覆膜开孔率对土壤水盐热运移影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于盐碱地开发和改良以及土壤次生盐碱化防治的必要性和紧迫性,使得对西北干旱—半干旱地区覆膜条件下土壤水、盐、热耦合迁移规律的研究受到重视。目前国内外对覆膜开孔条件下的土壤物质迁移过程还研究较少。本论文结合国家自然科学基金课题,以室内试验为主、理论分析为辅,采用土柱加热室内试验系统,研究覆膜开孔率对入渗和蒸发条件下土壤水、盐、热耦合迁移的影响及作用机制,所得主要结论如下:
     (1)砂土毛管水上升速度和地下水补给速率均与时间呈明显的幂函数关系,二者之间可近似为线性关系,且斜率表示土壤在此期间含水量变化量。
     (2)在不同覆膜开孔条件下,毛管水补给对蒸发产生影响,不同开孔率的累积蒸发量随着时间逐渐增加,采用Rose经验公式对累积蒸发量和时间以及相对开孔率进行拟合,得到幂函数关系;单位膜孔面积蒸发量随开孔率的增加而减小,因此覆膜开孔抑制蒸发速率。土壤剖面温度呈现出上大下小的趋势,土体上部温差梯度较大,越深温差梯度越小,30cm以下土温增幅相对于30cm以上都不大,因此可将30cm定义为温度变化的影响深度,土层温度T与深度Z之间存在幂函数关系。不同开孔率时的温度变化趋势相同,在一定深度土体温度不随深度变化;覆膜开孔率越小,土壤剖面的温度相对越大,全覆膜时的土温最高。
     (3)不同高度土体的单位深度累积蒸发量与时间变化符合裸土蒸发的Gardner理论关系,单位深度累积蒸发量与时间和土体总高度存在二元线性函数关系,土体高度和开孔率与单位膜孔面积单位深度累积蒸发量的乘幂关系;土柱高度越小单位深度含盐量和盐分浓度变化幅度越大,覆膜开孔限制土壤水分蒸发速度进而影响土体盐分表聚,因此可以通过控制覆膜开孔率达到改良盐渍土的目的。
     (4)土壤水分含量影响蒸发时土壤供水能力,根据蒸发系数可推算已知土壤含水率下、不同覆膜开孔率条件下任意时刻的累积蒸发量变化,单位膜孔面积累积蒸发量(ER)随开孔率增大而急剧减小,不同含水率的ER与开孔率可用幂函数表示;含水率越大,不同覆膜开孔率土体的土表积盐量越多,不同含水率土体的盐分浓度剖面分布规律一致,不同开孔条件下不同含水率土体剖面盐分浓度与垂直位置之间可用幂函数表示。
     (5)土壤质地是影响蒸发的因素之一,在稳定蒸发条件下土表的水吸力较大时,砂土导水率小于塿土的,随着夹层层位的变化,水分运动由被加速到被抑制的转折点为砂土与塿土的导水率相对大小发生变化之时,不同夹层层位裸土的累积蒸发量的变化趋势保持一致,夹层层位越浅对土体累积蒸发量的抑制作用较明显;覆膜开孔条件下,累积蒸发量、相对累积蒸发量、单位膜孔面积的累积蒸发量与开孔率及夹层层位均存在定量函数关系。
     (6)蒸发过程中,塿土层中的含水量明显大于上下砂土层的含水量,而塿土层以下砂土的含水量变化不大,塿土层以上的砂土含水量则随层位的不同发生明显变化,这与毛管水上升阶段的情况相似;土壤剖面温度增加是因干燥层的形成所致,而干燥层的形成使水分蒸发强度明显减小,较高的夹层层位对于土壤剖面温度的分布影响较大,不同开孔率时的温度变化趋势相同。覆膜开孔率越小,土壤剖面的温度越大,由此可见,覆膜能够有效地增加土体温度。
Owing to the neccecity and emergency of reclamation of salinized soils and prevention of secondary salinization in recent years, study on the coupled movement of soil water, soil salt and soil heat under plastic mulch in arid and semi-arid areas had been paid attention to. Rsearch on soil mass transfer process under plastic mulch has been conducted limitedly in the world. This work was supported by National Natural Science Fundation. We combined laboratory tests with theoretical analysis, used laboratory soil column test systems to study the effect of plastic film hole ratios on the movement of soil water, soik salt and soil heat during soil water infiltration and evaporation process to analyze the mechanism. The main results are as follows:
     (1) Power functions were both found for relationship between capillary water rise velocity with time, and between capillary water supply rate with time. There was linear function relationship between the capillary water rise velocity and the capillary water supply rate for uniform soil.
     (2) The supply of capillary water impacted evaporation at different plastic film hole ratios, the cumulative evaporation of different open hole ratios increased with time gradually, there was power relationship between cumulative evaporation and time as well as relative open hole ratios with Rose empirical formula. Unit film hole area of evaporation decreased when open hole ratios increased, so did the rate of evaporation at different plastic film hole ratios. Soil temperature on soil surface was large and was small when soi depths increased, the upper soil temperature gradient was large, the deeper of soil depth, the smaller of the temperature gradients, soil temperature at depths depper than 30cm varied not so obviously, so 30cm can be defined as influence depth for soil temperature changes. There were power functions between soil temperatures and soil depths.
     (3) The variations between cumulative evaporation at unit depth and evaporation time fit Gardner’s theory for all the soil column heights, there were 2-variable linear functions between cumulative evaporation at unit depth, evaporation time and total soil height. There was power relationship between cumulative evaporation at unit depth by unit film hole area and total soil height as well as open hole ratios. The smaller the total soil height, the larger the variation ranges of soil salt content at unit depth and soil salt concentration. Plastic mulch with open holes restrained soil water evaporation rates and also affected accumulation of soil salt on soil surface, it was effective to decrease soil salt accumulation on soil surface by decreasing open-hole ratios of plastic.
     (4) The initial soil water contents affected soil water supply capacity. During soil evaporation, the cumulative evaporation changes at any time at different film hole ratios were calculated according to evaporation coefficients at known initial soil water contents, cumulative evaporation per unit hole area film(ER)decreased rapidly when the open hole ratios increased, the function of ER and the open hole ratios of different soil moisture were established; the greater of the soil moistures the greater of the salt concentrations on surface under perforated plastic mulch. The salt concentration distributions in the profiles were similar at different initial soil moisture, there were power functions between soil salt concentration at different initial soil moistures and vertical positions under perforated plastic mulch.
     (5) Soil texture affected soil evaporation. Hhydraulic conductivity of sandy soil were smaller than loam when soil water suction was large under the stability evaporation, when the loamy soil layer position changeed, the changing point of soil water movement was accelerated or was restrained when the relative size of soil hydraulic conductivity changed for sandy and loamy soils. The trends of cumulative evaporation were similarly for bare soils at different loamy soil layer positions, it was clear that the restrain effects of soil layer on cumulative evaporation were more obvious when layer position were closer to soil surface. There were quantititative functions between cumulative evaporation, relative cumulative evaporation, unit film hole area of evaporation and open hole ratios for different loamy soil layer positions.
     (6) The soil water contents in the loamy soil layers were higher significantly than the upper and lower sand layers during evaporation, and soil water content of sand changed less than loamy soil, soil water content in the sand soil layers on the top of loamy soil changed significantly, which was similar with situations of capillary water rise process; increase of soil temperature was caused by the formation of dry layer, and it significantly reduced intensity of soil water evaporation. The higher of the layer positions, the greater of its impacts on the distributions of soil temperature. The trend of temperature changed and was similar under different open hole ratios. The smaller the open hole ratios, the larger the soil temperature in the profiles, which showed that plastic mulch can increase the soil temperature effectively.
引文
陈启生,戚隆溪. 1996.有植被覆盖条件下土壤水盐运动规律研究.水利学报,(1):38~46
    窦建坤,张德生,张耀峰. 2005.分层土壤溶质运移的特征有限元数值模型.纺织高校基础科学学报,18(4):377~384
    樊自立,马英杰,马映军. 2001.中国西部地区的盐渍土及其改良利用.干旱区研究,18(3):1~6
    方生,陈秀玲. 2001.关于发展农业节水灌溉的建议.中国农村水利水电,(7):17~18
    冯宝平,张建丰,汪志荣,等. 2001.温度对土壤水分运动影响的研究.灌溉排水,20(1):46~49
    冯功堂,由希尧. 1995.干旱区潜水蒸发埋深及土质关系实验分析.干旱区研究,12(3):78~84
    何祺胜,塔西甫拉提·特依拜,丁建丽. 2007.塔里木盆地北缘盐渍地遥感调查及成因分析——以渭干河4/库车河三角洲绿洲为例.自然灾害学报,16(5):24~29
    胡安焱,高瑾,贺屹,等. 2002.干旱内陆灌区土壤水盐模型.水科学进展,13(6):726~729
    华孟,王坚. 1992.土壤物理学.北京:北京农业大学出版社
    黄兴法,曾德超,练国平. 1997.土壤水热盐运动模型的建立与初步验证.农业工程学报,13(3):32~36
    纪永福. 1999.甘肃河西走廊盐渍土改良技术措施分析.兰州:兰州大学出版社
    姜建军,文冬光. 2005.合理开发利用地下水缓解水资源紧缺状况.中国水利,(13):36~39
    雷志栋,胡和平,杨诗秀. 1999.关于提高灌溉水利用率的认识.中国水利,(7):13~14
    雷志栋,杨诗秀,谢森传. 1988.土壤水动力学.北京:清华大学社
    李彬,王志春,孙志高,等. 2005.中国盐碱地资源与可持续利用研究.干旱地区农业研究,23(2):154~156
    李春友,任理,李保国. 2000.秸秆覆盖条件下土壤水热盐耦合运动规律模拟研究进展.水科学进展,11(3):325~332
    李法虎. 1994.土壤中水、热、溶质运移的研究现状及展望.灌溉排水,13(l):7~l0
    李琦,杜克信. 1987.山西省地膜覆盖棉花灌溉试验成果分析.灌溉排水,6(2):23~26
    李新举,张志国,刘勋岭. 1998.秸秆覆盖对盐渍土水分状况的影响.干旱地区农业研究,16(3):53~58
    李毅,邵明安,王文焰,等. 2004.覆膜不同开孔程度蒸发条件下土壤水热变化动态研究.土壤学报,(3):387~393
    李毅,王全九,王文焰,等. 2005.覆膜开孔土壤蒸发的水盐分布特征及运移规律研究.植物营养与肥料学报,11(2):187~193
    李毅,王全九,王文焰,等. 2005.覆膜开孔土壤蒸发实验研究.应用生态学报,(3):445~449
    李毅,王全九,王文焰. 2006.覆膜条件下土壤水、盐、热耦合迁移研究.西安:陕西科学技术出版社:1~20
    李毅,王文焰,王全九,等. 2004.等温与非等温条件下水盐运动特征的比较.水土保持学报,(6): 16~20
    李韵珠,胡克林. 2004.蒸发条件下粘土层对土壤水和溶质运移影响的模拟.土壤学报,4(14):493~502
    李韵珠,李保国. 1998.土壤溶质运移.北京:科学出版社
    廖允成,付增光,韩思明. 2003.黄土高原旱作农田降水资源高效利用.西安:陕西科学技术出版社
    刘福汉,王遵亲. 1993.潜水蒸发条件下不同质地剖面的土壤水盐运动.土壤学报,30(2):173~180
    刘广明,杨劲松,李冬顺. 2001.地下水作用条件下粉砂壤土盐分动态研究.土壤学报,38(3):365~372
    刘虎俊,王继和,杨自辉,等. 1999.干早区盐渍化土地梨园覆草相应研究.中国沙漠,(4):411~415
    刘思义,梁国庆,邢文刚,等. 1992.粘土夹层土壤结构水盐运动的实验研究.土壤学报,29(l):109~112
    刘思义,魏由庆. 1988.马颊河流域影响土壤盐渍化的几个因素的研究.土壤学报,25(2):110~118
    路浩,王海泽. 2004.盐碱土治理利用研究进展.现代化农业,(8):10~12
    吕殿青. 2000.土壤水盐运移试验研究与数学模拟. [硕士学位论文].西安:西安理工大学
    罗焕炎. 1965.层状土中毛管水上升的实验研究.土壤学报,13(3):312~324
    毛学森. 1998.硬覆盖对盐溃土水盐运动及作物生长发育影响的研究.土壤通报,(6):264~266
    孟春雷,崔建勇. 2007.干旱区土壤蒸发及水热耦合运移模式研究.干旱区研究,24(2):141~145
    邱胜彬,张江辉. 1996.浅析土壤质地和结构对潜水蒸发的影响.水土保持学报,3(3):30~41
    全国土壤普查办公室. 1998.中国土壤.北京:中国农业出版社
    陕西省农业厅. 1999.地膜小麦高产栽培技术.西安:陕西人民教育出版社
    沈荣开,任理,张榆芳. 1997.夏玉米麦秸全覆盖下土壤水热动态的田间实验和数值模拟.水利学报,(2):14~22
    沈振荣,张瑜芳,杨诗秀,等. 1992.水资源科学实验与研究一一大气水、地表水、土壤水、地下水相互转化关系.北京:中国科学技术出版社
    沈振荣. 1998.中国农业水危机对策研究.北京:中国农业科技出版社:
    石河子科学研究与技术开发课题. 2000.膜下滴灌治理盐碱与栽培实验研究
    石万普,俞仁培. 1987.土壤水盐动态和盐碱化防治.北京:北京科学出版社
    石玉林. 1991.《中国1∶100万土地资源图》土地资源数据集.北京:中国人民大学出版社
    石元春,李韵珠,陆锦文,等. 1986.盐渍土的水盐运动.北京:北京农业大学出版社
    石元春,辛德惠. 1983.黄淮海平原的水盐运动和旱涝碱的综合治理.石家庄:河北人民出版社
    石元亮,王晶,李晓云. 2001.盐渍土区域水分调控与综合治理研究进展.土壤通报,(32):102~105
    史文娟,沈冰,汪志荣,等. 2005.蒸发条件下浅层地下水埋深夹砂层土壤水盐运移特性研究.农业工程学报,21(9):23~26
    史文娟. 2005.蒸发条件下夹砂层土壤水盐运移实验研究. [博士学位论文].西安:西安理工大学
    隋红建,饶纪龙. 1992.土壤溶质运移的数学模拟研究—现状及展望.土壤学进展,(5):1~7
    唐淑英,张丽君. 1978.土壤耕作层熟化程度对水盐动态的影响.土壤学报,(8):39~51
    田长彦,宋郁东. 1997.新疆土地退化及其防治对策.干旱区研究,14(2):63~67
    同延安,尉庆丰,王全九. 1998.土壤—植物—大气连续体系中水运移理论与方法.西安:陕西科学技术出版社
    万良兴,田军仓,郑艳艳,等. 2007.土壤中水、热、盐耦合运移机理与模型的研究进展.节水灌溉,(3):22~25
    王超,叶常明,尹澄清. 1994.人工粘土层在枯水期对小清河氧化塘底质水盐运动的抑制模拟研究.环境科学,15(3):15~21
    王桂芬. 1996.地膜覆盖条件下土壤水及溶质运移规律的室内实验研究.水利水电技术,(3):43~47
    王金平. 1989.蒸发条件下层状土壤水分运动的数值模拟.水利学报,(5):49~54
    王全九,邵明安,汪志荣,等. 1999. Green-Ampt式在层状土入渗模拟计算中的应用.土壤侵蚀与水土保持学报,5(4):66~70
    王全九,邵明安,汪志荣等. 1999. Green-Ampt公式在层状土入渗模拟计算中的应用.土壤侵蚀与水土保持学报,5(4):66~70
    王全九. 1993.土壤溶质迁移特性的研究.水土保持学报,(2):10~15
    王全九.非饱和土壤水与溶质迁移规律研究. [博士后出站报告].西安:西安理工大学
    王文焰,张建丰,汪志荣,等. 1995.砂层在黄土中的阻水性及减渗性的研究.农业工程学报,11(l):104~109
    王遵亲. 1993.中国盐渍土.北京:科学出版社
    吴凯,王千,张兴权. 1996.秸秆类覆盖物的覆盖参数的研究.农业工程学报,增刊:282~287
    夏自强,蒋洪庚,李琼芳,等. 1997.地膜覆盖对土壤湿度、水分的影响及节水效益.河海大学学报,25(2):39~45
    薛明霞,王立琴. 2002.潜水蒸发系数及影响因素分析.地下水,(24):206~207
    杨金忠,叶自桐. 1994.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响.水科学进展,(1):9~17
    杨艳,王全九. 2005.层状土溶质运移特性及其参数分析.灌溉排水学报,24(6):19~21
    杨艳,王全九. 2008.微咸水入渗条件下碱土和盐土水盐运移特征分析.水土保持学报,22(1):13~19
    姚贤良,程云生. 1986.土壤物理学.北京:农业出版社
    余开德. 1963年资料.中国农业科学院农田灌溉研究所
    原翠萍,张心平,雷廷武,等. 2008.砂石覆盖粒径对土壤蒸发的影响.农业工程学报,24(7):25~28
    袁剑舫,周月华. 1980.粘土夹层对地下水上升运行的影响.土壤学报,17(l):94~99
    张富仓. 1993.温度对土壤水分运动和保持的影响. [硕士学位论文].杨凌:西北农林科技大学
    张国村. 1984.地膜覆盖栽培技术.天津:天津科学技术出版社
    张建丰,王文焰,贾中华. 2007.具有砂质夹层的土壤连续函数入渗模型.水土保持学报,21(4):94~97
    张新民. 1997.上土下砂双层结构土壤的洗盐定额.西北水资源与水工程,8(l):48~51
    张学英. 2002.潜水蒸发与土质及地下水埋深关系.地下水,(24):8~9
    张瑜芳,沈荣开,任理. 1995.田间覆盖保墒技术措施的应用与研究.水科学进展,6(4):341~347
    赵风岩. 1997.土层排列组合与作物产量差异.土壤通报,28(3):105~106
    赵莉,罗建新,黄海龙,等. 2007.保护地土壤次生盐渍化的成因及防治措施.作物研究,21(5):547~554
    赵其国. 1991.地退化及其防治.中国土地科学,5(2):22~25
    周维博. 1991.降雨入渗和蒸发条件下野外层状土壤水分运动的数值模拟.水利学报,(9):32~36
    Fritton D D, Don Kirkham, Shaw R H. 1970. Soil water evaporation, isothermal diffusion, and heat and water transfer. Soil.Sci.Soc. Amer. Proc., 34:183~189
    Garrison Sposito et al. 1979. Foundation Theories of Solute Transport in Porous Media: A Critical Review. Advances in Water Resources, Vol.2, June
    Kulte A. 1952. Some theoretical aspects of the flow of water in unsaturated soils. Soil.Sci.Soc.Amer. Proc., 16: 144~148
    Li Yi, Shao Mingan, Wang Wenyan, et al. 2003. Open hole effects of perforated plastic mulches on soil water evaporation. Soil Science, 11:751~758
    Mahrer, Naot 0, Rawitz E, et al. 1984. Temperature and moisture regimes in soils mulched with transparent polyethylene. Soil.Sci.Soc. Am. J, 48:362~367
    Miller D.E and Bunger W.C. 1963. Moisture retention by soil with coarse layers in the profile. Soil.Sci.Soc.Amer.Proc., 27:586~590
    Nassar I N, Robert Horton and Globus A M. 1997. Thermally induced water transefr in salinized,unsaturated soil. Soil.Sci.Soc. Am.J., 61:1293~1299
    Nielsen D R, Van Genuchten, Biggar J M. 1986. Water flow and solute transport processes in the unsaturated zone. Water Resourses Research, 22(9), 89S~108S
    Porro I, Wierenga P J, Hills R G. 1993. Solute transport trough large uniform and layered soil columns. Water Resour Res, 29(4):1321~1330
    Rose E J. 1996. Agricultural physics. Oxford: Pergamon.
    Sembiring H, Raun W R, Johnson G V, Boman R K. 1995. Effect of wheat wheat straw straw iinversion inversion on soil soil water water conservationconservation. Soil Science, (2):81~89
    Taylor S T, Ashcroft G L. 1972. Physical Edaphology: the physics of irrigated and nonirrigated siols. San Francisco,
    William A.Jury. 1982. Simulation of solute transport using a transfer function model. Water Resour. Res., 18:363~368
    Willis W O. 1960. Evaporation from layered soils in the presence of a water table. Soil.Sci.Soc.Am.J., 24(4):239~242
    Yang M D, Ernest Emest K Y. 2002. Water balance during evaporation and drainage in cover soils under different water table conditions. Advances in Environmental Research, 6: 505~521
    Yu Si Fox. 1970. One-dimensional infiltration into layered soils. Irrigation and Drainage, 43:121~129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700