-85.
    [47]Agelopoulos K, Greve B, Schmidt H, et al. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468. BMC Cancer.2010.10:78.
    [48]Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A.2003. 100(7):3547-9.
    [49]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene.2006.25(12): 1696-708.
    [50]To K, Fotovati A, Reipas KM, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res.2010.70(7):2840-51.
    [51]Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res.2010.16(3):876-87.
    [52]Tamkun JW, DeSimone DW, Fonda D, et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell.1986.46(2):271-82.
    [53]Tlsty TD. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol.1998.10(5):647-53.
    [54]Wu A, Wiesner S, Xiao J, et al. Expression of MHC I and NK ligands on human CD133+ glioma cells:possible targets of immunotherapy. J Neurooncol.2007.83(2):121-31.
    [55]Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer.2006.5:67.
    [56]Liu Q, Nguyen DH, Dong Q, et al. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neurooncol.2009.94(1):1-19.
    [57]Altaner C. Glioblastoma and stem cells. Neoplasma.2008.55(5):369-74.
    [58]Dell'Albani P. Stem cell markers in gliomas. Neurochem Res.2008.33(12): 2407-15.
    [59]Altundag K, Altundag O, Elkiran ET, Cengiz M, Ozisik Y. Addition of granulocyte-colony stimulating factor (G-CSF) to adjuvant treatment may increase survival in patients with operable breast cancer:interaction of G-CSF with dormant micrometastatic breast cancer cells. Med Hypotheses.2004. 63(1):56-8.
    [60]Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature.2006. 444(7120):756-60.
    [61]Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133-cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys.2007.67(1):1-5.
    [62]Yang ZJ, Wechsler-Reya RJ. Hit 'em where they live:targeting the cancer stem cell niche. Cancer Cell.2007.11(1):3-5.
    [63]Massard C, Deutsch E, Soria JC. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol.2006.17(11):1620-4.
    [64]Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene.2004.23(43):7267-73.
    [65]Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med.2006.12(10): 1167-74.
    [66]Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell.2007.11(1):69-82.
    [67]Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature.2003.425(6960):841-6.
    [68]Nakano I, Hemmati HD, Kornblum HI. [Cancer stem cells in pediatric brain tumors]. No Shinkei Geka.2004.32(8):827-34.
    [69]Park JS, Noh DY, Kim SH, et al. Gene expression analysis in SV40-immortalized human breast luminal epithelial cells with stem cell characteristics using a cDNA microarray. Int J Oncol.2004.24(6):1545-58.
    [70]Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature.2004.432(7015):324-31.
    [71]Lee J, Son MJ, Woolard K, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell.2008.13(1):69-80.
    [72]Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol.2004.5(7):738-43.
    [73]Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res.2007.67(7):3153-61.
    [74]Bruggeman SW, Hulsman D, Tanger E, et al. Bmil controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell.2007.12(4):328-41.
    [75]Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature.2006.444(7120):761-5.
    [76]Li Y, Welm B, Podsypanina K, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A.2003.100(26): 15853-8.
    [77]Foulkes WD. BRCA1 functions as a breast stem cell regulator. J Med Genet. 2004.41(1):1-5.
    [78]Hashimoto S, Onodera Y, Hashimoto A, et al. Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci U S A.2004.101(17):6647-52.
    [79]Grimwade D, Enver T. Acute promyelocytic leukemia:where does it stem from. Leukemia.2004.18(3):375-84.
    [80]Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics. Proc Natl Acad Sci U S A.2003.100 Suppl 1:11842-9.
    [81]Dirks PB. Brain tumor stem cells:bringing order to the chaos of brain cancer. J Clin Oncol.2008.26(17):2916-24.
    [1]Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature.1994.367(6464): 645-8.
    [2]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.1997. 3(7):730-7.
    [3]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.2001.414(6859):105-11.
    [4]Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005. 65(23):10946-51.
    [5]Bhatt RI, Brown MD, Hart CA, et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry A.2003.54(2): 89-99.
    [6]Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004.117(Pt 16):3539-45.
    [7]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A.2003.100(7):3983-8.
    [8]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003.63(18):5821-8.
    [9]Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.2008.15(3): 504-14.
    [10]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007. 445(7123):106-10.
    [11]Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope.2007.117(3):455-60.
    [12]Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun.2006.351(4):820-4.
    [13]Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology.2007.132(7): 2542-56.
    [14]Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle.2004.3(4):414-5.
    [15]Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen:isolation, characterization, and molecular cloning. Blood.1997.90(12):5013-21.
    [16]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature.2004.432(7015):396-401.
    [17]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood.2000.95(3):952-8.
    [18]Kania G, Corbeil D, Fuchs J, et al. Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells.2005.23(6):791-804.
    [19]Fargeas CA, Corbeil D, Huttner WB. AC133 antigen, CD133, prominin-1, prominin-2, etc.:prominin family gene products in need of a rational nomenclature. Stem Cells.2003.21(4):506-8.
    [20]Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem.1981.50:349-83.
    [21]Shmelkov SV, St CR, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol.2005.37(4):715-9.
    [22]Fargeas CA, Florek M, Huttner WB, Corbeil D. Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem.2003.278(10):8586-96.
    [23]Yu Y, Flint A, Dvorin EL, Bischoff J. AC133-2, a novel isoform of human AC133 stem cell antigen. J Biol Chem.2002.277(23):20711-6.
    [24]Shmelkov SV, Jun L, St CR, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood.2004.103(6): 2055-61.
    [25]Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A.1997.94(23):12425-30.
    [26]Lang P, Bader P, Schumm M, et al. Transplantation of a combination of CD 133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol.2004.124(1):72-9.
    [27]Wuchter C, Ratei R, Spahn G, et al. Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica. 2001.86(2):154-61.
    [28]Toren A, Bielorai B, Jacob-Hirsch J, et al. CD133-positive hematopoietic stem cell "stemness" genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells.2005.23(8):1142-53.
    [29]Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A.2003.100(25): 15178-83.
    [30]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res.2004.64(19):7011-21.
    [31]Beier D, Hau P, Proescholdt M, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res.2007.67(9):4010-5.
    [32]Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature.2007.445(7123):111-5.
    [33]O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007. 445(7123):106-10.
    [34]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz iAA. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol.2007.17(2):165-72.
    [35]Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell.2007.1(3):313-23.
    [36]Florek M, Haase M, Marzesco AM, et al. Prominin-1/CD 133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res.2005.319(1):15-26.
    [37]Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature.2005. 438(7069):820-7.
    [38]Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol.2004.57(9):965-9.
    [39]Bruno S, Bussolati B, Grange C, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol.2006.169(6):2223-35.
    [40]Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD 133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007.43(5):935-46.
    [41]Friedrichs K, Franke F, Lisboa BW, et al. CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res.1995.55(22):5424-33.
    [42]Woodman AC, Sugiyama M, Yoshida K, et al. Analysis of anomalous CD44 gene expression in human breast, bladder, and colon cancer and correlation of observed mRNA and protein isoforms. Am J Pathol.1996.149(5):1519-30.
    [43]Garraway IP, Sun W, Tran CP, et al. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate.2010.70(5):491-501.
    [44]Walia V, Elble RC. Enrichment for breast cancer cells with stem/progenitor properties by differential adhesion. Stem Cells Dev.2010.
    [45]Neumeister V, Agarwal S, Bordeaux J, Camp RL, Rimm DL. In Situ Identification of Putative Cancer Stem Cells by Multiplexing ALDH1, CD44, and Cytokeratin Identifies Breast Cancer Patients with Poor Prognosis. Am J Pathol.2010.
    [46]Oliveira LR, Jeffrey SS, Ribeiro-Silva A. Stem cells in human breast cancer. Histol Histopathol.2010.25(3):371-85.
    [47]Agelopoulos K, Greve B, Schmidt H, et al. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468. BMC Cancer.2010.10:78.
    [48]Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A.2003. 100(7):3547-9.
    [49]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene.2006.25(12): 1696-708.
    [50]To K, Fotovati A, Reipas KM, et al. Y-box binding protein-1 induces the expression of CD44 and CD49f leading to enhanced self-renewal, mammosphere growth, and drug resistance. Cancer Res.2010.70(7):2840-51.
    [51]Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res.2010.16(3):876-87.
    [52]Tamkun JW, DeSimone DW, Fonda D, et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell.1986.46(2):271-82.
    [53]Tlsty TD. Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Curr Opin Cell Biol.1998.10(5):647-53.
    [54]Wu A, Wiesner S, Xiao J, et al. Expression of MHC I and NK ligands on human CD 133+ glioma cells:possible targets of immunotherapy. J Neurooncol.2007.83(2):121-31.
    [55]Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD 133+ cancer stem cells in glioblastoma. Mol Cancer.2006.5:67.
    [56]Liu Q, Nguyen DH, Dong Q, et al. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neurooncol.2009.94(1):1-19.
    [57]Altaner C. Glioblastoma and stem cells. Neoplasma.2008.55(5):369-74.
    [58]Dell'Albani P. Stem cell markers in gliomas. Neurochem Res.2008.33(12): 2407-15.
    [59]Altundag K, Altundag O, Elkiran ET, Cengiz M, Ozisik Y. Addition of granulocyte-colony stimulating factor (G-CSF) to adjuvant treatment may increase survival in patients with operable breast cancer:interaction of G-CSF with dormant micrometastatic breast cancer cells. Med Hypotheses.2004. 63(1):56-8.
    [60]Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature.2006. 444(7120):756-60.
    [61]Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys.2007.67(1):1-5.
    [62]Yang ZJ, Wechsler-Reya RJ. Hit 'em where they live:targeting the cancer stem cell niche. Cancer Cell.2007.11(1):3-5.
    [63]Massard C, Deutsch E, Soria JC. Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol.2006.17(11):1620-4.
    [64]Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene.2004.23(43):7267-73.
    [65]Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med.2006.12(10): 1167-74.
    [66]Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell.2007.11(1):69-82.
    [67]Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature.2003.425(6960):841-6.
    [68], Nakano I, Hemmati HD, Kornblum HI. [Cancer stem cells in pediatric brain tumors]. No Shinkei Geka.2004.32(8):827-34.
    [69]Park JS, Noh DY, Kim SH, et al. Gene expression analysis in SV40-immortalized human breast luminal epithelial cells with stem cell characteristics using a cDNA microarray. Int J Oncol.2004.24(6):1545-58.
    [70]Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature.2004.432(7015):324-31.
    [71]Lee J, Son MJ, Woolard K, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell.2008.13(1):69-80.
    [72]Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol.2004.5(7):738-43.
    [73]Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD 133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res.2007.67(7):3153-61.
    [74]Bruggeman SW, Hulsman D, Tanger E, et al. Bmil controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell.2007.12(4):328-41.
    [75]Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature.2006.444(7120):761-5.
    [76]Li Y, Welm B, Podsypanina K, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A.2003.100(26): 15853-8.
    [77]Foulkes WD. BRCA1 functions as a breast stem cell regulator. J Med Genet. 2004.41(1):1-5.
    [78]Hashimoto S, Onodera Y, Hashimoto A, et al. Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci U S A.2004.101(17):6647-52.
    [79]Grimwade D, Enver T. Acute promyelocytic leukemia:where does it stem from. Leukemia.2004.18(3):375-84.
    [80]Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics. Proc Natl Acad Sci U S A.2003.100 Suppl 1:11842-9.
    [81]Dirks PB. Brain tumor stem cells:bringing order to the chaos of brain cancer. J Clin Oncol.2008.26(17):2916-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700