渭北果树早期落叶病发生的土壤条件及对果品质量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果是世界上贸易量最大的水果之一,具有很高的营养价值、医用价值和经济价值。苹果产业的迅速发展,同时带动了其他相关产业的发展,在地方经济发展方面占有很大比重。陕西渭北旱原被认为是苹果的优生区,已经实行规模化栽培的历史约30余年,既成为发展地方经济的主导产业,又在改善地方景观环境和生态环境方面产生了巨大作用。然而,目前苹果早期落叶“病”已经成为渭北苹果生产中最普遍的和相当严重的危害之一,且发病率有逐年上升的趋势,直接影响着苹果的产量与品质,影响着果业可持续发展,使果农经济利益受到严重地损失,挫伤了果农的生产积极性。因此,研究果园土壤质量的演变规律,探索果树早期落叶“病”发生的机理是确保果业可持续发展的关键。
     尽管对于果树早期落叶病发生的原因,国内外众多学者很早就做了卓有成效的研究工作,其中多数学者认为早期落叶是果树受到了不同程度的病虫危害所致,而对于果园土壤条件演变与果树早期落叶病的关系研究尚属贫乏。本研究在渭北陕西省旬邑县原底乡,具有20年以上的园龄,果树落叶问题较为严重的村镇,从中选取了具有相同园龄、相同果树品种、落叶和不落叶的几个果园作为研究的对象,进行了果园土壤管理调查与土壤剖面性质的监测,采用对比分析的方法,探讨了影响果树健康生长的诸多因素,以期获得果树早期落叶病发生的土壤条件,为果园科学管理提供基本依据。获得主要结论如下:
     1.落叶果园的土壤物理质量发生着明显退化。在0-10cm处落叶果园、不落叶果园土壤以及当地农田(小麦田)土壤紧实度的平均值均相对较小,而随土层深度增加、土壤紧实度显著地在增大,说明渭北地区土壤深层紧实化的问题普遍存在;在10cm以上土层,落叶果园与不落叶果园和农田土壤紧实度差异不显著,而在10cm以下落叶果园的土壤紧实度普遍地高于农田和不落叶果园土壤,在30cm土层处急剧增大,超过了1150Kpa,中深层土壤的紧实化使得果树根系发育受到明显的机械胁迫作用,生长受到抑制,影响果树的健康生长。
     果园与农田土壤容重在20cm土层以上均小于1.30g/cm3,在20cm以下土层则大于1.30g/cm3,对于果园土壤来说,表层土壤对其根系生长影响不大,因为受到表土层干旱胁迫作用,根系量也少,可是在土壤剖面中、深土层,落叶果园的土壤容重>1.50g/cm3,超出了苹果树适宜生长的1.00-1.30g/cm3的范围,对果树的生长造成了影响。
     比较秋末雨季后土壤剖面上含水量,得出在30cm以上果园土壤含水量与农田差异不显著,但在30cm以下土层,落叶果园土壤含水量显著小于农田和小于落叶果园。证明由于落叶果园土壤密实(容重减小),制约水分深层渗漏,不利于深层土壤墒情恢复,加剧了深层土壤干燥化、而干燥化又引发土壤坚实化(硬度增加),形成不良的水分循环,导致果树早期落叶一旦发生就会连年发生。深松果园土壤对于防止早期落叶有一定作用。
     2.土壤团聚作用是维持根据土壤物理状态的基础条件,研究发现无论农田还是果园土壤土壤坚实度与含水量有着显著的正相关关系,间接证明渭北果园土壤的团聚作用较差;进一步测定了土壤团聚体的组成也直接证明渭北土壤团聚作用不强,是土壤普遍发生密实化的主要原因。渭北土壤具有机械稳定性的团聚体直径只有在5mm左右,直径在5mm以上土壤团聚体含量农田>果园,尤其是>0.25mm的水稳性土壤团聚体含量具有农田>不落叶果园>落叶果园的关系。可以看出落叶果园的土壤团聚作用较差,是遇到降雨发生土壤密实和制约水分入渗的原因。保护果园土壤表层结构是改善土壤剖面水分条件和机械强度的首要条件。
     3.落叶果园土壤化学质量也发生了一定退化。果园土壤有机质含量明显低于农田土壤,果园有机肥施用量少,果树的落叶也因为易发生病虫危害而被年年清除移走。落叶果园与不落叶果园相比,在表层落叶果园土壤有机质含量要略高于不落叶果园,而在60cm以下落叶果园土壤有机质反而低于不落叶果园。经调查证实,在植果树前凡是在树穴使用过有机肥或秸秆的果园基本不发生落叶或落叶病较轻,而在树穴未曾使用有机肥或秸秆的果园,落叶病较重。植果前整理和培肥树穴基础土壤对于防止早期落叶病有很大帮助。
     渭北地区土壤碳酸钙含量变化在4.54-12.02%,在土壤表层、中层之间没有形成明显的钙移动与淀积。落叶果园土壤碳酸钙含量低于不落叶果园,可能与落叶果园土壤的通气条件差,土壤空气中CO2浓度一般高,使碳酸钙转化为易移动的重碳酸钙,发生着碳酸钙的明显分化过程,也导致了土壤团聚体稳定性下降等。
     土壤剖面碱解氮含量随土层厚度的增加,呈递减趋势。不落叶与落叶果园土壤碱解氮含量在35cm以上土层中基本相同,没有明显差异,35cm以下开始出现差异,不落叶果园土壤碱解氮含量高于落叶果园。
     4.果园的落叶病严重影响了果实品质。对比落叶果园与不落叶果园的果实品质,虽然在口感上都属于爽脆的优质果,但落叶果园的果实硬度小于不落叶果园,影响果品的储藏与运输。果实的密度可以一定程度上反映果实的内含物多少,测定结果为不落叶果园果实>落叶果园。落叶果园果实产量比不落叶果园减产12.5%。不落叶果园的果实糖度大于落叶果园。可见,果园的落叶严重使果实品质降低,影响果品商品价值和营养价值,不利于果业的可持续发展。
Apple is one of the fruits with the highest trade volume, having great nutritive value and economic value. The rapid development of apple production spurred other business at the same time, making a big proportion locally. The arid area of Weibei River was thought to be the right place for high quality apple planting, and there had been planting apples for 30 years or so, which not only was a dominant economic business but also played a role in improving the landscape and ecological environment. However, defoliation in the early stage of apples had become one of the most universal and serious problems in the arid Area of Weibei River, and this problem was become more serious year by year, affecting the apples’quality and quantity. This also had become an obstacle for the sustainable development of apple production and discouraged the farmers. Thus, it is the key for the sustainable development of apples production to study the evolution of soil quality in orchards and explore the mechanism of defoliation.
     Although scholars domestic and overseas had done a lot of work interms of defoliation in the early stage of apple tree, some of them assumed this problem was due to plant diseases and insect pests and there was still an open in studying the relationship between the problem and soil status. The research work was done in Yuandi Town, Xunyi County, Shaanxi Province, and the orchards were over 20 years old, having the same variety and the defoliation problems. We surveyed the measures and the properties of the orchard soils, explored the reasons which affected apple qualities, in hope of finding out the concrete soil factors for the problem and guiding the scientific management of orchards. The main results gained were below:
     1. The soil quality in the defoliation orchards had degraded significantly. Compared with the defoliation orchards, the soil compactness and soil bulk density were lower in the non defoliation orchards and farmland locally, and the value increased as the soil depth increased. That is to say, it had become a big problem that the subsoil had become hard. In the 0-10 cm the soil compactness made no difference between the soils in orchards and farmland, but the soil compactness was higher in the defoliation orchards than in the non defoliation orchards and farmland. The value expanded sharply under 30 cm in the soil, more than 1150KPa. The compaction in the middle of soil had stressed the fruit roots obviously, affecting the fruit trees to grow freely.
     The soil bulk density was lower than 1.30g/cm3 in the 0-20 cm soil, but was more than under 30 cm in the soil. For fruits, the topsoil was less important to them because there were few roots in an arid environment. However, the soil bulk density was more than 1.50g/cm3 in the lower place in soil, which exceeded the comfort zone of 1.00-1.30g/cm3 for apple trees.
     Consequently, the soil bulk density in the lower layers had become a problem for fruit trees. Compare soil profile moisture capacity of rainy season, find out that above 30cm the orchard and farmland soil moisture capacity were not significant, but below 30cm soil layer , deciduous orchard soil moisture was significantly less than farmland and heath fruit orchards. Proved that cause in deciduous orchard soil compaction (bulk density decreases), restricting water seepage is not conducive to deep soil moisture recovery, increased deep soil desiccation, and drying of the soil has a solid lead of (hardness increase), the formation of poor water circulation , leading to early defoliation of fruit trees will be year after year the event. Subsoiling orchard for a certain role to prevent early defoliation.
     Soil aggregation is the basic condition to keep soil physics properties. In this study showed that there was positive correlation between soil hardness and soil water content in farmland and orchard, which indirect proof that poor aggregation condition in orchard of Weibei area. Moreover, through measuring the composition of soil aggregates showed the poor aggregation was main reason leading to densification in orchard soil profile. The only aggregate with mechanical stability was in 5mm size class. The amount of soil aggregate in >5mm size class was greater in farmland than in orchard, especially the amount of soil aggregate in >0.25mm size class was highest in farmland, followed by undeciduous orchard and deciduous orchard, which showed that poor aggregation in deciduous orchard soil was the main reason to lead to soil hardness and limit water infiltration when precipitation. To protect surface soil aggregation is of prime importance to improve water condition and mechanical strength of soil.
     Soil chemical quality degradation appeared in deciduous orchard. Orchard soil organic matter was lower than it was in farmland. Less organic fertilizer applied in orchard and the leaves were moved to control pest. Soil organic matter content was greater in deciduous orchard surface soil when compared with undeciduous orchard, however, it was another situation in 60~100cm soil layer. It was surveyed that no fallen leaf or less if applying organic fertilizer or straw in pit before planting fruit trees. To manage and foster pit before planting fruit trees have positive effect on preventing fallen leaf in early period of orchard.
     The soil calcium carbonate content changes in the 4.54-12.02% in Weibei Area, in the soil surface and between the middle layer not formed the movement and deposition of calcium significantly. Deciduous orchard soil calcium carbonate content is lower than non-deciduous fruit orchards, may be deciduous orchards poor soil aeration, and soil air CO2 concentration is generally high, so calcium carbonate easy to move into heavy calcium carbonate, place a clear differentiation of calcium carbonate, also led to the deterioration of soil aggregate stability.
     With the soil depth increased soil nitrogen content showed a decreasing trend. The soil nitrogen levels in the non-deciduous and deciduous orchardin have the same more than 35cm of soil, no significant difference, the differences began to appear in the 35cm following, non-deciduous orchard soil nitrogen content higher than the deciduous fruit.
     Deciduous orchard fruit disease has seriously affected the quality of fruit. Comparison of deciduous fruit orchard and non-deciduous fruit quality, although both are crisp taste of high quality fruit, However,the hardness of deciduous fruit orchards is less than non-deciduous orchards, so affected fruit storage and transportation. Fruit density is to some extent reflect the inclusion of fruit number,the results show that non-deciduous fruit orchard greater than deciduous orchard. Non-deciduous fruit sugar content is greater than the deciduous fruit orchards. So, deciduous orchards severely reduced fruit quality, and affect the value of goods and nutritional value of fruit, not conducive to the sustainable development of fruit industry.
引文
白智礼,穆养民.2003.陕西苹果产业发展的新思考与新探索.干旱地区农业研究.21(4):172~175
    财政部农业司.2005.我国重点农产品竞争力研究报告.经济科学出版社
    邓振山,白重炎,李军. 2006陕北苹果常见真菌病害病原菌的分离鉴定研究.延安大学学报(自然科学版).(4):65~70
    杜志辉,雷延明.2003.2002年早期落叶病流行原因及防治对策探讨.西北园艺. (4):48~49
    樊军,邵明安,郝明德.2004.渭北旱塬苹果园土壤深层干燥化与硝酸盐累积.应用生态学报.15(7):1213~1216
    傅学池,严志农,徐伟敏. 1997.苹果斑点落叶病和果实轮纹病生物防治研究.中国果树.(3):6~10
    高国瑞.1980.黄土显微结构分类与湿陷性.中国科学.12:1203~1208.
    高国瑞.1994.我国黄土湿陷性质的形成研究.南京建筑工程学院学报.2:1~8.
    郭俊伟.1996.土壤容重对玉米生长的影响.陕西农业科学.(4):25~26.
    郭胜利,张文菊,党庭辉.2003.干旱半干旱地区农田土壤NO3--N深层积累及影响因素.地球科学进展18(4):584~591
    郭小侠,陈川,唐周怀. 2004苹果早期落叶病的发生规律及生物防治.陕西农业科学.(1):62~64
    郭玉文,加藤诚,宋菲.2004.黄土高原黄土团粒组成及其与碳酸钙关系的研究.土壤学报.41(3):362~368.
    胡同乐,曹克强,王树桐. 2005.生长季苹果斑点落叶病流行主导因素的确定.植物病理学报.35(4):374~377
    黄昌勇. 2000.土壤学.中国农业出版社.5:67~68
    解文艳,樊贵盛.2004.土壤结构对土壤入渗能力的影响.太原理工大学学报.35(4):381~384
    孔建,赵白鸽,申效诚. 1995中生菌素防治苹果轮纹病和苹果叶斑病的田间试验初报.中国生物防治.11(3):119~121
    李东鸿,赵政阳,赵惠燕. 2004.苹果病虫害综合防治技术规程(草案).西北林学院学报. (4):113~115
    李东鸿,赵政阳,赵惠燕. 2005苹果早期落叶病发病规律与药剂防治研究.西北农林科技大学学报(自然科学版).(5):76~80
    李笃仁,高绪科,汪德水. 1982.土壤紧实度对作物根系生长的影响.土壤通报.3:20~22
    李港丽,苏润宇,李隽.1997几种落叶果树叶片内矿质营养含量标准值的研究.园艺学报.14(2):81~89.
    李海飞,赵政阳,梁俊. 2005苹果农药残留研究进展.果树学报22(4):381~386
    李静. 2005.国内外禁用和限用农药概况.黑龙江农业科学.(2):46~48
    李亚芸. 2008.五种早期落叶病的比较及科学防治措施.果农之友.(9):31
    李志洪,王淑华.2000.土壤容重对土壤物理性状和小麦生长的影响.土壤通报.31(2):55~57
    刘晓宏,田梅霞,郝明德.2001.黄土旱塬区长期轮作施肥土壤剖面硝态氮的分布于积累.土壤与肥料.(1):9~12
    路克国,朱树华,张连忠.2003.有机肥对土壤理化性质和红富士苹果果实品质的影响.石河子大学学报,7(3):63~65
    农业部. 2003.苹果优势区域发展规划.中国农业信息网
    彭福田,姜远茂,顾曼如.2003.落叶果树氨素营养研究进展.果树学报.20(1):54~58
    陕西年鉴编辑委员会.2004.陕西年鉴.陕西科技出版社
    陕西省土壤普查办公室.1992.陕西土壤.北京:科学出版社.340
    尚庆文,孔祥波,王玉霞.2008.土壤紧实度对生姜植株衰老的影响.应用生态学报.19 (4):782~786
    史大卫. 2003.苹果早期落叶病的流行发生与防治.果农之友. (9):27
    腾元文,许明宪,余建国.1988.抗蒸腾剂对杏树气孔开度及水分状况的影响.西北农业大学学报.16(2):362~367
    田少强. 2003.苹果早期落叶病的发生与防治.河北果树(2):41.
    汪景彦.2001.苹果优质生产.北京:中国农业出版社.44
    王淑玲.2004.苹果缺钙症与补钙技术.中国果菜.4:28
    魏景超. 1979真菌鉴定手册.上海:上海科技出版社
    吴桂本,王英姿,王培松. 1999.苹果斑点落叶病原菌的分化及生物学研究.中国果树.(4):11~15
    吴淑杰,韩喜林,李淑珍.2003.土壤结构、水分与植物根系对土壤能量状态的影.东北林业大学学报.5:24~26
    吴思政,柏文富,禹霖.2001.土壤容重与杏树生长和结果的关系.经济林研究.19(4):20~22
    吴亚维,邹养军.2008.土壤紧实度对平邑甜茶幼苗生长及叶绿素荧光参数的影响.西北农林科技学报(自然科学版).36 (8):177~182
    吴玉星,李美娜,周宗山. 2007.8种杀菌剂防治苹果斑点落叶病试验.中国果树.(2):28~30.
    刑来君,李明春. 1999普通真菌学.北京:高等教育出版社
    徐秉良,郁继华. 1995.苹果斑点落叶病原菌的生物学特征.甘肃农业大学学报.(2):183~188
    杨克钦,俞宏. 2001.苹果农药残留限量国际标准和国家标准的比较分析.中国果菜.(3):9~10
    岳宪化,韩秀娜.胡夫防. 2007.鲁南滨湖区苹果早期落叶病的发生与防治.果农之友.(5):29
    翟衡,史大川,束怀瑞. 2007我国苹果产业发展现状与趋势.果树学报.(3):355~360
    翟衡,赵政阳,王志强. 2005.世界苹果产业发展趋势分析.果树学报.(1):44~50
    张国红,张振贤,梁勇,曹之富.2004.土壤紧实度对温室番茄生长发育、产量及品质的影响.中国生态农业学报.12(3):65~67
    张立功,李丙智,马锋旺. 2006.苹果生产中的农药残留问题及其控制策略.陕西农业科学(2):60~61
    张雪阳,朱海霞,张会新. 2005.陕西苹果产业发展现状与发展思路.西北大学学报.1(35):112~115
    张永明,张玉峰,张玉琴. 2007.陇东地区苹果斑点落叶病发病规律及药效试验研究.陇东学院学报(自然科学版).(2):59~61
    张宗祜,张之一,张平.1985.黄土湿陷变形过程中微结构变化特征及湿陷性评价.国际交流地质学术论文集北京:地质出版社.6: 67~78.
    赵佳,方天防. 2005.中国苹果产品国际竞争力的经济分析.农业经济(5):40
    赵进春,李立军,龚欣. 2001.部分苹果属植物抗斑点落叶病鉴定.北方果树.(3):15
    郑毅,张富锁.2003.土壤结构和耕作对根际微生态系统的影响.云南农业大学学报.18(2):391~791
    朱虹,王克. 1997.苹果斑点落叶病病原学研究.北方果树.(1):11~34
    Angers D.A .Samson N , Legere A. 1993. Early changes in water-stable aggregation induced by rotation and tillage in a soil under barley production. Can.J.Soil Sci. 73:51~59
    Assaeed AM, Mcgowan M,Hebblethwaite PD,Brereton JC. 1990.Effect of soil compaction on growth,yield and light interception of selected crops. Annals of Applied Biology.117:653~666.
    Atwell B J.1990.The effect of soil compaction on wheat during early tillering. Growth, developmentand root structure. New Phytol.115:29~35
    Atwell BJ.1990.The effect of soil compaction on wheat during early tillering.Ⅰ.Growth,development and root structure. New Phytol.115:29~35
    Barritt B.H.2003.The apple world 2003-present situation and developments for producs and consumers Compact.Fruit Tree.36(1):15~18
    Buttery BR,Tan CC, Drury CF .1998.The effects of soil compaction, soil moisture and soil type on growth and nodulation of soybean and commonbean.Can J Plant Sci.78:571~576
    Garcia F,Cruse R M, Blackmer AM.1988. Compaction and nitrogen placement effect on root growth, water depletion, and nitrogen uptake. Soil Science Society American Journal.52:792~798.
    Hartung W, Zhang J, Davies WJ. 1994.Does abscisic acid play a stress Physiological role in maize plants growing in heavily compacted soil. J Exp Bot.45:221~226
    Masle J, Passioura JB. 1987.The effect of soil strength on the growth of Young wheat plants. Aust J Plant Physiol.78:471~576
    Passioura J B.1991. Soil structure and plant growth. Aust. J.Soil Res.123:73~82
    Rotem J. 1994.The genus Alternaria:bloiogy,epidemiology,and pathogenicity.St.Paul:APS press. 11~34
    Sawamura K. 1962.Studies 011 spotted disease of Apples.I.The causal agent of Alternaria Blotch Bulletin of the Tohoku Agriculture Experiment Station.23:163~175
    Schroth G , F L Sinclair, Trees. 2003. Crops and Soil Fertility .CAB International.77~91.
    Shierlaw J, Alston A M. 1984.Effect of soil compaction on root growth and uptake of phosphorus. Plant and Soil.77:15~28.
    Soane B.D. 1990. The role of organic matter in soil compactibility: A review of some practical aspects. Soil and Tillage Research.16:179~201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700