黄土高原刺槐细根生长及其与土壤水分耦合关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立根系生长的数学模型,定量地研究人工植被根系的分布特征及其与土壤水分的相互作用机制,弄清人工植被根系对深层土壤水分的影响及其范围,对揭示黄土高原林地土壤干层的形成机理,科学地指导造林树种和人工草种的选择,加快西北山川秀美工程的建设速度具有十分重要的意义。
     本论文采用2007年6月、8月、10月和2008年4月在陕西省安塞县(半干旱区)和甘肃省泾川县(半湿润区)获得的刺槐人工林细根和土壤水分调查数据,建立了刺槐细根生长模型及刺槐细根生长与土壤水分的耦合关系模型。主要结论如下:
     1.验证了垂直生长模型S = h~B( M + Nh + Uh~2 + Vh~3)能很好地拟合刺槐细根的垂直分布,其中,S为细根表面积密度(cm~2·dm~(-3)),h为土层深度(cm),B反映了细根分布的最大值在土壤中出现的深度,M、N、U、V为经验系数,并计算得出刺槐最大扎根深度及土壤入渗水对细根生长的贡献率。在此基础上,采用室分析方法建立了细根表面积密度随土层深度变化的房室模型S_2(h) = b(e~(-k_2h)- e~(k_1h)),从数值上验证了垂直生长模型是房室模型的简化形式,为垂直生长模型提供了理论基础。
     2.建立了刺槐细根的动态生长模型S (t , h ) = e~(-βt)·h~B(e~(α_1-) e~(α_2) h + e~(α_3)h~2 - e~(α_4)h~3),其中,β为细根表面积密度随时间的衰减率,α_1、α_2、α_3、α_4为经验参数。模型可以表达细根生长随土层深度和时间两个因素的变化状况,并且可以很好地预测黄土高原不同土层深度和时间下刺槐细根生长状况。
     3.建立了细根表面积密度随土壤水含量(W/%)、土层深度和时间变化的耦合模型,其中0﹤a﹤1。该模型能够很好的描述黄土高原地区刺槐细根生长与土壤水分之间的耦合关系,反映了细根生长和土壤水分随时间的周期性变化;模型参数a的值介于0和1之间,表明土壤水分只是部分供给了刺槐根系的生长,刺槐根系生长对土壤水分的利用是有限的,不会造成研究区域刺槐林地土壤的干化;参数m反映了土壤水分对根系生长10-20天的滞后效应;参数p、b、m反映了刺槐生长地区的差异,a反映了刺槐根系生长需水量的生物学特性。
It is very important to establish the mathematical model of fine root growth, study the distribution of artificial vegetation roots and its relationship with soil moisture in quantitative method, and research the influence of deep soil moisture by artificial vegetation roots, for revealing the cause of soil desiccation layer in the Loess Plateau woodland, guiding the species choice of artificial tree or grass scientifically, speeding up the construction of Northwest Landscape Beautification Project.
     The paper established a model for fine root growth of Robinia pseudoacacia and a coupled model for the relationship between fine root growth and soil moisture, based on the data of artificial R.pseudoacacia fine root and soil moisture, investigated in Ansai county of Shaanxi province(semi-arid region) and Jingchuan county of Gansu province(sub-humid region). The main conclusions are as follows:
     1. The paper tested and verified that the model S = h~B( M + Nh + Uh~2 + Vh~3)can good fit the fine root vertical distribution for R.pseudoacacia (where, S is fine root surface area density/cm~2·dm~(-3); h is soil depth/cm; B shows the soil depth where the values of fine root are the most; M,N,U,V are empirical coefficients), and calculated the maximum depth of fine root and the contribution rate of soil moisture to fine root growth. Based on the above, it established a compartment model S_2(h) = b(e~(-k_2h)- e~(k_1h)) for fine root surface area density, with the change of soil depth, verified its equivalence with the vertical growth model using numerical method, and offered the theoretical basis for the vertical growth model.
     2. The paper established a dynamic model S (t , h ) = e~(-βt)·h~B(e~(α_1-) e~(α_2) h + e~(α_3)h~2 - e~(α_4)h~3)for fine root growth (where,βis the attenuation rate of fine root surface area density with time;α_1 ,α_2,α_3,α_4 are empirical coefficients). The dynamic model could show the changes of fine root growth with soil depth and time, and can predict the state of fine root growth for R.pseudoacacia in different soil depth and time, in the Loess Plateau.
     3. The paper established a coupled model , 0<a<1, described the relationship between fine root surface area density (S/cm~2·dm~(-3)) and soil moisture (W/%), with the change of soil depth (h/cm) and time (t/month). It is proved that the model could reflect the coupling relationship exactly. It displays the annual cyclical changes about fine root growth and soil moisture; the value of parameter a falls in between 0 and 1, which shows the root growth of R.pseudoacacia just absorbs part of the soil moisture and could not cause soil desiccation in the investigative area; parameter m indicates the hysteresis effect of soil moisture and root growth, which is between 10 to 20 day; parameters p, b and m reflect the difference of region where R.pseudoacacia grow, and parameter a reflects the biological characteristics of R.pseudoacacia - water demand of root growth.
引文
蔡昆争,骆世明,段舜山. 2003.水稻根系的空间分布及其与产量的关系.华南农业大学学报(自然科学版), 24(3):1~4
    曹军胜,朱清科,薛智德. 2008.黄土高原地区土地植被承载力与植被生态恢复建设.西北林学院学报, 23(1):39~43
    陈宝群,赵景波,李艳花. 2009.黄土高原土壤干层形成原因分析.地理与地理信息科学, 25(3):85~89
    陈洪松,王克林,邵明安. 2005.黄土区人工林草植被深层土壤干燥化研究进展.林业科学, 41(4):155~161
    成向荣. 2005.黄土高原主要造林树种细根垂直分布模型的研究与应用. [硕士学位论文].杨凌:西北农林科技大学
    成向荣,赵忠,郭满才,王迪海,袁志发. 2006.刺槐人工林细根垂直分布模型的研究.林业科学, 42(6):40~48
    冯斌,杨培岭. 2000.植物根系的分形及计算机模拟.中国农业大学学报, 5(2):96~99
    冯广龙,刘昌明. 1998.冬小麦根系生长与土壤水分利用方式相互关系分析.自然资源学报, 13 (3):234~241
    何小武,刘广全,郭孟华. 2008.黄土高原植被建设的水资源环境及对策.水利学报, 39(7):843~847
    何永涛,郎海玲. 2009.植被建设在黄土高原水土保持中的意义及其对策.水土保持研究, 16(4):30~33
    胡良军,邵明安. 2002.黄土高原植被恢复的水分生态环境研究.应用生态学报, 13(8):1045~1048
    姜启源,谢金星,叶俊. 2003.数学模型.第3版.北京:高等教育出版社: 153~157
    康绍忠,刘晓明,熊运章. 1992.冬小麦根系吸水模式的研究.西北农业大学学报, 20(2):5~12
    李军,陈兵,李小芳,赵玉娟,次仁央金,蒋斌,胡伟,程积民,邵明安. 2008.黄土高原不同植被类型区人工林地深层土壤干燥化效应.生态学报, 28(4):1429~1445
    李凌浩,林鹏,邢雪荣. 1998.武夷山甜槠林细根生物量和生长量研究.应用生态学报, 9(4): 337~340
    李玉山. 1983.黄土区土壤水分循环特征及其对陆地水分循环的影响.生态学报, 3(2):91~101
    李玉山. 2001.黄土高原森林植被对陆地水循环影响的研究.自然资源学报, 16 (5):427~432
    李玉山. 2002.苜蓿生产力动态及其水分生态环境效应.土壤学报, 39 (3):404~411
    李裕元,邵明安. 2001.黄土高原气候变迁、植被演替与土壤干层的形成.干旱区资源与环境, 15(1):72~77
    梁一民,李代琼,从心海. 1990.吴旗沙打旺草地土壤水分及生产力特征的研究.水土保持通报, 10 (6):113~118
    廖利平,陈楚莹,张家武,高洪. 1995.杉木,火力楠纯林及混交林细根周转的研究.应用生态学报, 6(1):7~10
    刘桃菊,唐建军,张佩莲,戚昌瀚. 1998.水稻根系建成对高产形成的模拟模型与调控决策研究(Ⅰ水稻根系形态建成参数与产量形成关系的初步研究).江西农业大学学报, 20(3):291~295
    刘桃菊,唐建军,胡岳峰,张佩莲,万淑婉,戚昌瀚. 1999.水稻根系建成对高产形成的模拟模型与调控决策研究(Ⅱ水稻根系生理参数与产量形成关系及其模拟模型研究).江西农业大学学报, 21(1):1~5
    罗长寿,左强,李保国. 2004.基于遗传算法的人工神经网络模型在冬小麦根系分布预报中的应用.应用生态学报, 15(2):354~356
    罗伟祥,杨江峰. 2001.黄土高原防护林在生态环境建设和防灾减灾中的作用.水土保持研究, 8(2):119~123
    马华明,林锦仪,陈慈禄. 2002.杜仲人工幼林根系的研究.经济林研究, 20(1):14~16
    穆兴民,徐学选,王文龙,温仲明,杜峰. 2003.黄土高原人工林对区域深层土壤水分环境的影响.土壤学报. 40(2):210~217
    潘幸来,孙来虎,王永杰,张贵云. 1997.黄土高原冬小麦及苜蓿的根系构形特征.麦类作物, 17(1):32~35
    单建平,陶大立. 1992.国外对树木细根的研究动态.生态学杂志, 11(4):46~49
    单建平,陶大立,王淼,赵士洞. 1993.长白山阔叶红松林细根周转的研究.应用生态学报, 4 (3):241~245
    邵爱军,李会昌. 1997.野外条件下作物根系吸水模型的建立.水利学报, 28(2):68~72
    邵明安,杨文治,李玉山. 1987.植物根系吸收土壤水分的数学模型.土壤学报, 24(4):295~304
    孙长忠,黄宝龙. 1998.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报, 20(3):7~14
    王力,邵明安,侯庆春. 2001a.黄土高原土壤干层初步研究.西北农林科技大学学报(自然科学版), 29(4):34~38
    王力,邵明安,侯庆春,杨岗民. 2001b.延安试区人工刺槐林地的土壤干层分析.西北植物学报, 21(1):101~106
    王力,邵明安. 2004a.黄土高原退耕还林条件下的土壤干化问题.世界林业研究, 17(4):57~60
    王力,邵明安,王全九,贾志宽,李军. 2004b.黄土区土壤干化研究进展.农业工程学报, 20(5):27~31
    王文全,王世绩,刘雅荣,刘建伟. 1994.粉煤灰复田立地上杨、柳、榆、刺槐根系的分布和生长特点.林业科学, 30(1):25~33
    卫星,张国珍. 2008.树木细根主要研究领域及展望.中国农学通报, 24(5):143~147
    温达志,魏平,孔国辉,叶万辉. 1999.鼎湖山南亚热带森林细根生产力与周转.植物生态学报, 23(4): 361~369
    杨培岭,罗远培. 1994.冬小麦根系形态的分形特征.科学通报, 39(20):1911~1913
    杨培岭,郝仲勇. 1999.植物根系吸水模型的发展动态.中国农业大学学报, 4(2):67~73
    杨培岭,冯斌,任树梅. 2000.利用人工神经网络预报不同水分条件下作物根系发育参数.农业工程学报, 16(2):46~49
    杨维西. 1996.试论我国北方地区人工植被的土壤干化问题.林业科学, 32(1): 78~85
    杨文治,韩仕峰. 1985.黄土丘陵区人工林草地的土壤水分生态环境.水土保持研究, 1(2):18~28
    杨文治. 2001.黄土高原土壤水资源与植物造林.自然资源学报, 16(5): 433~438
    杨文治,田均良. 2004.黄土高原土壤干燥化问题探源.土壤学报, 41(1):1~6
    姚建文. 1989.作物生长条件下土壤含水量预测的数学模型.水利学报, 20(9):32~38
    袁志发,宋世德. 2009.多元统计分析.第2版.北京:科学出版社:105~107
    张劲松,孟平,尹昌君. 2002.果农复合系统中果树根系空间分布特征.林业科学, 38(4):30~33
    张劲松,孟平. 2004.石榴树吸水根根系空间分布特征.南京林业大学学报:自然科学版, 28(4):89~91.
    张喜英,袁小良,韩润娥,王会肖. 1994.冬小麦根系生长规律及土壤环境条件对其影响的研究.生态农业研究, 2(3):62~68
    张喜英,籍贵苏. 1997.谷子根系生长发育规律及其在土壤中分布的动态模拟.华北农学报, 12 (3): 83~87
    张兴昌,高照良,彭珂珊. 2008.中国特色的水土保持成就和治理措施.自然杂志: 30(1):17~22
    赵景波,侯甬坚,黄春长. 2003.陕北黄土高原人工林下土壤干化原因与防治.中国沙漠, 23(6):612~615
    赵景波,杜娟,周旗,岳应利. 2005a.陕西咸阳人工林地土壤干层研究.地理科学, 25(3):322~328
    赵景波,杜娟,周旗,岳应利. 2005b.西安附近苹果林地的土壤干层.生态学报, 25(8):2115~2120
    赵忠,成向荣,薛文鹏,王迪海,袁志发. 2006.黄土高原不同水分生态区刺槐细根垂直分布的差异.林业科学, 42(11):1~7
    周旗. 2007.黄土高原的植被建设也应“与时俱进”.宝鸡文理学院学报:自然科学版, 27(4): 324~327
    周万亩,李佩成,李莉,付小刚. 2007.黄土丘陵沟壑区退耕还林工程现状研究——以陕西吴起县为例.地下水, 29(3):117~121
    Arunachalam A, Pandey N N, Tripathi R S, Maithani K. 1996. Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. Forest Ecology and Management, 86(1-3):141~150
    Chandra S P O, Amaresh K R. 1996. Nonlinear root-water uptake model. Journal of Irrigation and Drainage Engineering, 122(4):198~202
    Chen Hongsong, Shao Ming’an, Li Yuyuan. 2008. Soil desiccation in the Loess Plateau of China. Geoderma, 143(1-2):91~100
    Davis J P, Haines B, Coleman D, Hendrick R . 2004. Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management, 187(1):19~33
    Diggle A J. 1988. ROOTMAP—a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant and Soil, 105(2):169~178
    Eissenstat D M, Wells C E, Yanai R D, Whitbeck J L. 2000. Building roots in a changing environment: implications for root longevity. New Phytologist, 147(1),33~42
    Fitter A H,Stickland T R,Harvey M L,Wilson G W. 1991. Architectural analysis of plant root systems I: Architectural correlates of exploitation efficiency. New Phytologist, 118(3):375~382
    Gale M R, Grigal D F. 1987. Vertical root distribution of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17(8):829~834
    Gale M R, Grigal D F, Harding R B. 1991. Soil productivity index: predictions of site quality for white spruce plantations. Soil Science Society of America Journal, 55(6):1701~1708
    Gardner W R. 1960. Dynamic aspects of water availability to plants. Soil Science, 89(2):63~73
    Gardner W R. 1964. Relation of Root Distribution to Water Uptake and Availability. Agronomy Journal, 56(1):41~45
    Harris W F, Kinerson R S, Edwards N T. 1977. Comparison of belowground biomass of natural deciduous forest and loblolly pine plantations. Pedobiologia, 17: 369~381
    Hendrick R L, Pregitzer K S. 1993. The dynamics of fine root length ,biomass ,and nitrogen content in two northern hardwood ecosystems .Can J For Res, 23(12):2507~2520
    Herkelrath W N, Miller E E, Gardner W R. 1977. Water Uptake by Plants: I. Divided Root Experiments. Soil Science Society of America Journal, 41(6):1033~1038
    Jackson R B, Canadell J, Ehleringer J R, Mooney H A, Sala O E, Schulze E D. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3):389~411
    Jipp P H, Nepstad D C, Cassel D K, Carvalho C R D. 1998. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change, 39(2-3):395~412
    Lynch J P, Nielsen K L, Davis R D, Jablokow A G. 1997. SimRoot: modelling and visualization of root systems. Plant and Soil, 188(1):139~151
    Marshall J D, Waring R H. 1985. Predicting fine root production and turnover by monitoring root starch and soil temperature. Can J For Res, 15(5):791~800
    McClaugherty C A, Aber J D, Melillo J M. 1982. The Role of Fine Roots in the Organic Matter and Nitrogen Budgets of Two Forested Ecosystems . Ecology, 63(5):1481~1490
    Mitchell R L, Russell W J. 1971. Root Development and Rooting Patterns of Soybean (Glycine max (L.) Merrill) Evaluated Under Field Conditions. Agronomy Journal, 63(2):313~316
    Molz F J, Remson I. 1970. Extraction Term Models of Soil Moisture Use by Transpiring Plants. Water Resources Research, 6(5):1346~1356
    Molz F J. 1976. Water Transport in the Soil-Root System: Transient Analysis. Water Resources Research, 12(4):805~808
    Nadelhoffer K J. 2000. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 147(1):131~139
    Nimah M N, Hanks R J. 1973. Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: II. Field Test of Model. Soil Science Society of America Journal, 37(4):528~532
    Norby R J, Jackson R B. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147(1):3~12
    Persson H, Fircks Y V, Majdi H, Nilsson L O. 1995. Root distribution in Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application. Plant and Soil, 168(1):161~165
    Persson H A. 1983. The distribution and productivity of fine roots in boreal forests. Plant and Soil, 71(1-3):87~101
    Shi Hui, Shao Ming’an. 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environment, 45 (1):9~20
    Sovan R, Singh J S. 1995. Seasonal and spatial dynamics of plant-available N and P pools andN-mineralization in relation to fine roots in a dry tropical forest habitat. Soil Biology and Biochemistry, 27(1):33~40
    Vogt K A ,Grier C C, Vogt D J. 1986. Production, turnover and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research, 15:303~377
    Wang Li, Wang Quanjiu, Wei Sanping, Shao Ming’an, LiYi. 2008. Soil desiccation for Loess soils on natural and regrown areas. Forest Ecology and Management, 255(7):2467~2477
    Zhao Jingbo, Du Juan, Chen Baoqun. 2007. Dried earth layers of artificial forestland in the Loess Plateau of Shaanxi Province. Journal of Geographical Sciences, 17(1), 114~126
    Zhao Zhong, Li Peng, Xue Wenpeng, Guo Shengwu. 2006. Relation between growth and vertical distribution of fine roots and soil density in the Weibei Loess Plateau. Frontiers of Forestry in China, 1(1):76~81
    Zhou Zhengchao, Shangguan Zhouping. 2007. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant and Soil, 291(1-2):119~129
    Zhu Xianmo, Li Yushan, Peng Xianglin, Zhang Shuguang. 1983. Soils of the loess region in China. Geoderma, 29 (3):237~255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700