基于高非线性器件的全光逻辑信号处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光逻辑信号处理技术在光交换节点的大多数功能单元中都起着至关重要的作用,比如分组头处理、净荷定位、时钟提取、信号再生、光分组自路由以及光信号编码等节点功能都要依靠逻辑器件来实现。因此,一旦此技术获得突破,不仅能为目前的光网络开辟新的发展方向,而且具有极其广泛的应用,它将会给人类信息社会带来一场深刻的、革命性的变革,如同晶体管及集成电路技术在20世纪信息社会中的地位和作用一样。
     鉴于此,本论文着眼于光网络中基于高非线性器件的全光可重构多逻辑门的实现技术,包括全光AND、OR/NOR、XOR和NOT门等。本论文的主要工作如下:
     介绍了SOA中非线性偏振旋转(NPR)效应产生的物理机制,以及SOA非线性偏振相关的理论模型,从理论上熟悉NPR效应的物理层含义;然后建立了与实验中SOA参数吻合的理论模型,分析研究了SOA偏振相关的增益特性、相位特性和啁啾特性。实验方面,首次研究了SOA的NPR与偏振相关增益(PDG)之间的关系。通过研究SOA的PDG,巧妙地利用泵浦-探测结构在单个SOA中实现了对NPR与PDG关系的研究,得到结论:1)当泵浦光在SOA的增益峰值波长处,SOA中NPR效应最强;2)SOA的PDG越大,NPR效应越强。同时还研究了输入光功率、偏振态对SOA中NPR效应的影响。实验表明,选择合适的SOA和输入光功率、波长及偏振态对于基于SOA中NPR的影响很大。为之后基于SOA中NPR效应的多逻辑门研究做了扎实的准备工作。
     基于上述SOA的理论模型,仿真研究了基于SOA中NPR和窄带滤波特性的开关器件的性能,为后面基于NPR和窄带滤波特性的逻辑门研究做了铺垫工作。
     在完成对NPR和窄带滤波的实验及仿真研究基础上,首先提出了一种基于SOA中NPR效应和窄带滤波特性的全光可重构多逻辑门实现方案。仿真上实现了速率为10Gbit/s、Q因子分别为15.95、8.35、20.84、12.89的AND、XOR、OR、NOT和NOR门。实验方面,在2.5Gbit/s的实验平台上同时实现了A.B和A.B门,验证了XOR门的可行性。通过研究调制码长和调制速率对输出结果的影响,得到结论:如果采用增益恢复时间更快的SOA,该方案可工作在更高速率上。该方案具有结构简单、可集成、可重构的优点。
     鉴于HNLF的优势和发展潜力,论文提出一种基于HNLF中XPM效应的可重构多逻辑门实现方案。该方案有三个显著的优点:1)只采用了一种非线性效应(即XPM),2)输入只有两路信号光(没有附加的探测光),3)在不改变输入光功率、波长、偏振等参数的条件下,只需通过调节输出端滤波器中心波长的设置即可实现高质量的无误码输出。实验实现了速率为10Gbit/s的XOR、OR和AND门,各逻辑门相应的消光比分别为:14.0dB、16.5dB和22.2dB,功率代价分别为:5.9 dB,2.9 dB和-1.0 dB。由于该方案基于快速响应的Kerr效应,该方案可工作在速率高于100Gbit/s的系统。
     仿真深入研究了该方案在波长范围内的适用性,就接收灵敏度与波长之间的关系做了仿真验证和分析;最后研究了系统性能与高非线性光纤长度的关系。研究表明,该方案在波长间隔大于5nm的整个C波段范围内都可以实现高性能无误码的输出,并且由于走离效应和自相位展宽的存在,选择合适长度的高非线性光纤可以进一步优化系统性能。
     在高速光信号处理技术中,高重复频率超短光脉冲的产生是实现系统运行的必需条件。因此,本论文探索了超窄脉冲的产生技术。实验研究基于自级联EAM的短脉冲产生技术,产生了10.2ps的10GHz窄脉冲信号,相对于基于单个EAM产生窄脉冲的技术,基于自级联EAM的结构可以让脉冲宽度压缩50%以上。通过对自级联EAM的开关窗口的研究,首次将该自级联EAM结构用于高速长距离传输的OTDM系统中的解复用,实验成功地搭建了一个稳定可靠、速率为80Gbit/s、传输距离为300km的高速OTDM系统,采用自级联EAM结构的时分解复用器成功地实现了80Gbit/s到10Gbit/s的解复用;在接收端,接收灵敏度为-19.0dBm,功率代价为1.4dB。
High-speed all-optical logic gates are key elements in all-optical switching networks, which can realize header recognition, clock recovery, signal regeneration, all-optical packet self-routing, optical signal coding, buffering, etc. Once these technologies become commercially mature, current optical network would benefit from these technologies significantly, like what transistor and integrated circuit (IC) did to the information society in 1900s.
     All-optical logic gates cover XOR, AND/NAND, OR/NOR, NOT, and other complex logic gates, like half-adder, full-adder, etc. Many approaches have been proposed to achieve various all-optical logic functions including simple logic gates and complex logic gates, based on the nonlinear effects in semiconductor material, in optical fibers or in waveguides. However, it is more attractive to realize multi-functional logic gates by using the same architecture or few alterations because of the flexible logic operations and potential applications in massive photonic integration.
     Therefore, this dissertation mainly focuses on the technologies of highly-nonlinear-materials-based all-optical logic gates realization, including all-optical AND, OR/NOR, XOR and NOT, etc. The main research efforts are summarized as follow.
     A theoretical model considering length effect and polarization effect in a SOA has been built to study the polarization-dependent gain, polarization-dependent phase and polarization-dependent chirp. Experimental characteristics based on a simple pump-probe setup have been carried out to investigate the influence of polarization dependent gain (PDG) on the nonlinear polarization rotation (NPR) response in SOAs. The results show that PDG enhances the NPR effect in SOAs. Additionally, the influences of input probe power, input probe polarization and input pump polarization in the NPR. response in SOAs are also measured experimentally. The results indicate that the PDG, input optical power, wavelength and polarization affect NPR effect significantly.
     The performance of an all-optical switch based on NPR and sideband filtering in a SOA has been theoretically studied to help the following all-optical multi-logic gate scheme, which is based on NPR and sideband filtering in a SOA. Specifically, the influences of pump pulsewidth, the bandwidth and center wavelength setting of the bandpass filter have been investigated.
     Based on the above experimental and theoretical results, a novel multi-logic gate based on NPR and sideband-filtering in a single SOA has been proposed. Digital logic operations including AND, XOR, OR, and NOT are realized at 10 Gb/s numerically, with Q factor of 15.95,8.35, 20.84,12.89 respectively. Then, A·B and A·B gates, which can be combined together to realize XOR, are realized simultaneously in a same experimental setup at 2.5 Gb/s, indicating the feasibility in experimental realization of XOR gate. Further experiment on the influences of pattern length and operation speed on the logic gates have been investigated, indicating that by exploiting a SOA with faster gain recovery time, this scheme can work at higher speed.
     Cross phase modulation (XPM) in a HNLF is proposed to realize all-optical multi-logic gate. Digital logic operations including XOR, AND, and OR of two input data signals are demonstrated using a single device. We obtain error free operation at 10 Gb/s and the receiver sensitivity for a BER of 10-9 is below-15.0 dBm. Power penalties for XOR, AND, and OR logic operations are 5.9 dB,-1.0 dB and 2.9 dB, respectively.
     Further analyses of the feasible application of the scheme in the whole C-band have been carried out numerically, concluding the influences of wavelength choosing of signals and wavelength separation between two signals on the performance of the scheme. Moreover, the influence of the length of HNLF on the performance has been studied either.
     1. we use only one nonlinearity (i.e., XPM), which makes the experiment easy to control,
     2. we use only two input data signals, thereby avoiding the need for additional sources such as a continuous wave (CW) or a clock signal, and
     3. the experiment is configurable, which means all three logic gates (XOR, AND, and OR) are realized by only adjusting two bandpass filters, i.e., there is no need to change input variables/parameters such as power, wavelength, or polarization.
     A novel scheme for pulse generation with a self-cascaded EAM is presented and experimentally demonstrated at 10 GHz. In the case of optimal tuning of time delay in the fiber loop, the improvement of 50% on pulsewidth with improved extinction ratio is obtained and the narrowest pulse generated with this method is about 11 ps.
     The self-cascaded EAM has also been applied in a 300km 8×10Gb/s OTDM transmission system as a demultiplexer. With the more than 50% decreased switching window, an error free demultiplexing is obtained with a sensitivity of-19dBm, a power penalty of 1.4dB is achieved compared with the back-to-back case.
引文
关增益(PDG),巧妙地利用泵浦-探测结构在单个SOA中实验实现了对NPR效应与PDG关系的研究,得到SOA中PDG增强NPR效应的结论。实验还研究了输入光功率、偏振态对SOA中NPR效应的影响。
    第三章首先从仿真上研究了基于SOA中NPR效应和窄带滤波特性的开关器件的性能;分别讨论了基于SOA中NPR效应和窄带滤波特性的开关器件中,泵浦光(控制光)脉冲宽度和窄带滤波器参数设置对开关器件性能的影响。然后在以上仿真和实验的基础上,提出了一种新型的基于SOA中NPR效应和窄带滤波效应的可重构多逻辑门实现方案,并在仿真上实现了AND、XOR、OR、NOT和NOR逻辑门,在实验上同时实现了组成XOR门的A.B和A.B,验证了XOR门的可行性。
    第四章提出了一种基于HNLF中XPM效应的可重构多逻辑门实现方案。并从实验和仿真上同时实现了速率为10Gbit/s的XOR、AND和OR门,仿真上还研究了该方案在整个C波段内的使用范围。
    第五章从全光逻辑信号处理技术中必不可少的窄脉冲的产生角度出发,实验研究了一种基于自级联EAM结构的窄脉冲产生技术,并利用该结构产生的开关窗口成功地在一个速率为80Gbit/s、传输距离为300km的高速OTDM实验平台上实现了80Gbit/s到10Gbit/s的解复用。
    最后,第六章总结了本论文的工作,并提出了未来相关方面的研究建议。
    [1]D.J. Blumenthal, P.R. Prucnal, and F. R. Sauer, "Photonic packet switches: Architectures and experimental implementations", Proc. IEEE, Vol.82,1994, pp.1650-1667.
    [2]C.Guillemot et al., "Transparent optical packets switching:the European ACTS KEOPS project approach", IEEE Journal of Lightwave Tech., Vol.16, No.12, 1998, pp.2117-2134.
    [3]D.K. Hunter and I. Andonovic, "Approaches to optical internet packet switching", IEEE Commun. Mag., Vol.38, No.9,2000, pp.116-122.
    [4]M. Renaud, F. Masetti, C. Guillemot, and B. Bostica, "Network and system concepts for optical packet switching", IEEE Commun. Mag., Vol.39, No.4, 2001, pp.96-102.
    [5]T. S. El-Bawab and J.-D. Shin, "Optical packet switching in core networks: between vision and reality", IEEE Commun. Mag., Vol.40, No.9,2002, pp. 60-65.
    [6]Ramaswami R. and Sivarajan K, "Optical networks:A practical perspective", UK: Morgan Kaufmann Publishers,1998.15-22.
    [7]Saleh A. A. M. and Simmons J. M. Evolution, "Toward the next-generation core optical network", Journal of Lightwave Technology,2006,24(9):3303-3321.
    [8]Charlet G., Renaudier J., Mardoyan H., et al., "Transmission of 16.4Tbit/s capacity over 2550km using PDM QPSK modulation format and coherent receiver", OFC/NFOEC. San Diego, U.S.,2008. PDP3.
    [9]先进的160Gb/s单波道光传输关键技术与实验系统,2008年863项目申情书。
    [10]G. Hjalmtysson, J. Yates, S. Chaudhuri, and A. Greenberg, "Smart routers-simple optics:and architecture for the optical internet", Journal of Lightwave Tech., Vol. 18, No.12,2000, pp.1880-1891.
    [11]M. Listanti, V. Eramo, and R. Sabella, "Architectural and technological issues for future optical internet networks", IEEE Commun. Mag., Vol.38, No.9,2000, pp. 82-92.
    [12]B. Rajagopalan, D. Pendarakis, D. Saha, R. S. Ramamoorthy, and K. Bala, "IP over optical networks:architectural aspects", IEEE Commun. Mag., Vol.38, No. 9,2000, pp.94-102.
    [13]Houbavlis T., Zoiros K. E., Kalyvas M., et al., "All-optical signal Processing and applications within the esprit project DO_ALL", Journal of Lightwave Technology,2005,23(2):781-801.
    [14]Manning R.J., Phillips I.D., Ellis A.D., et al., "10 Gbit/s all-optical regenerative memory using single SOA-based logic gate", IEE Electronics Letters, Vol.35, Issue2, Jan.1999, pp.158-159.
    [15]Bintjas C., Pleros N., Yiannopoulos K., et al., "All-optical packet address and payload separation", IEEE Photon. Technol. Lett., Vol.14, Issue 12, Dec.2002, pp.1728-1730.
    [16]Xia T.J., Liang Y., Ahn K.H., et al., "All-optical Packet-drop Demonstration Using 100Gb/s Words by Integrating Fiber-based Components", IEEE Photon. Technol. Lett., Vol.10, No.1,1998, pp.153-155.
    [17]J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, "A Terahertz Optical Asymmetric Demultiplexer (TOAD)", IEEE Photon. Technol. Lett., Vol.15, No. 7,1993,pp.787-790.
    [18]M. Eiselt, "Optical Loop Mirror with Semiconductor Laser Amplifier", Elect. Lett., Vol.28,1992, pp1505-1507.
    [19]I. Glesk, J.P. Sokoloff, and P.R. Prucnal, "Demonstration of All-optical Demultiplexing of TDM Data at 250 Gbit/s", Electron. Lett., Vol.30,1993, pp.339-340.
    [20]N.S. Patel, K.A. Rauschenbach, and K.L. Hall, "40Gbit/s Demultiplexing Using an Ultrafast Nonlinear Interferometer (UNI)", IEEE Photon. Technol. Lett., Vol.8, No.12,1996, pp.1695-1697.
    [21]K.L. Hall and K.A. Rauschenbach, "100Gbit/s Bitwise Logic", Optics Lett., Vol. 23, No.16,1998, pp.1271-1273.
    [22]G. Theophilopoulos, et al., "40 GHz all-optical XOR with UNI gate", Proc. OFC 2001, pp. MB2/1-MB2/3.
    [23]E. Jahn, N. Agrawal, M. Arbert, H.J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H.G.Weber, and C.M. Weinert, "40Gbit/s All-optical Demultiplexing Using a Monolithically Integrated Mach-Zehnder Interferometer with Semiconductor Laser Amplifiers", Electron. Lett., Vol.31, No.21,1995, pp.1857-1858.
    [24]R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P.A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K.S. Jepsen, K.E. Stubkjaer, and S. Bouchoule, "All-Optical Demultiplexing of 80 to lOGbit/s Signals with Monolithic Integrated High-Performance Mach-Zehnder Interferometer", IEEE Photon. Technol. Lett., Vol.10, No.1,1998,pp.165-167.
    [25]N.J. Doran and David Wood, "Nonlinear-optical loop mirror", Optics Letters, vol. 13,no.1, Jan.1988, pp.56-58.
    [26]Deyu Zhou, Koo II kang, Ivan Glesk, and Paul Prucnal, "An analysis of signal-to-noise ratio and design parameters of a Terahertz Optical Ashymmetric Demultipler", IEEE Journal of Lightwave Technology, vol.17, no.2, Feb.1999, pp.298-397.
    [27]X. Yang, R.J. Manning and W. Hu, "Simple 40 Gbit/s all-optical XOR gate", Electronics Letters, vol.46, no.3, Feb.2010.
    [28]S. Nakamura, K. Tajima, and Y. Sugimoto, "Experimental investigation on high-speed switching characteristics of a novel symmetric Mach-Zehnder all-optical switch", Appl. Phys. Lett., vol.65, no.3, July 1994, pp.283-285.
    [29]J. Wang, J.Q. Sun, Q.Z. Sun, X.L. Zhang, D.X. Huang, "All-optical 40 Gbit/s multicasting XOR logic gate for NRZ-DPSK signals", Optical Fiber Communication & Optoelectronic Exposition.& Conference,2008, AOE 2008, SaK42.
    [30]J. Wang, Q.Z. Sun, J.Q. Sun, "Simultaneous demonstration on FWM-based all-optical 40 Gbit/s multicasting CSRZ-DPSK logic XOR gate and CSRZ-DPSK to RZ-DPSK format conversion", Communications and Photonics conference and Exhibition,2009, ACP 2009, TuX1.
    [31]Changyuan Yu, Louis Christen, Ting Luo, Yan Wang, Zhongqi Pan, Lian-Shan Yan, Alan E. Willner, "All-optical XOR gate using polarization rotation in single highly nonlinear fiber", IEEE Photon. Technol. Lett., vol.17, no.6, June 2005, pp. 1232-1234.
    [32]Kai Sun, Jifang Qiu, Martin Rochette, and Lawrence R. Chen, "All-optical logic gates (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber", European Conference on Optical Communications (ECOC 2009), paper 3.3.7, Vienna, Austria, Sep.2009.
    [33]Zhang X., Wang Y., Sun J., et al., "All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs", Optics Express,2004,12(3):361-366.
    [34]Zhang J., Wu J., Feng C., et al., "All-Optical Logic OR Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering", IEEE Photonics Technology Letters, IEEE,2007,19(1):33-35.
    [35]Berrettini G., Simi A., Malacarne A., et al., "Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate", IEEE Photonics Technology Letters,2006,18(8):917-919.
    [36]Kim S. H. K., J.H.; Yu, B.G.; Byun, Y.T.; Jeon, Y.M.; Lee, S.; Woo, D.H.; "All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers", Electronics Letters,2005,41(18):1027-1028.
    [37]Kim J.-Y., Kim J.-M, Han T.-Y, et al., "All-Optical Multiple Logic Gates With XOR, NOR, OR, and NAND Functions Using Parallel SOA-MZI Structures: Theory and Experiment", IEEE Journal of Lightwave Technology,2006, 24(9):3392-3399.
    [38]Fjelde T., Kloch A., Wolfson D., et al., "Novel Scheme for Simple Label-Swapping Employing XOR Logic in an Integrated Interferometric Wavelength Converter", IEEE Photonics Technology Letters,2001, 13(7):750-752.
    [39]Martinez J. M., Ramos F., and Marti J., "All-optical packet header processor based on cascaded SOA-MZIs", Electronics Letters,2004,40(14):894-895.
    [40]Poustie A. J., Blow K. J., Kelly A. E., et al., "All-optical parity checker with bit-differential delay", Optics Communications,1999,162(1-3):37-43.
    [41]Poustie A. J., Blow K. J., Manning R. J., et al., "All-optical pseudorandom number generator", Optics Communications,1999,159(4-6):208-214.
    [42]Poustie A. J., Blow K. J., and Manning R. J., "All-optical regenerative memory for long term data storage", Optics Communications,1997,140(4-6):184-186.
    [43]Tangdiongga E., Liu Y., de Waardt H., et al., "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier", Opt. Lett., 2007,32(7):835-837.
    [44]Nakamura S. and Tajima K. Ultrafast, "All-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect", Applied Physics Letters,1997,70(26):3498-3500.
    [45]Chan L. Y., Qureshi K. K., Wai P. K. A., et al., "All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate", Photonics Technology Letters, IEEE,2003,15(4):593-595.
    [46]V.G. Ta'eed, Pelusi M. D., and Eggleton B. J., "All-Optical Wavelength Conversion of 80 Gb/s Signal in Highly Nonlinear Serpentine Chalcogenide Planar Waveguides", OFC/NFOEC. San Diego, U.S.,2008. OMP2.
    [47]S. Fu, W. Zhong, P. Shum, L. Chinlon, "Simultaneous implementation of photonic logic OR and AND gates for CSRZ-OOK signals", IEEE Photonics Technology Letters, no.99,2010.
    [48]郭永娟,孙军强,王健,“基于PPLN光波导和频与差频级联型全光波长转换的研究”,光学与光电技术,2007,5(2):65-68。
    [49]Asobe M., Nishida Y., Tadanaga O., et al., "Wavelength conversion using quasi-phase matched LiNbO3 waveguides", Ieice Transactions on Electronics, 2005, E88c(3):335-341.
    [50]J. Wang, J. Sun, X. Zhang, D. Huang, "PPLN-based all-optical 40 Gbit/s three-input logic AND gate for both NRZ and RZ signals", Electronics Letters, vol.44, no.6,2008, pp.413-414.
    [51]J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, M.M. Fejer, "PPLN-Based Flexible Optical Logic and Gate", IEEE Photonics Technology Letters, vol.20, no.3,2008, pp.211-213.
    [52]J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, M.M. Fejer, "Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide ", Electronics Letters, vol.43, no. 17,2007, pp.940-941.
    [53]Y.L. Lee, B.A. Yu, T.J. Eom, W. Shin, Y.C. Noh, D.K. Ko, J. Lee, K. Oh, "All-optical AND/NAND logic gates based on Ti:PPLN waveguide by cascaded nonlinear optical processes", CLEO/QELS 2006.
    [54]J. Wang, J. Sun, "All-optical logic XOR gate for high-speed CSRZ-DPSK signals based on cSFG/DFG in PPLN waveguide ", Electronics Letters, vol.46, no.4,2010, pp.288-290.
    [55]J. Wang, J. Sun, Q. Sun, "Proposal for All-Optical Switchable or/xor Logic Gates Using Sum-Frequency Generation ", IEEE Photonics Technology Letters, vol.19, no.8,2007, pp.541-543.
    [56]S. Kumar, D. Gurkan, A.E. Willner, "All-optical half adder using a PPLN waveguide and an SOA ", Optical Fiber Communication Conference,2004.
    [57]J.E. McGeehan, S. Kumar, A.E. Willner, "All-optical digital half-subtracter /adder using semiconductor optical amplifiers and a PPLN waveguide", Conference CLEO 2005.
    [58]Jae Hun Kim S. H. K., Chang Wan Son, "Realization of all-optical full adder using cross-gain modulation", Opt. Eng.2005,5628:333-340.
    [59]Sang Hun Kim J. H. K., Jae Won Choi, Chang Wan Son, "All-optical half adder using single mechanism of XGM in semiconductor optical amplifiers", Proc. SPIE.2005,5628:94-99.
    [60]Tsiokos D., Kehayas E., and Vyrsokinos K., "All-optical half-adder with interferometric SOA gates", Photonics Technology Letters, IEEE,2004,16(1): 284-286.
    [61]Poustie A. J., Blow K. J., Kelly A. E., et al., "All-optical full adder with bit-differential delay", Optics Communications,1999,168(1-4):89-93.
    [62]Poustie A. J., Blow K. J., Kelly A. E., et al., "All-optical binary half-adder", Optics Communications,1998,156(1-3):22-26.
    [63]Kumar S. and Willner A. E., "Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA",154 Optics Express,2006,14(12):5092-5097.
    [64]J. Dong, X. Zhang, Y. Wang, J. Xu, D. Huang, "40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA", IEE Electronics Letters, vol.43, no.16, Aug.2007, pp.884-886.
    本章介绍了SOA中非线性效应的种类,介绍了半导体光放大器的非线性偏振旋转特性产生的机制,以及考虑了SOA长度效应的偏振相关的理论模型。
    实验利用泵浦-探测结构对SOA中NPR效应进行了全面的研究,得出以下结论:
    1.首次利用泵浦-探测结构实验研究了单个SOA中NPR效应与PDG的关系。由于SOA中PDG随波长变化,使在单个SOA中研究NPR响应与PDG的关系成为可能。得出结论:1)当泵浦光在SOA的峰值波长处,SOA中NPR效应最强;2)SOA的PDG越大,NPR效应越强;
    2. 输入光功率与NPR效应的关系:在SOA为深度饱和前,输入探测光功率越大NPR比值越大;
    3.输入泵浦光偏振态对NPR比值的影响在2dB,但探测光偏振态对NPR比值的影响很大,选择合适的探测光偏振态对基于NPR的应用至关重要。
    [1]Davies D. A. O., "Small-signal analysis of wavelength conversion in semiconductor laser amplifiers via gain saturation", IEEE Photonics Technology Letters, vol.7, no. 6,Jun.1995, pp.617-619.
    [2]Mecozzi A., Scotti S., D'Ottavi A., et al., "Four-wave mixing in traveling-wave semiconductor amplifiers", IEEE Journal of Quantum Electronics, vol.31, no.4, Apr.1995, pp.689-699.
    [3]Grant R. S., Kennedy G. T., and Sibbett W., "Cross-phase modulation in semiconductor optical amplifier", IEE Electronics Letters, vol.27, no.10, May 1991, pp.801-803.
    [4]Soto. H, Erasme D., and Guekos G., "Cross-polarization modulation in semiconductor optical amplifiers", IEEE Photonics Technology Letters, vol.11, no. 8, Aug.1999,pp.970-972.
    [5]N.Calabretta, Y. Liu, F. M. Huijskens, et al., "Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier", IEEE Journal of Lightwave Technology, vol.22, no.2, Feb.2004, pp.372-381.
    [6]Diez S., Schmidt C., Ludwing D., et al., "Effect of birefringence in a bulk semiconductor optical amplifier on four-wave mixing", IEEE Photonics Technology Letters, vol.10, no.2, Feb.1998, pp.212-214.
    [7]Soto. H, Erasme D., and Guekos G., "Cross-polarization modulation in semiconductor optical amplifiers", IEEE Photonics Technology Letters, vol.11, no. 8, Aug.1999,pp.970-972.
    [8]Y. Liu, M. T. Hill, E. Tangdiongga, et al., "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier", IEEE Photonics Technology Letters, vol.15, no.1, Jan.2003, pp.90-92.
    [9]Soto H., Erasme D., and Guekos G., "5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers", IEEE Photonics Technology Letters, vol.13, no.4, Apr.2001, pp.335-337.
    [10]Soto. H., Diaz C. A., Topomondzo J., et al., "All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier", IEEE Photonics Technology Letters, vol.14, no.4, Apr.2002, pp.498-500.
    [11]Soto H., Topomondzo J. D., Erasme, et al., "All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier", Optics Communications,218,2003, pp.243-247.
    [12]M. Zhao, J. D. Merlier, G.. Morthier, et al., "All-optical 2R regeneration based on polarization rotation in a linear optical amplifier", IEEE Photonics Technology Letters, vol.15, no.2, Feb.2003, pp.305-307.
    [13]Patrick D. M., Ellis A. D., Davies D. A.O., et al., "Demultiplexing using polarization rotation in a semiconductor laser amplifier",IEE Electronics Letters, vol.30, no.4, Feb.1994, pp.341-342.
    [14]B.F.Kennedy,S.Philippe, P.Landais, et al., "Experimental investigation of polarization rotation in semiconductor optical amplifiers", Semiconductor Opto-electronics, vol.151, no.2, April.2004, pp.114-118.
    [15]Dorren H. J. S., Lenstra D., Liu Y, et al., "Nonlinear polarization rotation in semiconductor optical amplifiers:theory and applications to all-optical flip-flop memories", IEEE Journal of Quantum Electronics, vol.39, no.1, Jan.2003, pp.141-148.
    [16]S. Fu, M. Wang, W.D. Zhong, P. Shum, Y.J. Wen, J. Wu, and J. Lin, "SOA nonlinear polarization rotation with linear polarization maintenance:Characterization and applications", IEEE Journal of Selected Topics in Quantum Electronics, vol.14, no. 3, May/June 2008, pp.816-825.
    [17]张君毅,光网络中基于SOA非线性的全光信号处理技术研究,北京邮电大学博士论文,2006年。
    1.建立了考虑SOA非线性偏振特性和窄带滤波特性的SOA理论模型,仿真了SOA偏振相关增益曲线,与实验结果相吻合;
    2.仿真研究了基于SOA中非线性偏振旋转特性和窄带滤波特性的开关器件的性能;仿真证明,基于SOA中非线性偏振旋转特性的开关器件中,当泵浦光(控制光)脉冲越小,输出结果性能越好;窄带滤波器带宽和中心波长的选择是一对相辅相成的参量,当滤波器带宽越宽时,为保证高质量的输出结果,中心波长应远离探测光原始波长;
    3.论文首次提出了一种新型的基于SOA中NPR效应和窄带滤波效应的可重构多逻辑门实现方案,并通过仿真进行了验证,速率可工作在10Gbit/s,输出各逻辑门(AND、XOR、OR、NOT和NOR)的Q因子可分别达到15.95、8.35、20.84、12.89,其中XOR逻辑实现起来难度最大。实验方面,验证了XOR的可行性,在2.5Gbit/s的实验平台上基于同一结构可分别实现了A·B和A·B门,实验给出了逻辑结果图、眼图和误码率测量结果,并通过研究调制码长和调制速率对输出结果的影响,得到输出结果的恶化主要是由SOA的增益恢复时间过慢所致。
    [1]D. Tsiokos; E. Kehayas; K. Vyrsokinos; T. Houbavlis; L. Stampoulidis; G.T. Kanellos; N. Pleros; G. Guekos; H. Avramopoulos; "10-Gb/s all-optical half-adder with interferometric SOA gates", IEEE Photonics Technology Letters, vol.16, no.1, Jan.2004, pp.284-286.
    [2]Pei-Li Li; De-Xiu Huang; Xin-Liang Zhang; "SOA-Based Ultrafast Multifunctional All-Optical Logic Gates With PolSK Modulated Signals", IEEE Journal of Quantum Electronics, vol.45, no.12, Dec.2009, pp.1542-1550.
    [3]P. Ghelfi, E. Lazzeri, M. Scatfardi, L. Poti, A. Bogoni, "All-optical full adder exploiting cascade of semiconductor optical amplifier-based modular blocks", OFC/NFOEC 2008, Feb.2008.
    [4]M. Scaffardi, P. Ghelfi, E. Lazzeri, L. Poti, A. Bogoni, "Photonic processing for digital comparison and full addition based on semiconductor optical amplifiers" IEEE Journal of Selected Topics in Quantum Electronics, vol.14, no.3, May/June 2008, pp.826-833.
    [5]N. Elfaramawy, A. Awad, "All-optical logic circuits based on the nonlinear properties of the semiconductor optical amplifier", International Symposium on ISCC 2004, vol.1, June/July 2004, pp.270-275.
    [6]Jing Wang, G. Meloni, G. Berrettini, L. Poti, A. Bogoni, "All-optical counter based on optical flip-flop and optical AND gate", ECOC'2009, Sep.2009, P3.21.
    [7]Jing Wang, G. Meloni, G. Berrettini, L. Poti, A. Bogoni, "All-optical clocked flip-flops and binary counting operation using SOA-based SR Latch and logic gates", IEEE Journal of Selected Topics in Quantum Electronics, Mar.2010, pp. 1-9.
    [8]S. Shimizu, H. Uenohara, "A proposal and analytical investigation of all-optical T-type flip-flop using SOAs", International Conference on Photonics in Switching,2009, Sep.2009.
    [9]Grant R. S., Kennedy G. T., and Sibbett W., "Cross-phase modulation in semiconductor optical amplifier", IEE Electronics Letters, vol.27, no.10, May 1991,pp.801-803.
    [10]A. Sharaiha, A. Hamie, M. Guegan, J. Le Bihan, A. Hamze, "All-optical logic OR gate based on cross gain modulation in semiconductor optical amplifiers", CLEOE-IQEC 2007, June 2007.
    [11]Soto. H, Erasme D., and Guekos G., "Cross-polarization modulation in semiconductor optical amplifiers", IEEE Photonics Technology Letters, vol.11, no.8, Aug.1999,pp.970-972.
    [12]A. Rostami, H. Nejad, R.M. Qartavol, H.R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers", IEEE Journal of Quantum Electronics, vol.46, no.3, Mar.2010, pp.354-360.
    [13]J. Dong, X. Zhang, Y. Wang, J. Xu, D. Huang, "40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA", IEE Electronics Letters, vol.43, no.16, Aug.2007, pp.884-886.
    [14]Mecozzi A., Scotti S., D'Ottavi A., et al., "Four-wave mixing in traveling-wave semiconductor amplifiers", IEEE Journal of Quantum Electronics, vol.31, no.4, Apr.1995,pp.689-699.
    [15]Z. Li, G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier", IEEE Photonics Technology Letters, vol.18, no.12, June 2006, pp.1341-1343.
    [16]S. Kumar, A.E. Willner, "All optical XNOR gate using simultaneous four-wave mixing and cross-gain modulation in an SOA", LEOS'2004, vol.2, Nov.2004, pp.913-914.
    [17]Ning Deng, Kit Chan, Chun-Kit Chan, Lian-Kuan Chen, "An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier", IEEE Journal of Selected Topics in Quantum Electronics, vol.12, no. 4, July-Aug.2006, pp.702-707.
    [18]Zhang J., Wu J., Feng C., et al., "All-optical logic OR gate exploiting nonlinear polarization rotation in an SOA and red-shifted sideband filtering", IEEE Photonics Technology Letters,2007,19(1):33-35.
    [19]Zhang J., Wu J., Feng C., et al., "40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering", Electronics Letters,2006,42(21):1243-1244.
    [20]Z. Li, Y. Liu, S. Zhang, H. de Waardt, G. D. Khoe and D. Lenstra, "All-optical logic gates based on an SOA and an optical filter", Tu3.5.3, ECOC2005.
    [1]D.M.F. Lai, C.H. Kwok, T.I. Yuk, and K.K.Y. Wong, "Picosecond all-optical logic gates (XOR, OR, NOT, and AND) in a fiber optical parametric amplifier", in Conf. Proc. OFC'08,OML6.
    [2]J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, "All-optical XOR gate using semiconductor optical amplifiers without additional input beam", IEEE Photonics Technology Letters, vol.14, no.10, Oct. 2002, pp.1436-1438.
    [3]A. Rostami, H. Nejad, R.M. Qartavol, H.R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers", IEEE Journal of Quantum Electronics, vol.46, no.3, Mar.2010, pp.354-360.
    [4]A. Sharaiha, A. Hamie, M. Guegan, J. Le Bihan, A. Hamze, "All-optical logic OR gate based on cross gain modulation in semiconductor optical amplifiers", CLEOE-IQEC 2007, June 2007.
    [5]Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G.D. Khoe and D. Lenstra, "All-optical logic gates based on an SOA and an optical filter", in Conf. Proc. ECOC'05,Tu 3.5.3.
    [6]A. Bogris, P. Velanas, and D. Syvridis, "Numerical investigation of a 160 Gb/s reconfigurable photonic logic gate based on cross-phase modulation in fibers", IEEE Photonics Technology Letters, vol.19, no.6, Mar.2007, pp.402-404.
    [7]J. Zhang, J. Wu, C. Feng, K. Xu, J. Lin, "All-optical logic OR gate exploiting nonlinear polarization rotation in an SOA and red-shifted sideband filtering", IEEE Photonics Technology Letters, vol.19, no.1, Jan.2007, pp.33-35.
    [8]J.H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto and K. Kikuchi, "40 Gbit/s XOR and AND gates using polarization switching within 1m-long bismuth oxide-based nonlinear fiber", IEEE Electronics Letters, Sep.2005, vol. 41, no.19,pp.1074-1075.
    [9]C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.S. Yan, and A. E. Willner, "All-optical XOR gate using polarization rotation in single highly nonlinear fiber", IEEE Photonics Technology Letters, vol.17, no.6, June 2005, pp. 1232-1234.
    [10]Z. Li, G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier", IEEE Photonics Technology Letters, vol.18, no.12, June 2006, pp.1341-1343.
    [11]Ning Deng, Kit Chan, Chun-Kit Chan, Lian-Kuan Chen, "An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier", IEEE Journal of Selected Topics in Quantum Electronics, vol.12, no. 4, July-Aug.2006, pp.702-707.
    [12]Jian Wang, Qizhen Sun, Junqiang Sun, "Simultaneous demonstration on FWM-bases all-optical 40 Gbit/s multicasting CSRZ-DPSK logic XOR gate and CSRZ-DPSK to RZ-DPSK format conversion", ACP 2009. Asia, Nov.2009.
    [13]G.P. Agrawal, Nonlinear Fiber Optics, Academic Press (2007).
    [14]T. Akiyama, M.Ekawa, M.Sugawara, K.Kawaguchi, H.Sudo, H.Kuwatsuka, H.Ebe, A.Kuramata, and Y. Arakawa, "Quantum dots for semiconductor optical amplifiers," in Proc. OFC 2005,OWM2.
    [15]Shin Arahira and Yoh Ogawa, "160-Gb/s all-optical encoding experiments by four-wave mixing in a gain-clamped SOA with assist-light injection," IEEE Photon. Tech. Lett., vol.16,2004, pp.653-655.
    [16]M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Sellbmann, B. Deveaud, B. Dagens, and J. Y. Emery, "Extremely fast high-gain and low-current SOA by optical speed-up at transparency," IEEE Photon. Technol. Lett., vol.12, pp. 1453-1455, Nov.2000.
    本论文首次提出了一种基于自级联EAM结构的窄脉冲产生技术,实验产生了10.2ps的10GHz窄脉冲信号,相对于基于单个EAM产生窄脉冲的技术,基于自级联EAM的结构可以让脉冲宽度压缩50%以上。
    本论文成功地搭建了一个稳定可靠、速率为80Gbit/s、传输距离为300km的高速OTDM实验系统,并首次采用自级联EAM结构作为时分解复用器。采用自级联EAM结构的时分解复用成功地实现了80Gbit/s到10Gbit/s的解复用;在接收端,接收灵敏度为-19.0dBm,功率代价为1.4dB。
    [1]Satoki Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing", IEEE J. Quantum Electronics, Vol.34, No.11, pp.2064-2079,1998.
    [2]V. Kaamn, S. Z. Zhang, A. J. Keating and J. E. Bowers, "High speed operation of traveling wave electroabsorption modulator," Electronics Letters, Vol.35, No.12, pp.993-995,1999.
    [3]R. Schmid, T. F. Meister, M. Rest and H. M. Rein, "40Gbit/s EAM driver IC in SiGE bipolar," Electronics Letters, Vol.34, No.11, pp.1095-1097,1998.
    [4]M. Moller, T. F. Meister, R. Schmid and H. M. Rein, "SiGe retiming high gain power MUX for directly driving an EAM up to 50Gbit/s," Electronics Letters, Vol.34, No.18, pp.1782-1784,1998.
    [5]H.Tanaka, S.Takagi, M.Suzuki and Matsushima, "Optcal short Pulse Generation By Double Gate Operation of Tandem Connected Electroapsorption Modulators Driven By Sinusoidal Voltages", Electron.Lett, Vol.29, No.16, pp.1449-1451, 1993.
    [6]F. Devaux, "Tandem of modulators for high on/off pulse generation," Electronics Letters, Vol.33, No.16, pp.1491-1492,1997.
    [7]Kaman, V.; Yi-Jen Chiu; Liljeberg, T.; Bowers, J.E.; Zhang, S.Z.;, Integrated tandem electroabsorption modulators for high-speed OTDM applications, Kaman, V.; Yi-Jen Chiu; Liljeberg, T.; Bowers, J.E.; Zhang, S.Z.; Microwave Photonics, 2000. MWP 2000. International Topical Meeting on,2000, Page(s):109-112
    [8]V. Kaman, Y. J. Chiu, L. Thomas, S. Z. Zhang and J. Bowers, "Integrated tandem traveling wave electroabsorption modulators for> 100Gbit/s OTDM applications", IEEE Photon. Lett., Vol.12, No.11, pp.1471-1473,2000.
    [9]E.Hilliger, V.Marembert, S.Ferber, M.kroh,J.Berber, H.Weber, "EAM with Improved Switching Performance by Self Cascading", OFC 2003, Vol.1, 268-269,2003.
    [10]F. Cisternino, R. Girardi,etc. A regenerative prescaled clock recovery for high-bit-rate OTDM systems. Optical Fiber Technology 5,260-274,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700