极限载荷条件下的风力机叶片铺层优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型风力机叶片的结构设计主要集中在叶片的铺层设计。开展叶片铺层的优化设计研究对降低叶片成本、弥补现有计算分析软件的功能缺陷以及提高叶片的设计效率具有重要意义。由于在叶片的铺层设计过程中,需要考虑的设计要求多、变量多、目标多,进行优化设计建模复杂。尤其是与载荷相关的极限弯矩、最大叶尖偏移、极限强度等设计要求的计算复杂费时,需要进行深入研究并建立适当的模型。因此,本文将对用于叶片铺层设计的优化算法以及一些设计要求展开研究,最终建立一种极限载荷条件下的叶片铺层优化设计模型,以用于不同的叶片铺层设计。完成的研究工作如下:
     第一,针对风力机叶片铺层设计过程中多目标、多约束的特点,在作者原有改进的单目标粒子群算法基础上,结合小生境技术,建立了一种改进的多目标粒子群算法。测试函数的计算结果表明,该算法具有较强的多目标寻优能力,可以做为风力机叶片铺层的优化设计工具。
     第二,建立了叶片实际铺层同叶片结构特性之间的关系,并对其进行了验证。验证结果表明,PreLayers和PreComp结合用于叶片的结构特性计算是可行的。另外,采用曲线关系表示叶片的刚度分布,比采用线性关系表示,其计算结果更接近于实验值。这对以后叶片的有限元建模具有指导意义。而后分析了叶片铺层参数对叶片截面刚度的影响和原因。研究表明:在不增加截面质量线密度的条件下,将铺层放在截面厚度越大的位置对挥舞刚度的贡献越大,这一结论为叶片的刚度设计提供了指导。
     第三,结合PreLayers和PreComp程序,编程建立了叶片自振频率以及叶片质量的计算模型,并进行了验证。然后分析了叶片铺层参数对一阶挥舞频率的影响。结果表明,在不增加叶片质量的条件下,将叶片铺层向叶根方向移动将有助于提高叶片的一阶挥舞频率,为叶片频率设计提供了指导。
     第四,对极限载荷产生的原因进行了分析。得到了攻角α在0.0到90.0度的范围内时,C,-a曲线的理论边界曲线方程,并对设计低载翼型提出了新的要求。其次分析得到了较大叶尖速比时(λr≥4),入流角、入流速度与风力机参数之间的关系式,且有当局部尖速比越大时,V0→Ωr的结论。通过进一步分析,得到了相比于Cn的增大,转速的增大更易产生极限载荷的结论。据此对控制极限载荷提出了相应的要求。然后,依据以上的研究分析结果,结合改进的PSO算法,建立了一种新的极限载荷预测模型ELPM。计算结果表明,ELPM可以用于风力机叶片的极限载荷预测。最后,基于ELPM模型计算得到的极限载荷,给出了一种简单合理的最大叶尖偏移以及极限强度的计算方法。
     第五,基于以上的研究结果,建立了一种极限载荷条件下的风力机叶片铺层优化设计模型。在该模型中,PreLayers程序可以对不同的叶片进行参数化建模;自由变量、目标函数和约束条件可以根据不同的设计目标和要求进行改变;并且该模型能够考虑大部分的设计要求,如质量、频率、最大叶尖偏移、极限强度等。模型的应用结果表明,可以将其用于不同叶片的铺层设计。
Blade Structural design on Large-scale wind turbine blade mainly focuses on blade layers design. Carrying out the study on the blade layers optimization is meaningful for reducing the blade cost, making up the functional defects of existing analysis software and improving the efficiency of blade design. Because during the process of blade layers design, many design requirements, variables and objectives need to consider, it is complex to build the optimal design model. Especially, computing the ultimate bending moment, maximum blade tip deflection, ultimate strength and other design requirements which are related to the load are complicated and time-consuming, they need to deeply research and build proper models. Hence, this article will study on the optimization algorithms used for the blade layers optimization and some design requirements, which aims to build a wind turbine blade layers optimization design model under extreme loads to be used in different blade layers design. The following research works have been finished.
     Firstly, based on the modified single-objective particle swarm optimization by the author, an improved multi-objective particle swarm optimization, which is integrated with the niche technology, is established for the characteristics of multi-objective, multi-constraint during the design process of wind turbine blade layers. Calculation results of the testing functions show that it has strong multi-objective optimization capability and can be used as a optimal design tool for wind turbine blade layers.
     Secondly, the relationship between actual blade layers and the structural characteristics of blade are built and tested. Test results show that using the PreLayers and PreComp together for computing the blade structural properties is feasible. In addition, computed results by using the curve relationship to express the blade stiffness distribution are closer to the experimental values than using the linear relationship. This has some instructive for setting up the blade finite element model in the future. Then the influence of the blade layers parameters on the sectional stiffness and its reason are analyzed. The researches show that without increasing the sectional mass-line-density, the bigger of the sectional thick of the position at which the layers locate, the greater contribution for the flapwise stiffness. This conclusion provides guidance for the blade stiffness design.
     Thirdly, a blade natural frequency calculating model and a mass calculating model, which are integrated with the PreLayers and PreComp software, are built by programming and verified. Then the influence of the blade layers parameters on the first-order flapwise frequency are analyzed. The results show that the blade layers moving toward the blade root will improve the first-order flapwise frequency without increasing the blade mass. It provides guidance for the blade frequency design.
     Fourthly, the reasons for generating the extreme loads are analyzed. A theoretical boundary curve equation between the normal force coefficient Cn and the attack angle a is set up when the attack angle is at the range of0.0to90.0degree. Some new demands are put forward for designing low-load airfoils. In addition, the relationships of wind turbine parameters with the inflow angle and the inflow angle are obtained when the local blade tip speed ratio (TSR) is bigger (λr≥4). And there is a conclusion that the inflow velocity V0will be closer to Ωr while the local TSR becomes bigger. Through the further analysis, another conclusion, which is that the augment of rotor speed will easier produce the extreme load compared with the augment of Cn, is gotten. According to it, some requirements are proposed to control the extreme load. Then, based on the above researching and analyzing results, combined with the improved PSO algorithm, a new extreme load prediction model ELPM is developed. The computation results show that, ELPM can be used to predict the exteme loads for wind turbine blades. Finally, according to the extreme loads from the ELPM, a simple and reasonable method for calculating the maximum blade tip deflection and the ultimate strength is given.
     Fifthly, based on the above research results, a wind turbine blade layers optimization design model under extreme loads is eventually established. In this model, PreLayers can build the parametric modeling for different blades; free variables, objective function and constraints can be changes according to different design objectives and requirements; and this model can consider most of the design requirements, such as mass, frequency, maximum blade tip deflection, ultimate strength requirements and so on. Results from applicating this model show that this model can be used in different blades for designing blade layers.
引文
[1]Weiyi Xu译.2010年度世界风能发展报告.Bonn:world wind energy Association(WWEA),2011.
    [2]Half-year Report 2011. Bonn:world wind energy Association (WWEA),2011.
    [3]Golbal wind report annal update to 2010. Brussels:Global Wind Energy Concil(GWEC),2011.
    [41刘杰.国家能源局:“十二五”期间重点开发利用风电http://news.hexun.com/ 2011-01-14/126808477.html,2011-01-14.
    [5]Tony Burton著,武鑫译.风能技术.北京:科学技术出版社,2007.
    [6]中人民共和国机械行业标准.风力发电机组风轮叶片.JB/T 10194-2000,国家机械工业局发布,2000.
    [7]潘艺,周鹏展,王进.风力发电机叶片技术发展概述.湖南工业大学学报,2007,21(3):48-51.
    [8]熔桓.开发更轻更硬风机叶片.http://www.mittrchinese.com/ single.php?p= 145562, 2011-10-11.
    [9]李军向,薛忠民,王继辉.大型风轮叶片设计技术的现状与发展趋势.玻璃钢/复合材料,2008,(1):48-52.
    [10]陈宗来,陈余岳.大型风力机复合材料叶片技术及进展.玻璃钢/复合材料,2005,(3):53-56.
    [11]P.A. Joosse, et al. Toward Cost Effective Large Turbine Components with Carbon Fibers. Presented at the 2001 European Wind Energy Conference and Exhibition, Copenhagen, 2001.
    [12]P.A. Joosse, et al. Fatigue Properties of Low-Cost Carbon Fiber Material. Presented at the 2001 European Wind Energy Conference and Exhibition, Copenhagen,2001.
    [13]Cheng-Huat Ong, Stephen W.Tsai. The use of carbon fibers in Wind turbine blade design. SAND2000-0478,2000.
    [14]Akira Kuraishi, Stephen W.Tsai, Julie Wang. Material characterization of glass, carbon and Hybrid-fiber SCRIMP panels. SAND2002-3538,2002.
    [15]Breakdown of a Turbines Blade. http://www.gurit.com/breakdown-of-a-turbine-blade.aspx, 2012.
    [16]Mark H. Dawson. Variable Length Wind Turbine Blade. Award Number: DE-FG36-03GO13171, Energy Unlimited, Inc. Final Report, 2006
    [17]Mark H. Dawson, Jack A. Wallace. Telescoping wind turbine blade. Patent No.: US6902370B2,2005.
    [18]Scott Larwood, Mike Zuteck. Swept Wind Turbine Blade Aeroelastic Modeling for Loads and Dynamic Behavior. Larwood/Zuteck Windpower 2006,2006:1-17.
    [19]Scott Michael Larwood. Dynamic Analysis Tool Development for Advanced Geometry Wind Turbine Blades. University of California Doctoral Thesis,2009.
    [20]Enercon Wind Turbines Technology & Service. Germany: Enercon GmbH,2009:1-63.
    [21]Winther Jesen Martin, Erik R J gensen. When real life wind speed exceeds design wind assumptions. EWEC. UK: Antony Rowe Ltd, 1999:220-223.
    [22]Ye Zhiquan, ChengZhaoxue, Chen Jingyi and Bai Shibao. Aerodynamic optimum design procedure and program for the rotor of a horizontal-axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics.1992,(39):179-186.
    [23]M.S. Selig, V.L. Coverstone-Carroll. Application of a genetic algorithm to wind turbine design. Journal of Energy Resource Technology,1996, (118):22-28.
    [24]P. Fuglsang, H.A. Madsen. Optimization method for wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics.1999, (80):191-206.
    [25]Ernesto Benini, Andrea Toffolo. Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Theory and Evolutionary Computation. Journal of Solar Energy Engineering.2002, (124):357-363.
    [26]Andrew Kusiak, Haiyang Zheng, Zhe Song. Power optimization of wind turbines with data mining and evolutionary computation. Renewable Energy.2010, (35):695-702.
    [27]M. Jureczko, M. Pawlak, A. Mezyk. Optimisation of wind turbine blades. Journal of Materials Processing Technology. 2005, (167):463-447.
    [28]Weifei Hu, Insik Han, Sang-Chul Park, et al. Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis. Journal of Mechanical Science and Technology.2012,26 (1):129-135.
    [29]IEC/TC8,1998.61400-1 Wind Turbine Generator Systems-Part 1:Safety Requirements, International Electrotechnical Commission, Geneva, Switzerland.
    [30]Rules and Regulations, IV Industrial services, Part 1-Guideline for the Certification of Wind Turbines, Germanischer Lloyd Windenergie GmbH, Edition 2003 with Supplement 2004.
    [31]Madsen, P. H., Pierce, K., and Buhl, M.. Predicting Ultimate Loads for Wind Turbine Design. A Collection of the 1999 ASME Wind Energy Symposium, at the 37th AIAA Aerospace Sciences Meeting, AIAA-99-0069, Reno NV, pp.355-364.
    [32]Knut O Ronold, Gunner C Larsen. Variability of extreme of flap loads during turbine operation. EWEC. UK:Antony Rowe Ltd,1999:224-227.
    [33]LeRoy M. Fitzwater, Steven R. Winterstein. Predicting design wind turbine loads from limited data:Comparing random process and random peak models. In A collection of the 2001 ASME Wind Energy Symposium, at the AIAA Aerospace Meeting, Reno, Nevada, USA, 2001. American Institute of Aeronautics and Astronautics. AIAA-2001-0046.
    [34]Paul S Veers, Sandy Butterfield. Extreme Load Estimation for Wind Turbines:Issues and Opportunities for Improved Practice. AIAA-2001-0044.
    [35]P.W.Cheng, W.A.A.M.Bierbooms. Distribution of extreme loads of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics,2001, (89):309-324.
    [36]Wim Bierbooms, Po-Wen Cheng. Stochastic gust model for design calculations of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics,2002, (90): 1237-1251.
    [37]Patrick J. Moriarty. Effect of turbulence variation on extreme Load prediction for wind turbines. Journal of Solar Energy Engineering,2002, (124):387-395.
    [38]R.P.J.O.M. van Rooij. Description of the aerodynamic design process for a wind turbine rotor. Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2003:1-10.
    [39]M. D. Pandey and H. J. Sutherland. Probabilistic analysis of list data for the estimation of extreme design loads for wind turbine components. In A collection of the 2003 ASME Wind Energy Symposium, at the AIAA Aerospace Meeting, Reno, Nevada, USA,2003. American Institute of Aeronautics and Astronautics. AIAA-2003-0866.
    [40]LeRoy M. Fitzwater. Estimation Of Fatigue And Extreme Load Distributions From Limited Data With Application To Wind Energy Systems. SAND 2004-0001.
    [41]K. Saranyasoontorn, L. Manuel. Efficient models for wind turbine extreme loads using inverse reliability. Journal of Wind Engineering and Industrial Aerodynamics,2004, (92):789-804。
    [42]P. J. Moriarty, W. E. Holley, S. P. Butterfield. Extrapolation of extreme and fatigue loads using probabilistic methods. Technical Report NREL/TP-500-34421, National Renewable Energy Laboratory NREL, Golden, Colorado, USA,2004.
    [43]陈严,王楠.水平轴风力机极限载荷预测方法的研究.汕头大学学报(自然科学版),2005,20(1):43-47.
    [44]Elart von Collani, A. Binder, W. Sans, A. Heitmann and K. Al-Ghazali. Design Load Definition by LEXPOL. Wind Energy,2008,11:637-653.
    [45]Patrick Ragan, Lance Manuel. Statistical Extrapolation Methods for Estimating Wind Turbine Extreme Loads. Journal of Solar Energy Engineering,2008, (130):1-15.
    [46]J. Peeringa. Comparison of extreme load extrapolations using measured and calculated loads of a MW wind turbine. European Wind Energy Conference 2009, Marseille, France,16-19 March 2009
    [47]Puneet Agarwal, Lance Manuel. Simulation of offshore wind turbine response for long-term extreme load prediction. Engineering Structures,2009, (31):2236-2246.
    [48]J.M. Peeringa. W.A.A.M. Bierbooms. Extreme loads using measured and calculated responses for offshore applications. ECN-E-09-053.
    [49]J. Juncher Jensen, Anders S.Olsen, Alaa E.Mansour. Extreme wave and wind response predictions. Ocean Engineering,2011, (38):2244-2253.
    [50]Karam Y.M, Hani M.N. Optimal frequency design of wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics,2002(90):961-986.
    [51]Agnieszka Roczek. Optimization of Material Layup for Wind Turbine Blade Trailing Edge Panels. Roskilde,2009.
    [52]李成良,陈淳.风力机叶片的结构分析与铺层优化设计.玻璃钢/复合材料,2009,6:50-53.
    [53]M. Grujicic, G. Arakere, B. Pandurangan, et al. Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades. Journal of Materials Engineering and Performance,2010, (19):1116-1127.
    [54]C.C. Liao, X.L. Zhao, J.Z. Xu. Blade Layers Optimization Of Wind Turbines Using FAST And Improved PSO Algorithm. Renewable Energy,2012, (42):227-233.
    [55]C.L. Bottasso, F. Campagnolo, A. Croce. Multi-disciplinary constrained optimization of wind turbines. Multibody Syst Dyn,2012, (27):21-53.
    [56]S.B Gunjit. User's Guide to PreComp. National Renewable Energy Laboratory,2005.
    [57]Beehly M E, Clausent P D. Technical note: structural design of a composite wind turbine blade using finite element analysis. Computers & Structures,1997, 63(3):639-646.
    [58]Ladean R.Mckittrick, Douglas S. Cairns, John Mandell, et al. Analysis of a composite blade design for AOC 15/50 wind turbine using a finite element model. SAND2001-1441,2001.
    [59]Joshua Paquette, Daniel Laird, D. Todd Griffith, Laura Rip. Modeling and Testing of 9m Research Blades. American Institute of Aeronautics and Astronautics,2005:1-13
    [60]Kong C, Band J, Sugiyama Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy, 2005,30:2101-2114.
    [61]Laird, D., Montoya, F., and Malcolm, D.. Finite Element Modeling of Wind Turbine Blades. ASME/AIAA Wind Energy Symposium, Reno, NV,2005:.9-17.
    [62]李军向.大型风机叶片气动性能计算与结构设计研究.武汉理工大学博士学位论文,2008.
    [63]Gunjit S. Bir. Computerized Method for Preliminary Structural Design of Composite Wind Turbine Blades. Journal of Solar Energy Engineering, 2001, (123):372-381.
    [64]G. Bir, P. Migliore. Preliminary Structural Design of Composite Blades for Two- and Three-Blade Rotors. NREL/TP-500-31486,2004.
    [65]Kennedy J, Eberhart R C. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks. Perth, Australia,1995:1942-1948
    [66]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [67]李明.遗传算法的改进及其在优化问题中的应用研究.长春:吉林大学,2004.
    [68]黄平,孟永刚.最优化理论及方法.北京:清华大学出版社,2009..
    [69]Jonkman J. FAST:An Aeroelastic Design Code for Horizontal Axis Wind Turbines. NWTC Design Codes (FAST_V6.01). Http://wind.nrel.gov/designcodes/simulators/fast/, Last modified 12-Aug-2005; accessed 12-Aug-2005
    [70]C. Lindenburg. PHATAS Release "NOV-2003" and "APR-2005" user manual.2005, ECN-I-05-005-rl.
    [71]Bossanyi E A. Bladed for windows theory manual. Britain:Classification,2006:1-97.
    [72]Bossanyi E A. Bladed for windows user manual. Britain:Classification.2006,1-140.
    [73]杜明彗.变转速风力机整机性能研究及软件开发.汕头:汕头大学硕士学位论文,2005.
    [74]Shi Y H, Eberhart R C. A modified particle swarm optimizer. Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 1998:69-73.
    [75]祝成虎,彭宏.基于排序优化的微粒群算法.计算机工程与设计,2006,27(21):4025-4027.
    [76]郑小霞,钱锋.一种改进的微粒群优化算法.计算机工程,2006,32(15):25-27.
    [77]张选平,杜玉平,秦国强,等.一种动态改变惯性权的自适应粒子群优化算法.西安交通大学学报,2005,39(10):1039-1042.
    [78]I. De Falco, A. Della Cioppa, E. Tarantino. Facing classification problems with Particle Swarm Optimization. Applied Soft Computing.2007, (7):652-658.
    [79]M. Mohammadi, S.H. Hosseinian, G.B. Gharehpetian. Optimization of hybrid solar energy sources/wind turbine systems integrated to utility grids as microgrid (MG) under pool/bilateral/hybrid electricity market using PSO. Solar Energy,2012, (86):112-125
    [80]陈曦,程浩忠,戴岭.邻域退火粒子群优化算法在配电网重构中的应用.高电压技术,2008,34(1):148-153.
    [81]Guangzhao Cui, Limin Qin, Sha Liu, et al. Modified PSO algorithm for solving planar graph coloring problem. Natural Science,2008, (18):353-357.
    [82]Seyed Abbas Tahar, Ali Karimian, Mohammad Hasani. A new method for optimal location and sizing of capacitors in distorted distribution networks using PSO algorithm. Simulation Modelling Practice and Theory,2011,19(2):662-672.
    [83]P.C. Fourie, A.A. Groenwold. The particle swarm optimization algorithm in size and shape optimization. Structural and Multidisciplinary Optimization,2002,23(4): 259-267.
    [84]J.S. Chiou and M.T. Liu, Numerical simulation for fuzzy-PID controllers and helping EP reproduction with PSO algorithm. Simulation Modelling Practice and Theory,2009, 17(10):1555-1565.
    [85]葛锐,陈建桥,魏俊红.基于改进粒子群优化算法的复合材料可靠性优化设计.机械科学与技术,2007,26(2):257-260.
    [86]Hsuan-Ming Feng, Ching-Yi Chen, Fun Ye. Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression. Expert Systems with Applications, 2007, (32):213-222.
    [87]Yi-Tung Kao, Erwie Zahara. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing, 2008, (8):849-857.
    [88]Zhang zhisheng. Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Systems with Applications,2010, (37): 1800-1803.
    [89]R. Kathiravan, R. Ganguli. Strength design of composite beam using gradient and particle swarm optimization. Composite Structures,2007,81(4):471-479.
    [90]Hongqing Fang, Long Chen, Zuyi Shen. Application of an improved PSO algorithm to optimal tuning of PID gains for water turbine governor. Energy Conversion and Management.2011,25(4):1763-1770.
    [91]王金华,尹泽勇.一个约束离散优化问题的粒子群优化算法研究.计算机工程与应用,2008,44(3):242-244.
    [92]刘华蓥,林玉娥,王淑云.粒子群优化算法的改进及其在求解约束优化问题中的应用.吉林大学学报(理学版),2005,43(4):472-476.
    [93]Hadi Sadoghi Yazdi, Sohrab Effati. Eigenvalue spread criteria in the particle swarm optimization algorithm for solving of constraint parametric problems. Applied Mathematics and Computation,2007, (192):40-50.
    [94]Shengjing Mu, Hongye Su, Weijie Mao, et al. A new genetic algorithm to handle the constrained optimization problem. Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas:IEEE Service Center,2002:739-740.
    [95]Fung RYK, Tang J, Wang D. Extension of hybrid genetic algorithm for nonlinear programming problems with equality and inequality constraints. Computers & Operation Research,2002,28(2):261-274.
    [96]王跃宣,吴澄,胡昔祥,等.求解约束优化问题的退火遗传算法.高技术通讯,2004.
    [97]Luo Yiqing, Yuan Xigang, Liu Yongjia. An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Computers & Chemical Engineering,2007,31(3):153-162.
    [98]寇晓丽,刘三阳.基于模拟退火的粒子群优化算法求解约束优化问题.吉林大学学报(工学版),2007,37(1):136-140.
    [99]Ioannis G. Tsoulos A, Athanassios Stavrakoudis. Enhancing PSO methods for global optimization. Applied Mathematics and Computation,2010, (216):2988-3001.
    [100]Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation,2000, (4):284-294.
    [101]廖猜猜,席光,徐建中.一种求解约束优化问题的改进粒子群算法及其应用.工程热物理学报,2010,31(1):32-35.
    [102]廖猜猜.风力机叶片的气动优化设计方法研究.西安交通大学硕士学位论文,2008.
    [103]安伟刚.多目标优化方法研究及其工程应用。西北工业大学博士学位论文,2005.
    [104]U. Baumgartner, C. Magele and W. Renhart. Pareto optimality and particle swarm optimization. IEEE Trans. Magn.,2004,40(2):1172-1175.
    [105]Fang Gao, Qiang Zhao, Hongwei Liu, et al. Cultural Particle Swarm Algorithms for Constrained Multi-objective Optimization. COMPUTER SCIENCE,2007, (4490): 1021-1028.
    [106]Yao C J. A framework for evolutionary optimization with approximate fitness functions. IEEE transaction on evolutionary computation,2002,6(5).
    [107]张彪.强风作用下大功率风力机的振动响应研究.浙江大学硕士论文,2011.
    [108]Scott Michael Larwood. Dynamic Analysis Tool Development for Advanced Geometry Wind Turbine Blades. University of California Doctoral Thesis,2009
    [109]张雄,王天舒.计算动力学.北京:清华大学出版社,2007.
    [110]吴春梅,田瑞,陈永艳.基于振动性能优化的风力机叶片设计.工程热物理学报,2008,29(11):1857-1860.
    [111]王建礼,赵晓路,廖猜猜,等.风力机叶片固有频率优化设计研究.工程热物理学报,2010,31(11):1843-1846.
    [112]Martin O. L. Hansen. Aerodynamics of Wind Turbines(Second Edition). London: Earthscan,2008.
    [113]Jerson Rogerio Pinheiro Vaz, Joao Tavares Pinho, Andre Luiz Amarante Mesquita. An extension of BEM method applied to horizontal-axis wind turbine design. Renewable Energy,2011, (36):1734-1740.
    [114]贺德馨.风工程与工业空气动力学.北京:国防工业出版社,2006.
    [115]David A. Spera. Wind Turbine Technology Fundamental Concepts of Wind turbine engineering (Second Edition). New York: ASME Press,2009.
    [116]Hillmer B, Borstelmann T, Schaffarczyk P A, et al. Aerodynamic and structural design of multiMW wind turbine blades beyond 5MW. Journal of Physics:Conference Series 75(2007)012002, doi:10.1088/1742-6596/75/1/012002,2007.
    [117]R. Lanzafame, M. Messina. Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory. Renewable Energy, 2007, (32): 2291-2305.
    [118]Mao huojun. SW 1500-40.3 Type Test Report. SWT-T-01-004-2009, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700