滴灌条件下土壤水分运移规律试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴灌条件下土壤水分运移规律的试验研究,是正确设计滴灌系统和对田间作物水分进行精准管理的前提和基础。为了探索滴灌条件下土壤水分的运动规律及分布状况,进行了单点源和双点源条件下的室内滴灌试验。本文主要研究了点源入渗条件下,滴头流量和灌水量等因素对湿润体内各点土壤含水量、湿润体形状和湿润范围的影响;双点源入渗条件下,滴头流量和交汇作用对土壤水分分布规律的影响。主要研究成果如下:
     1)通过室内滴灌单点源入渗试验,结果发现湿润体形状符合抛物线模型,并且水平湿润锋和垂直湿润锋之间存在显著的抛物线关系,湿润体内水平和垂直湿润距离均随着入渗时间的推移而逐渐增大;不同滴头流量入渗试验时发现,滴灌湿润体水平和垂直入渗距离与入渗时间之间存在显著的幂函数关系,并且滴头流量越大湿润锋运移速率越大。水平和垂直两个方向上的湿润锋运移速率具有相同的规律:入渗开始时湿润锋运移速率较大,随着入渗时间的推移,运移速率逐渐减小。
     2)滴灌自由入渗条件下,当滴头流量为4.6L/h时,粘壤土垂直湿润锋运移速度大于水平湿润锋运移速度所用的时间最短。
     3)滴灌自由入渗条件下,利用得到的湿润体形状的抛物线特征,推求土壤湿润体特征值的经验解模型,通过试验数据进行验证,实测值与计算值之间相对误差绝大部分在5%以内,模型精度较高。湿润体内含水率在水平或竖直方向,滴头附近含水率最大,随入渗距离的增加而逐渐减小;在湿润体内某一平面上,含水率值大致相等;在离滴头距离从近到远的位置上,含水率差别从大到小变化,等值线由疏到密分布。
     4)本文利用抛物线旋转体模型获得了湿润体体积与灌水量之间的关系,通过分析获得单点源入渗湿润体内平均含水率变化的转折点,对应的滴头流量为0.65L/h;双点源交汇入渗湿润体内平均含水率变化的转折点,对应的滴头流量为0.53L/h。
     5)双点源交汇入渗条件下,滴头下方的水平入渗距离和垂直入渗距离均随着入渗时间的延长而增大,并且与入渗时间存在显著的幂函数关系,而交汇界面处的水平和垂直入渗距离与入渗时间之间存在显著的线性关系。湿润锋交汇界面处的土壤含水率大于相同土壤深度处的含水率。
     6)双点源交汇入渗条件下,在相同灌水量和相同滴头间距情况下,滴头流量越大,湿润体发生交汇用时越短;相同滴头流量条件下,土壤交汇界面湿润体内含水率大于单点源入渗条件下相同位置处的含水率。湿润体发生交汇前后,水平和垂直两个方向上含水率分布规律:两者都随着入渗距离的增加,湿润体内含水率逐渐减小。
Research on soil moisture movement of drip irrigation, is the right design system and the premise and basis of field crops to high water management. In order to understand the movement of soil moisture and water distribution under drip irrigation through the laboratory test on a single-point source drip irrigation and two-point source drip irrigation. Under the conditions of point source infiltration, this paper studied dripper discharge and dripper water on soil moisture content, shape and range of wetting; Under the conditions of two-point source infiltration, dripper discharge and the effect of soil moisture movement on interference effect of two-point source infiltration. The main results are as follows:
     1) Through indoor single point source drip irrigation experiments, the results showed that, generally, wetting front is similar to a parabola, and vertical wetting front and horizontal wetting front exist the significantly parabolic relationship. The body of horizontal and vertical sub-humid distance increases with the increase of infiltration time. Through infiltration experiments with different emitter flow, the results showed that, there is a significant power function relationship between horizontal and vertical infiltration distance of wetting drip and infiltration time, and emitter flow rate is the greater the wetting front migration rate the greater. The regular pattern of horizontal and vertical directions rate of wetting front migration is same. Infiltration wetting front movement rate of the beginning is larger. With the infiltration time, the migration rate decreases. What’s more, at the same time the vertical infiltration wetting front migration rate is greater than the horizontal migration rate of wetting front.
     2) Condition in the drip free infiltration and emitter flow is 4.6L/h, vertical wetting front migration speed of change is higher than the level change rate of wetting front movement velocity,which used the shortest time.
     3) Condition in the drip free infiltration, using the parabolic of moist body shape, wetting characteristic value of the experience of solution model can be calculated. Test data can verify model. The most of relative error is less than 5%. Model has high accuracy. Moist body water content in the horizontal or vertical direction, moisture content near emitter is maximum and with the increasing infiltration distance decreases. In a plane, moisture content close to the same. Distance from the emitter near to far, water content changes from big to small and contour distribution is from sparse to dense.
     4) In this paper, using the parabolic model of rotating obtained the relationship between wetted soil volume and irrigation water amount. Finally, through the analysis, the dripper discharges was 0.65L/h express the average soil moisture from content to increase. Under the conditions of two-point source infiltration, the dripper discharges was 0.53L/h express the average soil moisture from content to increase.
     5) In the conditions of point source interference infiltration, the horizontal and vertical movement distance of soil wetting front are increase with infiltration time, and the horizontal and vertical movement distance of soil wetting front accorded good power function relation with infiltration time underside of dripper; but the horizontal and vertical movement distance of soil wetting front accorded good linear relationship on the intersection side.
     6) In the conditions of point source interference infiltration, under the same irrigation water amount and the same emitter space, when in large dripper discharge, using shorter time when occurs intersection in wetting. In the same emitter flow, the soil moisture of wetting front on the intersection side is bigger than the soil moisture of same depth in single point source infiltration. In the before and after intersection, the discipline of moisture content distribution in horizontal and vertical direction: with the extension of infiltration distance, soil water content gradually decreases.
引文
常凤生,张顶山. 2003.关于滴灌均匀度问题的探讨.东北水利水电,12(21):38~39
    陈渠昌,吴忠渤. 1999.滴灌条件下沙地土壤水分分布与运移规律.灌溉排水学,18(1):28~31
    陈志恺.2000.中国水资源的可持续利用.中国水利, 5(8):20~23
    程辉等.1999.地下滴灌技术及应用现状综述.节水灌溉,8(4):13~8
    池宝亮,黄学芳,张冬梅,李保国. 2005.点源地下滴灌土壤水分运动数值模拟及验证.农业工程学报, 21(3):56~59
    费良军,潭奇林,王文焰. 1999.充分供水条件下点源入渗特性及其影响因素.土壤侵蚀与水土保持学报,5(2):70~74
    费良军,朱兴华,吴军虎. 2006.膜孔灌多向交汇入渗减渗特性和数学模型研究.农业工程学报, 37(1):104~108
    冯广志.2000.关于微灌技术研究与推广的几个问题.节水灌溉,6(2):6~8
    戈德堡D,戈内特,D.里蒙. 1984.滴灌原理与应用:北京:中国农业机械出版社:127~134
    郝芳洲.2000.国内外节水灌溉技术发展简介.节水灌溉,l(3):11~15
    缴锡云.1999.膜孔灌溉理论与技术要素的实验研究.[博士学位论文].西安:西安理工大学
    康绍忠,刘晓明.1992.土壤-植物-大气连续体水分传输的计算机模拟.水利学报,6(3):15~20
    康绍忠,许迪.2001.我国现代农业节水高技术发展战略的思考.中国农村水利水电,3(10):25~29
    肯.索洛芒.1982.滴灌均匀度-引论:第二版.北京:农业出版社:213~221
    雷廷武.1994.滴灌湿润比的解析设计.水利学报,25 (1):1~9
    雷廷武.1988.微灌果园的SPAC系统模拟研究及其应用.[博士学位论文].北京:北京农业工程大学
    李援农,费良军.2005.土壤空气压力影响下的非饱和入渗格林-安姆特模型.水利学报, (6):733-736
    李援农.2003.浑水灌溉禁锢土壤空气压力影响的研究.干旱地区农业研究, (3):91-93
    李援农.2007.不同灌溉方式入渗条件下的土壤空气阻渗特性试验研究.[博士学位论文].西安:西安理工大学
    李发文,费良军.2001.膜孔灌多点源交汇入渗影响因素试验研究.农业工程学报,8(6):26~30
    李光永,曾德超.1997.滴灌土壤湿润体特征值的数值算法.水利学报,5(7),1~6
    李光永,曾德超.1998.地表点源滴灌土壤水分运动的动力学模型与数值模拟.灌溉排水,(11): 21~25
    李光永等.1996.地埋点源非饱和土壤水运动的数值模拟.水利学报,(11):47~51
    李明思,康绍忠,孙海燕.2006.点源滴灌滴头流量与湿润体关系研究.农业工程学报,22(4):32~35
    李晓斌,孙海燕.2008.不同土壤质地的滴灌点源入渗规律研究.水土保持学报,8(15):4292~4295
    李毅,王文焰,王全九等.2003.非充分供水条件下滴灌入渗的水盐运移特征研究.水土保持学报, 17(1):1~4
    刘昌明,窦清晨.1992.土壤-植物-大气连续体模型中的蒸散发计算闭.水科学进展,3(4):255~263
    刘晓英,杨振刚,王天俊.1990.滴灌条件下土壤水分运动规律的研究.水利学报,(l):11~21
    刘雪芹,范兴科,马甜.2006.滴灌条件下砂壤土水分运动规律研究.灌溉排水学报,25(3):56~59
    吕殿青,王全九,王文焰.2002.膜下滴灌水盐运移影响因素研究.土壤学报,39(6):794~801
    吕殿青,王文焰,王全九.2000滴灌条件下土壤水盐运移特征的研究.灌溉排水,19(1):16~21
    山仑.1999.借鉴以色列节水经验发展我国节水农业.水土保持研究,3(1):1~5
    孙海燕,王全九.2007.滴灌湿润体交汇情况下土壤水分运移特征的研究.水土保持学报, 21(2):115~118
    谭奇林.1997.充分供水条件下点源入渗试验研究[硕士学位论文].西安:西安理工大学
    同延安,王全九等.1998.土壤一植物一大气连续体系中水运移理论与方.陕西:陕西科学技术出版社: 25~30
    汪志荣,王文焰,王全九.2000.点源入渗土壤水分运动规律实验研究.水利学报, (6):39~44
    王成志,杨培岭,任树梅.2006.保水剂对滴灌土壤湿润体影响的室内实验研究.农业工程报,22(12):1~7
    王全九,王文焰等.1994.土壤水分运移热力学特性的研究.水土保持学报,(4):5~9
    王烨,朱琨.2005.我国水资源现状与可持续利用方略.兰州交通大学学报,(10):79~80
    吴军虎.2000.膜孔灌溉入渗特性与技术要素实验研究[硕士学位论文].西安:西安理工大学,
    吴普特,范兴科.2003.渠灌类型区农业高效用水模式与工程示范.农业工程学报,(11): 36~40
    谢云.2005.线源滴灌滴头流量设计依据研究. [硕士学位论文].新疆:石河子大学
    许迪,程先军,谢崇宝,李益农.2001.田间节水灌溉新技术应用研究.节水灌溉, (4):7~11
    许英.2000.现代节水灌溉工程技术及特点.节水灌溉,3(1):15~16
    薛志成.1998.国内外田间节水灌溉新法.节水灌溉, 12(4):36~38
    杨培岭,雷显龙.2000.滴灌用灌水器的发展及研究.节水灌溉,3:17~18
    尤文瑞.1988.土壤盐渍化预测预报的研究闭.土壤学进展, 1:23~28
    岳兵.1997.渗灌技术存在问题与建议.灌溉排水,16(2):40~44
    张金梅.2010.浅析中国水资源的可持续利用.微量元素与健康研究,(2):57~58
    张振华,蔡焕杰,郭永昌等.2002.滴灌湿润体影响因素的试验研究.农业工程学报,18(2):17~20
    张振华,蔡焕杰,杨润亚.2004.地表滴灌土壤湿润体特征值的经验解.土壤学报,41(6):870~875
    张振华,蔡焕杰,杨润亚,王健.2004.地表积水条件下滴灌入渗特性研究.灌溉排水学报,23(6):1~4
    张正栋.2000.中国农业高效节水技术体系及展望.农业现代化研究,(1):41~44
    郑园萍.2008.滴灌条件下土壤水分入渗过程模拟试验研究.[硕士学位论文].西安:西北农林科技大学
    朱德兰,李昭军,王健,贾锐鱼.2000.滴灌条件下土壤水分分布特性研究.水土保持研究,7(1):81~84
    朱德兰,汪志农,王得祥,朱首军,俞发军.2000.不同土壤中滴灌水分分布与设计参数的确定.西北农林科技大学学报,28(2):11~15
    朱树人.1999.我国节水灌溉的前瞻.中国农村水利水电, (7):9~11
    Ahmed Y Hachum,Jose.F Alarfo, Lyman S Willardon.1976. Water movement in soil from trickle source. Journal of Irrigation and Drainage Division,6:179~192
    Brandt A, Bresler E,N Diner,J Ben-Asher.1971.Infiltration from a trick source:Mathematical Models.Soil Sci Soc of Amer Proc,35:675~682
    Bresler E.1978.Analysis of trickle irrigation with application to design problem.Irrig Sci,1:13~17
    Ben-Asher J,Charach C, Zemel A.1986.Infiltrtion and water extraction from trickle irrigation source: the effective hemisphere model.Soil Sci Soc of Amer Proc,50:882~887
    Flether Arm strong C and T V W lison.1983.Computer modle for moisture distribution in strified soils under a trick source.Trans of the ASAE,26:1704~1709
    Garrison Sposito.1979.Advances in Water Resources,a critical review.Foundation theories of solute transport in porous media,2:145~152
    Healy R W, A W Warrick.1988.A generalized solution to infi1tration from a surface Point source.Soil Sci Soc of Amer,52:1245~1250
    Nielsen D R.1986.Water flow and solute transport processes in the unsaturated zone.Water ResourcesResearch, 22(9):234~245
    Nakayama F S, Buck s D.1986.Trickle irrigation for crop production—design,operation and management. Elsevier Science Publishers B V,108
    Ould Mohamed EI-Hafedh,A V,Daghari,and Maalej M,2001,Analysis of several discharges rate- spacing -duration combination in drip irrigation system. Agricultural Water Management,52:33~52
    Roth R L. 1974.Soil moisture distribution and wetting pattern from a point source. Proceedings of the second international drip irrigation.congress San Diego,C A, 45:168-175
    Shu-Tung Chu.1994.Green-Ampt analysis of wetting patterns for surface emitter.Irrigation and Drainage Engineering,120(2):414~420
    Singh Lubana P P, Narda N K.2001.Modelling soil water dynamics under trickle emitters-a review. Agric Engng Res,78(3):217~232
    TaghaviS A, MarinoM A, RolstonD E.1984.Infiltration from trickle irrigation Source.lrrig Drain Eng, 110:331~341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700