饲料营养成分对饥饿后日本沼虾生长及生理功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对日本沼虾进行了不同时间(4天和8天)的饥饿处理后再投喂不同营养水平的饲料。考察了体重增加率、体长增加率、耗氧率、排氨率、谷丙转氨酶(GPT)、谷草转氨酶(GOT)、Na+-K+-ATPase活性等指标的变化,探讨了恢复投喂阶段饲料中蛋白质、脂肪和淀粉等营养水平对日本沼虾补偿生长及生理功能的影响。主要结果如下:
     1、饲料蛋白水平对日本沼虾饥饿后生长及生理功能的影响
     饥饿期间处理组日本沼虾的代谢率及酶活性显著低于对照组。4天饥饿结束后投喂不同蛋白水平的饲料,在恢复投喂第4天代谢率及酶活性均迅速增加,饲料蛋白含量为30%(S2)和45%(S3)实验组个体各指标高于对照组和低蛋白含量S1组(15%)。体重和体长增长率S2和S3组显著高于对照组,表现出完全补偿生长,并与代谢率及酶活性的变化相一致。到实验结束时各实验组日本沼虾代谢率和酶活性均恢复到对照组水平。8天饥饿处理组日本沼虾的生长率、代谢率及酶活性均不及对照组,说明4天饥饿时间对于日本沼虾补偿生长是较为适宜的,并且实现完全补偿生长饲料中最适蛋白含量为30-45%。
     2、饲料淀粉水平对日本沼虾饥饿后生长及生理功能的影响
     饥饿期间各处理组的代谢率及酶活性指标显著低于对照组4天饥饿结束后,投喂不同淀粉水平的饲料,代谢率及酶活性均显著增加,低淀粉含量的实验组S1(15%)S2(20%)和S3(25%)各指标高于高淀粉含量S4(30%)组,S2(20%)和S3(25%)组生长率显著高于对照组和S1和S4组,出现完全补偿生长。因此确定日本沼虾经4天饥饿后饲料淀粉最适淀粉含量为20-25%。8天的饥饿处理组没有出现完全补偿生长现象,代谢率和酶活性也低于持续饱食组。
     3、饲料脂肪水平对日本沼虾饥饿后生长及生理功能的影响
     饥饿期间处理组的代谢率及酶活性指标显著低于对照组;4天饥饿结束后,投喂不同脂肪水平的饲料的饥饿处理组代谢率和酶活性均显著上升,其中脂肪含量为7%(S2)和11%(S3)的实验组在恢复投喂4天时代谢率和转氨酶、Na+-K+-ATPase活性显著高于对照组。体重增长率和体长增长率显示,S2和S3处理组实现完全补偿生长,并和代谢率变化趋势表现一致。因此,确定饲料脂肪水平对饥饿后日本沼虾生长的最适含量为7-11%。8天的饥饿处理没有实现补偿生长,且代谢率和酶活性低于对照组。
     总之,饲料中蛋白、淀粉和脂肪水平影响着经饥饿后日本沼虾的生长与代谢,在恢复投喂4天时生长率、代谢率和酶活性显著增加,并随着时间的延长逐渐恢复到对照组水平。经4天饥饿的日本沼虾能够实现完全补偿生长,而8天饥饿组则不能实现完全补偿生长。因此饥饿时间和恢复投喂后饲料营养水平是日本沼虾能否实现补偿生长的关键因素。
The shrimps Macrobrachium nipponens following 4 and 8-day starvation were fed with different nutritional level diets. The growth and physiological indicators including increase rate of body weight and body length, oxygen consumption rate, ammonia-N excretion rate, activities of enzymes (Na+-K+-ATPase, GOT, GPT) were measured in refeeding periods. The effects of dietary nutrition (protein, fat and starch) levels on growth and physiological functions of the shrimps undergoing starvation were studied. The main results as follows:
     1 The effects of dietary protein levels on growth and physiological functions of the shrimps following starvation.
     The oxygen consumption rate, ammonia-N excretion rate, and the activities of enzymes (Na+-K+-ATPase, GOT, GPT) of the experimental groups during starvation decreased obviously compared with control group. After the shrimps undergoing 4-day starvation were fed with diets containing different protein contents 4 days, the metabolic rates and activities of enzymes increased promptly, which treatment groups S2(containing protein of 30%) and S3(containing protein of 45%) were greater than S1(containing protein of 15%) and control group SO. In the experimental end, body weight and body length increase rates of S2 and S3 were greater than S0, and completely compensatory growth achieved. The growth rate, metabolic rate and activities of enzymes of the shrimps following 8-day starvation were lower than the control group, suggesting that 4 days was acceptable starvation time for the shrimp's compensatory growth. So protein level of 30-45% in diets was suitable for the shrimp's compensatory growth following 4-day starvation.
     2 The effects of dietary protein levels on growth and physiological functions of the shrimps following starvation.
     Compared with control group S0, oxygen consumption rate, ammonia-N excretion rate, and activities of enzymes (Na+-K+-ATPase, GOT, GPT) of the shrimps obviously decreased during starvation period. After 4-day starvation, the metabolic rate and activities of enzymes of the shrimp refed with the diets containing different starch contents for 4 days increased speedily. The treatment groups S1 (15%), S2 (20%) and S3 (25%) fed lower content starch diets had greater metabolic rate and activities of enzymes than S4 (30%). The growth rates of S2 and S3 were significantly greater than SO and S4; the shrimps achieved completely compensatory growth. The treatment groups undergoing 8-day starvation did not achieved compensatory growth, and their growth rate, metabolic rate and enzymatic activities were lower than control group during refeeding period. The starch level of 20-25% in diets was suitable for the shrimp's compensatory growth following 4-day starvation.
     3 The effects of dietary fat levels on growth and physiological functions of the shrimps following starvation.
     After 4-day starvation, the metabolic rate and activities of enzymes of the shrimp refed with the diets containing different fat contents for 4 days increased speedily. The treatment groups S2 (7%) and S3 (11%) had higher metabolic rate and enzymatic activities than control group. S2 and S3 achieved completely compensatory growth by body weight and body length increase rate. The treatment groups undergoing 8-day starvation did not achieved compensatory growth, and their growth rate, metabolic rate and enzymatic activities were lower than control group during refeeding period. The fat level of 7-11% in diets was suitable for the shrimp's compensatory growth following 4-day starvation.
     In conclusion, the dietary protein, starch and fat levels made influences on growth and metabolism of shrimp following starvation. The metabolic rate and enzymatic activities of shrimp refed for 4 days increased promptly, and approached gradually to control group. The shrimps undergoing 4-day starvation could achieve compensatory growth whereas shrimps undergoing 8-day starvation did not. It was suggested that starvation time and nutritional level were key factors affecting shrimp's compensatory growth.
引文
[1]Weatherley A H, Gill H S. The Biology of Fish Growth. London:Academic Press,1987,133-216.
    [2]Miglavs L, Jobling M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in junvenile Arctic charr. Salvelurc.s alpiaus, with particular respect to compensatory growth. J Fish Biol,1989,34(6):947-957.
    [3]虞冰如,沈竑.日本沼虾饲料最适蛋白质、脂肪含量及能量蛋白比的研究.水产学报,1990,14(4):321-327.
    [4]谢国驷,蔡永祥,徐维娜等.饲料蛋白水平对日本沼虾生长、消化酶和免疫酶的影响.江苏农业学报,2007,23(6):612-617.
    [5]楼宝,毛国民,陈雪昌.浅谈鱼类的补偿生长.现代渔业信息,2006,21(3):11-14.
    [6]Viana M T, Lopez L M,Garcia Esquivel Z, et al. The use of silage made from fish abalone viscera as an ingredient in abalone feed. Aquaculture,1996,140:87-98.
    [7]Calow P. On the regulation nature of individual growth:some observations from freshwater snail. J Zool,1973,170:415-428.
    [8]Bostworth B G, Wolters W R. Compensatory growth in juvenile red swamp crawfish, Procambarus clarkia. Eighth International Symposinm on Astacology. Romaire RP ed. Baton rouge, La-USA, Louisiana State Univ, Printing Office.1995:648-656.
    [9]吴立新,董双林,田相利.中国对虾继饥饿后的补偿生长研究.生态学报,2001,21(3):452-457.
    [10]王军霞,李志华,谢松.饥饿补偿对日本沼虾生长及生化组成的影响.河北大学学报(自然科学版),2005,25(6):644-649.
    [11]谢小军,邓利,张波.饥饿对鱼类生理生态学影响的研究进展.水生生物学报,1998,22(2):181-188.
    [12]Wilson P N, Osbourn D F. Compensatory growth after under nutrition in mammals and birds. Biol, Rev.1960,35:324-363.
    [13]Russell N R, Wootton R T. Appetite and growth compensation in European minnows (Phoxinus phoxinus) following short periods of food restriction. Environ Biol Fish,1992,34:277-285.
    [14]王岩.海水养殖罗非鱼补偿生长的生物能量学机制.海洋与湖沼,2001,32(3):233-239.
    [15]邓利,张波,谢小军.南方鲇继饥饿后的恢复生长.水生生物学报,1999,23(2):167-173.
    [16]Quinton J C, Blake R W. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J Fish Biol,1990,37:33-41.
    [17]李志华,谢松,王军霞等.饥饿对日本沼虾生长和部分免疫功能的影响.上海水产大学学报,2007,16(1):537-540.
    [18]Kim M K,Lovell R T. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds. Aquaculture,135:285-293.
    [19]Hayward R S, Noltie D B,Wang N. Use of compensatory growth to double hydrid sunfish growth rates. Trans Amer Fish Soc,1997:126:316-322.
    [20]Miglavs I and Jobling M. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth.. J Fish Biol,1989,34:947-957.
    [21]Wieser W,Krumschnabedel G, Ojwang-Okwor J P. The energetic of starvation and growth after refeeding in juveniles of three cyprinid species. Environ Biol Fish,1992,33:63-71.
    [22]吴立新,邓宏相,耿志孚等.蛋白质限制后恢复投喂对牙鲆幼鱼生长的影响.生态学报,2006,26(11):3711-3717.
    [23]Schwarz F J, Plank J, Kirchgessner M. Effect of protein or energy Restriction with subsequent realimentation on performance parameters of carp (Cyprinus carpio L.). Aquaculture,1985,48:23-33.
    [24]Jobling M, Jorgensen E H, Siikavuopio S I. The influence of previous feeding regime on the compensatory growth response of maturing and immature Arctic charr, Salvelinus alpinus. J Fish Biol, 1993,43:409-419.
    [25]邵青,杨阳,王志铮等.水产养殖动物补偿生长的研究进展.浙江海洋学院学报(自然科学版),2004,23(4):334-346.
    [26]钱国英.不同驯食方式对鳜鱼胃肠道消化酶活性的影响.浙江农业大学学报,1998,24(2):207-210.
    [27]张静,王军霞,张亚娟等.饥饿对日本沼虾代谢及SOD活性的影响.河北大学学报(自然科学版),2007,27(5):537-540.
    [28]Moore L E, Smith D M, Loneragan N R. Blood refractive index and whole-body lipid content as indicators of nutriotional condition for penaeid prawns. Journal of Experiment al Marine Biology and Ecology,2000,244:131-143.
    [29]Robert S H, Douglas B N, Ning W. Use of compensatory growth to double hybrids sunfish growth rates. Trans Am Fish Soc,1997,126:316-622.
    [30]Barclay M C, Dall W, Smith D M. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn, Penaeus monodon. J Exp Mar Biol Ecol,1983,68:229-244.
    [31]于赫男.南美白对虾继饥饿胁迫后的补偿生长研究.广州:暨南大学,2004:1-62.
    [32]Brett J R, ZaLa C A. DaiLy pattern of nitrogen of excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. J Fish Res Bd Can,1975,32:2479-2486.
    [33]GaLLagher M L, Mathews A M. Oxygen consumption and ammonia-N excretion of the American eeL, AnguiLLa rostrata fed diets with varying protein energy rations and protein levels. J World Aquac Soc,1987,18:107-112.
    [34]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of prote in dye binding. Anal Biochem,1976,72:248-254.
    [35]袁玉荪,朱婉华,陈钧辉.生物化学实验.北京:高等教育出版社,1988,217-223.
    [36]Whealty M G, Hentry R P. Branchial and antennal Na+-K+-ATPase and carbonie anhydrase activity during salinity acclimation of the euryhaline crayfish Pacifastacus leniusendus. J Exp Biol,1987,133: 73-86.
    [37]吴立新,刘瑜,王欣等.饥饿和再投喂对日本囊对虾代谢率的影响.大连水产学院学报,2007,22(2):109-112.
    [38]张硕,董双林,王芳.对虾生物能量学研究:温度、体质量、盐度和摄食状态对耗氧率和排氨率的影响.青岛海洋大学学报,1998,8(2):223-227.
    [39]李松青,林小涛,李卓等.摄食对凡纳滨对虾耗氧率和氮、磷排泄率的影响.热带海洋学报,2006,25(2):44-48.
    [40]Nelson S G Knight A W, Li H W. The metabolic cost of food utilization and ammonia product on by juvenile Mactabtttchium rasenbeyii(Crucex Palaemonidae). Comp Biochem. Physiol,1977, 57A:67-72.
    [41]姜祖辉,王俊,唐启升.体重、温度和饥饿对口虾蛄呼吸和排泄的影响.海洋水产研究,2000,21(3):28-31.
    [42]赵维信,魏华,贾江等.镉对罗氏沼虾组织转氨酶活性及组织结构的影响.水产学报,1995,19(1):21-27.
    [43]Murugesan Ramaswamy, Palaniswamy Thangavel, N Panneer Selvam. Glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon mossambicus (Peters) exposed to a carbamate pesticide, carbaryl Pesticide. Science, 1999,55:1217-1221.
    [44]汤鸿,李少菁,王柱忠等.铜、锌、镉对锯缘青蟹仔蟹代谢酶活力影响的实验研究.厦门大学学报(自然科学版),2000,39(4):521-525.
    [45]张宽,黄金刚,许婷等.饥饿对不同食性甲壳类动物肝脏谷丙转氨酶活力的影响.氨基酸和生物资源,2005,27(3):35-37.
    [46]林仕梅,罗莉,叶元土等.饲料蛋白能量比、非植酸磷水平对中华绒鳌蟹氮、磷排泄和转氨酶活力的影响.中国水产科学,2001,8(4):62-66.
    [47]Zanders I P, Rodriguez J. M. Effects of temperature and salinity stress on osmoionic regulation in adults and on oxygen consumption in lavae and adults of Macrobrachium amazonicum (Decapoda, palaeminidae). Comp.Biochem.Physiol,1992,101A:505-509.
    [48]Pequex A. Osmotic regulation in crustaceans. Crust. Biol,1995,15:1-60
    [49]Corotto F S, Holliday C W, Branchial Na+-K+-ATPase and osmoregulation in the purple shore crab, Hemigrapsus nudus (Dana). Comp.Biochem.Physiol,1996,113A:361-368.
    [50]Wilkie M P, Laurent P, Wood C M. The physiological basis for altered Na+ and Cl- movement across the gills of rainbow trout (Oncorhynchus mykiss) in alkaline (pH=9.5). Physiol Zool,1999,72(3): 360-368.
    [51]卢健民,卢玲,蔺玉华等.低pH值对鲤鳃组织Na+-K+-ATPase活性的影响.水生生物学报,2001,25(1):102-104.
    [52]Chapelle G, Peck L S, Clarke A. Effects of feeding and starvation on the metabolic rate of the necrophagous Antarctic amphipod Waldeckia obesa. J Exp Mar Biol Ecol,1994,183:2243-2349.
    [53]Rosas C, Gaxiola G. Metabolism and growth of juveniles of Litopenaeus vannamei:effect of salinity and dietary carbohydrates levels. J Exp Mar Biol Ecol,2001,259:1-22.
    [54]吴锐全,黄樟翰,肖学铮等.罗氏沼虾饲料脂肪的最适含量.上海水产大学学报,2000,9(1):31-34.
    [55]洪惠馨,林利民,陈学豪等.鲈鱼人工配合饲料中脂肪的适宜含量研究.集美大学学报,1999,4(2):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700