全光触发器及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光触发器是数字光信号处理的基础技术之一,也是全光分组交换网的关键技术之一。本文对基于法布里-珀罗激光器、耦合环形激光器以及耦合偏振光开关等三种结构的全光触发器进行了深入的理论分析和实验研究,优化光触发器的分析方法,并研究了翻转时间、触发时间、触发光功率等一系列触发器的关键问题。据我们所知,本文首次对另一项全光信号处理技术——同步脉冲展宽技术进行了研究,提出利用光触发器和可调光延迟线实现可调脉宽的同步展宽方案。这些工作对于推进全光信号处理技术以及全光分组交换、全光路由、全光计算等领域的发展,都有重要的意义。
     本文取得的研究成果包括以下内容:
     1.提出了一种利用单个法布里-珀罗(FP)激光器实现全光触发器的结构。该结构使用两个波长不同的布拉格光纤光栅对FP的输出光进行反馈,使多纵模的F-P激光器只剩下两个竞争波长,从而实现了双波长稳态的光触发器;并利用自制的可调的温度稳定模块,实现了波长的稳定,波长漂移小于0.01nm。实验结果证实了该光触发器的技术可行性。这种方案具有结构简单、低成本、易集成等特点。
     2.针对基于两个互耦合的环形腔激光器所构成的全光触发器,首次应用解非线性方程的图解法来分析基于半导体光放大器(SOA)的光纤环形激光器(S-FRL)的振荡过程,从而确定了这种触发器的翻转时间。提出一种利用改变光纤环反馈系数来调节翻转时间的方法和一种增加外部注入光功率加速抑制激光过程的方法。
     3.通过图解法分析了耦合系数对于双环耦合双稳态触发器的影响,提出了一种通过合理配置耦合系数来优化该触发器的方法:耦合系数较小的端口应该用于构成环形谐振腔,耦合系数较大的端口应该用于抑制另外的激光器产生激光。通过实验证实了该方法的有效性。
     4.首次将邦加球分析法用于研究半导体光放大器(SOA)中的非线性偏振旋转(NPR)效应。提出了一个描述输出偏振态沿邦加球纬线旋转的方位角与SOA工作参数的简明表达式,指出SOA增益的相对变化量和线宽增强因子的偏振相关性是影响NPR的两个主要因素,简化了NPR的分析过程。分析了耦合偏振开关光触发器的触发特性和输出光信号的上升沿和下降沿,指出了在耦合偏振开关中,连接两个SOA的光纤长度决定了触发光脉冲的持续时间,同时也影响着触发器输出波形的上升沿和下降沿。
     5.提出了一种基于非线性光纤环路镜(NOLM:Nonlinear optical loop mirror)测量SOA中线宽增强因子的偏振相关性的方法,测量了不同输入光偏振态所对应的SOA线宽增强因子的具体数值,实验结果证实了该方法的有效性。
     6.提出了全光同步脉冲展宽的概念和一种实现方案,并具体使用光缓存器作为可调光延迟线,与双环耦合光触发器共同构成了同步脉冲展宽器,实现了将0.5μs光脉冲同步展宽到44μs和68μs。
All-optical flip-flops (AOFF) are key devices for realizing many functionalities in optical networks and optical computing, especially as all-optical memories for the temporary storage of decisions in photonic packet routers. In this paper, we investigated three kinds of AOFFs theritically and experimentally. The conclusions of this paper are significant for the development of the all optical signal processing. The followings are some innovative works I have done:
     1. A novel optical flip-flop based on single Fabry-Perot Laser Diode (FP-LD) was proposed. Two Fiber Bragg Gratings with different wavelength were used to reflect the output power of the FP-LD, and make the FP-LD work under the bistability condition. This scheme is lower cost, easy for integration, and reduces the affect of wavelength fluctuation to the AOFF.
     2. The graphic method is proposed to analysis the Fiber Ring Laser (FRL) for the first time. The graphic method gets rid of complex calculations and is used to analyze the lasing and quenching process of the FRL. According to the Graphic Method, we obtain that the lasering and quenching process is influenced by the feedback factor of the FRL. The eternal inject optical power is also a key factor that influences the laser suppression, the bigger the power is and the shorter the laser suppress time is.
     3. The graphic method is used to analyze the bistability property of the coupled FRL. The important factor of the coupler structure to realize bi-stability is the couple split ratio between the two FRLs. The graphic method is also used to analyze the functional properties of the AOFF.
     4. The Poincare Sphere method is used to analyze the Nonlinear Polarization Rotation (NPR) effect of SOA for the first time. The PS method is applied to describe the variations of ellipticipy angle and azimuth of SOA output state of polarization (SOP) induced by polarization-dependent gain (PDG) and polarization-dependent phase shift, respectively. The theoretical results reveal that the polarization dependence of the linewidth enhancement factor (LEF) and the variation of SOA gain are significant factors for the NPR. The evolutions of output SOP on the PS under quasi-continuum condition have been demonstrated experimentally. This Poincare Sphere method has been used to optimazing the performance of AOFF based on polarization switch.
     5. The polarization dependence of LEF has been measured for the first time. The result reveals that the polarization dependence of LEF plays an important roll in the NPR effect of SOA.
     6. The concept of synchronous pulse expanding has been proposed for the first time, which is an important technology for the optical packet switching network node. The synchronous pulse expanding scheme of AOFF cascaded with optical buffer has been demonstrated. In the experiment, the narrow input light with 0.5μs pulse width has been synchronously expanded to 44μs and 68μs respectively.
引文
[1]S. Bigo, W. Idler, and et al. Transmission of 95WDM channels at 44.7Gbit/s (5Tbit/s capacity) over 9X100 km of TeraLightTM Ultra fiber. ECOC04.
    [2]K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiy.10.92Tb/s(273×40Gbps) triple band/ultra dense WDM optical repeatered transmission experiment. OFC2001, PD24.
    [3]A.I. Siahlo, J. Seoane, A.T. Clausen, et al.320 Gb/s Single-polarization OTDM Transmission over 80 km Standard Transmission Fiber. OFC2005, OFF4.
    [4]George Ishikawa, Akihiko Sugata, et al.20 Gbit/s transmission experiiments over 2040 km using OTDM and conventional TDM transmitter schemes. OFC2006, TuN4.
    [5]Y. Yamada, S.I. Nakagawa, Y. Kurosawa, et al,2 Tbit/s (200 x 10 Gbit/s) over 9240 km transmission experiment with 0.15 nm channel spacing using VSB format. Electronic Letters, 2002,38(7),328-329.
    [6]P. Fernandez and N. McKeown, Performance of circuit switching in the Internet, Journal of Optical Networking,2(4),83-96.
    [7]M.Yoo and C.Qiao, A novel switching paradigm for bufferless WDM networks, OFC1999, ThM6-1,177-179.
    [8]J. Turner, Terabit Burst Switching, Journal of High Speed Networks,1999,8(Mar),3-16.
    [9]C. Qiao, and M. Yoo, Optical burst switching (OBS). a new paradigm for an optical Internet, Journal of High Speed Networks,1999,8,69-84.
    [10]D.J.Blumenthal et al., Optical packet-switching and associated optical signal processing, IEEE LEOS Newsl.,2002,16(4),39-41.
    [11]H. J. S. Dorren et al., Optical packet-switching and buffering by using all-optical signal processing methods, J. Lightw. Technol.,2003,21(1),2-14.
    [12]C. Guillemot et al., Transparent optical packet-switching. The European ACTS KEOPS project approach, J. Lightwave. Technol.,1998,16(9),2117-2134.
    [13]R. S. Tucker and W. D. Zhong, Photonic packet-switching. An overview, IEICE Trans. Electron., 1999, C(2),202-214.
    [14]E. Kehayas et al., Packet-format and network-traffic transparent optical signal processing, J. Lightw. Technol.,2004,22 (11),2548-2556.
    [15]王嵌,吴重庆,魏斌,光弹性分组环(ORPR)节点中光分组组装算法研究,光学技术,2009,3,430-434.
    [16]F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, and J. Marti et al, IST-LASAGNE. Towards All-Optical Label Swapping Employing Optical Logic Gates and Optical Flip-Flops, J. Lightw. Technol.,2005,23(10),2993-3011.
    [17]D. Blumenthal. Lasor(label switched optical router). Architecture and underlying integration technologies. Proceedings of European Conference on Optical Communications,2005,vol. We4.1.1.
    [18]Jinno M., and Matsumoto T., Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams, Optics Letters,1991,16(4),220-224.
    [19]Abdeldayem Hossin A, Farzier Donald O, Penn Benjamin G et al, Ultra-fast All Optical logic gates for optical computing, Optics in Computing (OC) 2003 paper. PD4.
    [20]Li Zhihong,Li, Guifang, Reconfigurable All-Optical Logic Gates Based on FWM in Semiconductor Optical Amplifier, Applied Optics,2008,47(21),3737-3744.
    [21]Leuthold Juerg, Marom d, Cabot s, et al, All-Optical Wavelength Converter Based on a Pulse Reformatting Optical Filter, Optical Fiber Communication Conference (OFC) 2003 paper. PD41.
    [22]Rau Lavanya, Rangarajan Suresh, Wang Wei et al, High-speed optical time-division-multiplexed /WDM networks and their network elements based on regenerative all-optical ultrafast wavelength converters, Journal of Optical Networking,2004,3 (2),100-118.
    [23]Michael Sanchez, Pengyue Wen, Matthias Gross, Sadik Esener, All-Optical 2R Regeneration Using a Non-Linear Vertical Cavity Semiconductor Optical Amplifier, Optics in Computing (OC) 2003 paper. OThA5
    [24]L. BILLES, I. VALENTE, J.C. SIMON, Modelling of a semiconductor optical amplifier based nonlinear optical loop mirror for all-optical regeneration, Optical Amplifiers and Their Applications (OAA) 1995 paper. ThD8.
    [25]A. M. Liu, C. Q. Wu, Y. D. Gong. Optical buffer configuration based on 3×3 collinear fiber coupler. Electronics Letters,2004,40(16).1017-1019.
    [26]Yaping Wang, Chongqing Wu, Yongjun Wang, Zhi Wang, Xinzhi Sheng, Optical Packet Replicator Using Cascaded SOA-Based Active Fiber Ring, IEEE Photon.Technol. Lett., 2009,21(18).1320-1324.
    [27]H. Avramopoulos, A system perspective of all-optical digital logic gates, in IEEE/LEOS Summer Topicals 2002 (Invited Talk), Tech. Dig. ME2, QC, Canada, July 2002, pp.4,15-17.
    [28]K. E. Stubkjaer, Semiconductor optical amplifier-based all-optical gates for high-speed optical processing (Invited Paper), IEEE J. Select. Topics Quantum Electron.,2000 6,1428-1435.
    [29]H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jacques,80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme, Opt. Commun,2006,265, 79-84.
    [30]C. Bintjas, N. Pleros, and H. Avramopoulos, System perspective for all-optical switching, IEEE LEOS Newslett.,2002,16(10),19-21.
    [31]Jianxia Pan,Yiling Sun, Three-dimensional optical logic devices using spatial multiwaveguide system, CHINESE OPTICS LETTERS,2008,6(6),408-410.
    [32]Kyriakos Vlachos, Nikos Pleros, Chris Bintjas, George Theophilopoulos, and Hercules Avramopoulos, Ultrafast Time-Domain Technology and Its Application in All-Optical Signal Processing, J. Lightw. Technol.,2003,21(9),1857-1868.
    [33]Shigeki Watanabe, All-optical Signal Processing Using Ultrafast Nonlinearity in Optical Fibers, Ultrafast Electronics and Optoelectronics (UEO) 2001 paper. UThB2
    [34]F. Futami, S. Watanabe, and T. Chikama, Simultaneous recovery of 20x20 GHz WDM optical clocks using supercontinuum in a nonlinear fiber, in Technical Digest of ECOC2000, PD 4.8.
    [35]T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, All-optical switches on a silicon chip realized using photonic crystal nanocavities, Appl. Phys. Lett.2005,87,151114.
    [36]E. Centeno and D. Felbacq, Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity, Phys. Rev. B 2000,62,7684.
    [37]赵爽,吴重庆,全光触发器的研究进展,半导体光电,2007,28(3),39-316.
    [38]Martin T. Hill, H. de Waardt, G. D. Khoe,et al. All-Optical Flip-Flop Based on Coupled Laser Diodes. J. Quantum Electron.,2001,37(3).405-414.
    [39]X. Yang, E. Tangdiongga, S. Zhang,et al.Mode-Locked Ring Lasers and their Application in an All-Optical Flip-Flop Memory. ICTON,2004.303-308.
    [40]H. J. S. Dorren, Daan Lenstra,Yong Liu, et al. Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers. Theory and Application to All-Optical Flip-Flop Memories. J. Quantum Electron.,2003,39(1).141-148.
    [41]H. Kawaguchi, I.S. Hidayat, Y. Takahashi,et al. Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers. Election Lett 1995,31(2).109-110.
    [42]T. Mori, Y. Yamayoshi, and H. Kawaguchi, Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser, Appl. Phys. Lett.,2006,88(10),101-104.
    [43]Martin T. Hill, H. de Waardt, H.J.S. Dorren, et al. Fast all optical flip-flop using coupled Mach-Zehnder Interferometers CLEO 6-11 May 2001.188.
    [44]R. Clavero, F.Ramos, J.M. Martinez,et al. All-Optical Flip-Flop Based on a Single SOA-MZI. IEEE Photon.Technol. Lett.,2005,17(4).843-845.
    [45]Mitsuru Takenaka, Yoshiaki Nakano. Realization of All-Optical Flip-Flop Using Directionally Coupled Bistable Laser Diode. IEEE Photon.Technol. Lett.,2004,16 (1).45-47.
    [46]Mitsuru Takenaka. First Realization of All-Optical Flip-Flop Based on Bistable Laser Diode with Active Multimode Interference Cavity. OFC 2004, Volume 1,23-27 Feb.
    [47]Patrick D. Kumavor, Eric Donkor, Bing C. Wang. All-Optical Lyot-Filter-Assisted Flip-Flop Operation Using a Semiconductor Optical Amplifier. J. Sel. Topics Quantum Electron., 2006,9(4),697-701.
    [48]S. Zhang, Z. Li, Y Liu, G. D. Khoe, and H. J. S. Dorren, Optical shift register based on an optical flip-flop memory with a single active element, Opt. Express,2005,13(24):9708-9711.
    [49]Takeo Katayama,Tomohiro Ooi, and Hitoshi Kawaguchi, Experimental Demonstration of Multi-Bit OpticalBuffer Memory Using 1.55um Polarization Bistable Vertical-Cavity Surface-Emitting Lasers, IEEE J. Quantum Electron.,2009,45(11).1495-1504.
    [50]李淳飞,光学双稳态研究20年,物理,1996,25(5):267-272.
    [51]余重秀,光交换技术,北京,人民邮电出版社,2008年9月,9.
    [52]M. J. ADAMS, H. J. WESTLAKE, M J. O'MAHONY, AND I. D. HENNING, A Comparison of Active and Passive Optical Bistability in Semiconductors, J. Quantum Electron.,1985,21 (9).1498-1504.
    [53]Shaoxian Zhang, Yong, LiuDaan Lenstra, et al. Ring-Laser Optical Flip-Flop Memory With Single Active Element. J. Sel. Topics Quantum Electron.,2004,10(5).1093-1099.
    [54]M. T. Hill, et al., A fast low-power optical memory based on coupled micro-ring lasers, Nature, 2004, vol.432(11).206-208.
    [55]Yong Deok Jeong, Jeong Sik Cho and Yong Hyub Won, All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode, OPTICS EXPRESS,2006, vol.14 (9). 4058-4064.
    [56]Koen Huybrechts, Geert Morthier and Roel Baets, Fast all-optical flip-flop based on a single distributed feedback laser diode, OPTICS EXPRESS,2008, Vol.16 (15).11405-11410.
    [57]M. C. Cardakli, A. E. Willner, Synchronization of a Network Element for Optical Packet Switching Using Optical Correlators and Wavelength Shifting, IEEE. Photon. Technol. Lett.2002, 14(9),1375-1377.
    [58]L. F. K. Lui, Lixin Xu, C. C. Lee, P. K. A. Wai, H.Y. Tam, C. Lu, All-Optical Clock Recovery Using Erbium-Doped Fiber Laser Incorporating an Electroabsorption Modulator and a Linear Optical Amplifier, IEEE. Photon. Technol. Lett.2007,19(10),720-722.
    [59]Wu C Q, Sheng X Z, Fu S N Wei, et al. Optical Resilient Packet Ring (O-RPR) Based on All-Optical Buffering Techniques-Art. no.602516[C]//Proceedings of ICO20:OPTICAL COM M UNICATION, Changchun,2006,2516-2516.
    [60]吴重庆,光通信导论,清华大学出版社,2008年1月,24。
    [61]DAVID A. B. MILLER, S. DES SMITH, AND COLIN T. SEATON, Optical Bistability in Semiconductors, J. Quantum Electron.,1981,17(3).39-317.
    [62]H. Kawaguchi, Bistable laser diodes and their applications. State of the art,1997, IEEE J. Select.Topics Quantum Electron.,4.954-970.
    [63]Linlin Li, Optical Frequency Bistability and Power Bistability in Semiconductor Lasers, J. Quantum Electron.,1995,31 (2).233-239.
    [64]周炳琨,高以智,陈俯嵘,陈家骅编著,激光原理(第5版),北京,国防工业出版社,2004,27,230.
    [65]吴重庆,光通信导论,清华大学出版社,2008年1月,119.
    [66]Lixin Xu, W. H. Chung, L. Y. Chan, L. F. K. Lui, P. K. A. Wai, Senior. Simultaneous All-Optical Waveform Reshaping of Two 10-Gb/s Signals Using a Single Injection-Locked Fabry-Perot Laser Diode[J]. IEEE PHOTONICS TECHNOLOGY LETTERS.2004.16(6), 1537-1539.
    [67]Lui, L.F.K.; Chan, L.Y.; Wai, P.K.A.; Moses, B.; Chung, W.H.; Tam, H.Y.; Demokan, M.S. An All-optical ON/OFF switch using a multi-wavelength mutual injection-locked Fabry-Perot laser diode[J]. Proceedings of the sixth Chinese symposium,2003,9-14 Sept,154-157.
    [68]吕雅利,卫炳江,谭华耀,伍剑,林金桐,F-P半导体激光器实现多波长注入锁定,光子学报,2005,34(9).1301-1304.
    [69]李福利高等激光物理学(第二版),高等教育出版社,2006年7月,165-181.
    [70]ROY LANG, Injection Locking Propertieso of Semiconductor Laser, J. Quantum Electron.,1982, 18 (6).975-984.
    [71]Nguyen Le Hoang, Yong Deok Jeong, Jeong Sik Cho and Yong Hyub Won, All-optical flip-flop with inverted output based on optical bistable Fabry-Perot Laser Diode, ICACT,2007, 9-14.833-835.
    [72]Y. D. Jeong, S. O. Choi, J. H. Yoon, and Y. H. Won, Tunable single-mode source using a coaxialiy packaged Fabry-Perot laser diode with a built-in external cavity.
    [73]Y. Liu, M. T. Hill, N. Calabretta, H. deWaardt, G D. Khoe, Fellow, and H. J. S. Dorren Three-State All-Optical Memory Based on Coupled Ring Lasers, IEEE. Photon. Technol. Lett. 2003,15(10),1461-1464.
    [74]Qianfang Xu, Minyu Yao, Theoretical analyses on short-term stability of semiconductor fiber ring lasers, IEEE J. Quantum Electron.2003,39(10).960-965.
    [75]Hongxin Chen, Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier, Opt. Lett.2005,30,619-621.
    [76]J. Leuthold and M. Kauer, Power equalisation and signal regeneration with delay interferometer all-optical wavelength converters, Electron.Lett.,2002,38,1567-1568.
    [77]Christian Habib, Varghese Baby, Lawrence R. Chen, Alexandre Delisle-Simard, and Sophie LaRochelle, All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers," IEEE J. Sel. Topics Quantum Electron.,2008,14, 879-888.
    [78]吴重庆.基于SOA环形腔激光器的理论分析.北京交通大学学报,2008,32(6).1-3。
    [79]M.F.C.Stephens, M.Asghari, R.V.Petty, and I.H.White, Demonstration of Ultrafast All-Optical Wavelength Conversion Utilizing Birefringence in Semiconductor Optical Amplifiers, IEEE. Photon. Technol. Lett.1997,9(4).449-451.
    [80]Y. Liu, M. T. Hill, E. Tangdiongga, H. de Waardt, N. Calabretta, G. D. Khoe and H. J. S. Dorren, Wavelength Conversion Using Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier, IEEE. Photon. Technol. Lett.2003,15(1).90-94.
    [81]J. Zhang, J. Wu, C. Feng, K. Xu and J. Lin,40 Gbit/s all-optical logic NOR gate based on nonlinear polarization rotation in SOA and blue-shifted sideband filtering, IEE Electron. Lett. 2006,42(10),943-944.
    [82]J.J. Vegas Olmos, I. Tafur Monroy, Y. Liu, M. Garcia Larrode, J. Turkiewicz, H.J.S. Dorren and A.M.J. Koonen, Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier, Optical Express,2005,9(9). 4214-4219.
    [83]N. Calabretta, Y. Liu, F. M. Huijskens, M. T. Hill, H. de Waardt, G D. Khoe and H. J. S. Dorren, Optical Signal Processing Based on Self-Induced Polarization Rotation in a Semiconductor Optical Amplifier, IEEE J. Lightwave Technol.2004,22(2).372-381.
    [84]L. Q. Guo and Michael J. Connelly, A Mueller-Matrix Formalism for Modeling Polarization Azimuth and Ellipticity Angle in Semiconductor Optical Amplifiers in a Pump-Probe Scheme[J], IEEE J. Lightwave Technol.2007,25,410-420.
    [85]M. Zhao, J. D. Merlier, G. Morthier, et al. Dynamic birefringence of the linear optical amplifier and application in optical regeneration [J] IEEE J. Sel. Topics Quantum Electron.2002 8. 1399-1404.
    [86]W. Chongqing, L. Yajie, S. Fu, et al.. Power Equalization for the Optical Subsystems Based on the SOA Polarization Rotation, CLEO,2007, paper CThF6.
    [87]Songnian Fu, Wen-De Zhong, P. Shum, et al.. Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers With Linear Polarization Maintenance[J], IEEE. Photon. Technol. Lett.2007 19,1931-1933.
    [88]C. D. Poole and R. E. Wagner, Phenomenological approach to polarization dispersion in long single mode fibers, Electron. Lett.,1986,22(19).1029-1030.
    [89]吴重庆,光波导理论(第二版),北京,清华大学出版社,2005年5月,155-159。
    [90]Hui Dong, Ping Shum, Min Yan, Guoxiang Ning, Generalized frequency dependence of outputStokes parameters in an optical fiber system with PMD and PDL/PDG, Optical Express, 2005 13,8875-8881.
    [91]Liang Chen, Ou Chen, Saeed Hadjifaradji, Xiaoyi Bao, Polarization-Mode Dispersion Measurement in a System With Polarization-Dependent Loss or Gain, IEEE. Photon. Technol. Lett.2004,16(1).206-208.
    [92]Makoto Tsubokawa and Masaharu Ohashi, A Consideration of Polarization Dispersion Determining From A Stokes Parameter Evaluation, IEEE J. Lightwave Technol.1991,9(8). 948-951.
    [93]吴重庆,光通信导论,清华大学出版社,2008年1月,245-246.
    [94]T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, Confinement Factors and Gain in Optical Amplifiers, IEEE J. Quantum Electron.,1997,33(10).1763-1766.
    [95]GOVIND P Agrawal, Intensity Dependence of the Linewidth Enhancement Factor and Its Implications Semiconductor Lasers, IEEE. Photon. Technol. Lett.,1989,1(8),29-214.
    [96]Fu S N, Du W H, P. Shum, Wu C Q and Zhang L R, Measurement of SOA Linewidth Enhancement Factor with a Sagnac Fiber Loop, IEEE. Photon. Technol. Lett.2006,18 1934-1936.
    [97]John P. Mack, Emily F. Burmeister, John M. Garcia, Henrik N. Poulsen, Biljana Stamenic, Geza Kurczveil, Kimchau N. Nguyen, Kurtis Hollar, John E. Bowers, Daniel J. Blumenthal, Synchronous Optical Packet Buffers, J. Sel. Topics Quantum Electron.,2010,99,1-9.
    [98]CHENG Mu, WU Chong-Qing, LIU Hua, Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers, CHIN.PHYS.LETT.2008,25(11), 4026-4029.
    [99]J. Yao, P. Barnsley, et al. Time slot interchanging using semiconductor laser amplifiers. Electron. Lett.,1993,29(10).1053-1054.
    [100]R. Thompson and P. Giordano, et al. An experimental photonic time-slot interchanger using optical fibers as reentrant delay-line memories. IEEE J. Lightw. Technol., vol.1987, LT-5(1). 154-164.
    [101]Zhuoran Wang, Nan Chi, and Siyuan Yu. Time-Slot Assignment Using Optical Buffer With a Large Variable Delay Range Based on AVC Crosspoint Switch. J. Lightw. Technol.,2006,24(8). 2994-3001.
    [102]S. L. Danielsen, B. Mikkelsen, C. Joergensen, et al.10 Gb/s operation of a multiwavelength buffer architecture employing a monolithically integrated all-optical interferometric Michelson wavelength converter. Photon. Technol. Lett.,1996,8 (3).434-436.
    [103]杨爱英,孙雨楠.全光交换网动态可重构多粒度光缓存器.中国专利,CN 1633108A.
    [104]C. C. Philips. Observation of electromagnetic induced transparency and measurement of subband dynamics in semiconductor quantum well. Physics,2000,166-173.
    [105]Yoshitomo Okawach, Jay E. Sharping and Alexander L. Gaeta. Tunable all-optical delays via Brillouin slow light in an optical fiber.2005 Conference on Lasers & Electro-Optics (CLEO), 2005,511-513.
    [106]Jay E. Sharping, Yoshitomo Okawachi and Alexander L. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier. Optics Express,2005,13 (16):6092-6098.
    [107]Glen D. Bartolini, Darwin K. Serkland, et al. All-optical storage of picosecond-pulse packets using parametric amplification. IEEE Photon. Technol. Lett.,1997,9 (7):1020-1022.
    [108]Wang Yongjun, A new large variable delay optical buffer based on cascaded Double Loop Optical Buffers, OFC2009,OWA4.
    [109]王拥军,大动态延迟范围全光缓存器的研究[学位论文],北京交通大学图书馆,北京交通大学,2009,48-59。
    [110]Yajie Li, Chongqing Wu, Songnian Fu, P. Shum, Yandong Gong, and Liren Zhang. Power Equalization for SOA-Based Dual-Loop Optical Buffer by Optical Control Pulse Optimization. IEEE J. Quantum Electron.2007,43(6).508-516.
    [111]李亚捷吴重庆王拥军唐清善.基于半导体光放大器的光控器件中控制光的性能分析.物理学报,2007,56(2).952-957.
    [112]吴重庆,光波导理论(第二版),北京,清华大学出版社,2005年5月,159-160.
    [113]廖延彪,偏振光学,北京,科学出版社,2003年8月,62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700