掺稀土光子晶体光纤制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对常规掺稀土光纤在光纤激光器应用实际工作中面临的三个科学问题,包括大芯径光纤与输出激光的光束质量问题、高效耦合问题及光暗化问题,展开研究。首先设计掺镱和掺铒光子晶体光纤的波导结构,构建出光子晶体光纤高温熔体流体力学模型,研究出光子晶体光纤的制备工艺;然后,制备出掺镱光子晶体光纤与掺铒光子晶体光纤,以及双包层光纤光栅,并分别将两种掺稀土光子晶体光纤进行了激光试验;最后,研究了超大模场掺镱光纤的制备与光束质量特性,分析了掺镱光纤的光暗化机理,研究了不同材料体系的掺镱光纤的光暗化特性,提出了相应的解决措施。。
     论文的主要研究内容与结果如下:
     (1)完成掺稀土光子晶体光纤的结构设计,发现在d/Λ≤0.30,Λ≤15λ时,大芯径光纤可以维持单模工作特性;外包层大空气孔径向尺寸w≥3λ,大空气孔之间的桥宽b≤0.5λ,可以获得高于0.7以上的内包层数值孔径,并制备出纤芯直径为43微米的大模场双包层掺镱光子晶体光纤,测试表明其具备单模特性,内包层数值孔径达到0.65,解决了大纤芯直径与单模工作特性的矛盾,以及高效耦合的问题。
     (2)系统研究掺稀土光子晶体光纤的制备工艺:建立高温熔体流体力学模型分析不同参数对工艺敏感度的影响,得出光子晶体光纤较佳拉丝工艺条件:高温炉温度为2123K,预制棒的进棒速度大于3mm/min,光纤拉丝速度大于200m/min,毛细管的内外压力差小于300pa。针对稀土离子传统液相掺杂工艺的缺陷,探索出稀土离子的全气相沉积工艺方法和完整的掺稀土光子晶体光纤制备工艺,并制备出掺镱光子晶体光纤和掺铒光子晶体光纤。
     (3)研究了双包层掺镱光子晶体光纤的激光特性:采用本论文设计并制备的掺镱光子晶体光纤和光纤光栅,构建出全光纤化的掺镱光子晶体光纤激光器,在915nm泵浦激光器作用下获得了中心波长为1080.2nm的3.96W的激光输出,斜率效率达到79.6%,光束质量因子M2为1.2。该掺镱光子晶体光纤光谱吸收特性优于常规掺镱光纤,其在915nm波长和976nm波长的吸收系数均高于常规掺镱光纤,在915nm波长的吸收峰较宽,其在两个吸收峰之间的谷底向长波长移动10nm。原因是空气石英玻璃网络电场对镱离子能级的产生了微扰,导致Stark分裂的新特性,影响了镱离子2F7/2→2F5/2的跃迁特性,从而产生了吸收谱的加宽与加高,以及吸收谷底向长波长的位移。
     (4)研究了掺铒光子晶体光纤及其激光放大特性,发现增大铒离子的掺杂区域,可以有效提升交叠因子,从而提升放大效率。掺铒光纤的激光放大特性与弯曲损耗特性试验结果表明:掺铒光子晶体光纤与普通掺铒光纤相比具有较高的增益特性、较好的增益平坦度、以及更好的抗弯曲性能,其原因在于空气与石英复合结构具备较大的交叠因子和较好地基模光场束缚能力。
     (5)研究了超大模场掺镱光纤:设计并制备出了全新结构的100微米级超大模场掺镱双包层光纤,激光试验发现受抑内全反射结构的超大模场光纤可以显著提升输出激光光束质量,该光纤激光在X、Y方向的平均光束质量因子M2分别为2.977和2.583,光束质量因子与常规大芯径光纤相比减小40%以上。
     (6)研究了掺镱光纤的光暗化特性:在分析光暗化机理的基础上,制备了不同材料配方的掺镱光纤。泵浦激光老化试验和激光功率稳定性试验表明:高镱离子浓度掺杂的掺镱光纤较为容易产生光暗化现象;而铝离子和磷离子的共掺剂引入的掺镱光纤,其光暗化效应显著降低。
In this dissertation, the three scientific puzzles in the application fields of big power fiber laser for common rare-earth-ions doped optical fibers have been studied, including the problems between big core diameter and good laser beam quality, high coupling efficiency, and photo-darkening. Firstly, we design the waveguide structures for ytterbium-doped PCF and erbium-doped PCF, construct the hydrodynamics model for silica PCF high-temperature melt, develope the fabrication process route for PCF. Then, the ytterbium-doped PCF, erbium-doped PCF and double-cladding fiber gratings were manufactured. The laser experiments of the two kinds of PCF were earried out, and their performances were also analyzed. Finally, the ultra-mode-area ytterbium-doped optical fiber (YDF) was prepared and its laser beam quality was also studied. The mechanism of photo-darkening was construed, and the photo-darkening characteristics of different materials were also investigated, and the relevant countermeasures to reduce the photo-darkening were put forward.
     The research contents and results are formulated in the following.
     (1) The waveguide structures of rare-earth-ion doped PCF have been investigated. It is shown that the single-mode operation performance with large core for PCF can be acquired, the conditions are that the ratio of air hole diameter to lattice constant in the triangular array is smaller than or equal to 0.30, and lattice constant is smaller or equal to 15 times of transmission wavelength (λ). The cladding numerical aperture (NA) as high as 0.7 can be achieved at the condition that the radial size of large air-holes in the outer-cladding is larger than or equal to three times ofλand the bridge width is smaller than or equal to 0.5 times ofλThe double-cladding ytterbium-doped PCF with a core diameter of 43μm has been realized successfully, and tests demonstrate that the fiber could operate at the single-mode and the NA of inner-cladding reached 0.65, which can tackle the problems of large core and single-mode operation, and the high coupling efficiency.
     (2) The fabrication process technologies have been profoundly made research. The hydrodynamics model for silica PCF high-temperature melt has been constructed, and the influence disciplinarians of different parameters on the process sensitivity degree have been investigated, the preferable drawing conditions are that the furnace temperature is 2123K, the load speed of PCF perform is faster than 3mm/min, the fiber drawing speed is faster than 200m/min, and the pressure margin between outside and inner of capillary should be less than 300 pa. To the conventional solution-doping process deficiencies of rare-earth ions, the novelty all-gas-phase doping process for rare-earth-ions has been invented, the fabrication process route for rare-earth-doped PCF has been presented, and the ytterbium-doped PCF and erbium-doped PCF have been fabricated successfully.
     (3) The laser performances of double-cladding ytterbium-doped PCF have been studied. The all-fiber ytterbium-doped PCF laser has been constructed with self-make ytterbium-doped PCF and fiber grating. With the 915nm laser diode pumping, the output laser power at the center wavelength of 1080.2 nm is 3.96 watts, the slope efficiency is 79.6%, and the laser beam quality M2 is 1.2. The spectrum absorption characteristics of the double-cladding ytterbium-doped PCF are different from the common double-cladding ytterbium-doped optical fiber (DCYDF), its absorption coefficients at 915nm and 976nm wavelength are higher than that of the common DCYDF, the width of its absorption peak at 915nm wavelength is bigger than that of the common DCYDF, and the wavelength of its absorption valley is shifted 10nm to the longer wavelength. The reason may be that the ytterbium-ion energy levels are disturbed to some extent by the electric fields of the compounded air-silica glass network. This results in the novelty performance of Stark splitting, which influences the transition behavior of ytterbium-ions from 2F7/2 to 2F5/2.Therefore, the absorption spectra are widened and heightened, and the absorption valley shifts to the longer wavelength.
     (4) The research of erbium-doped optical fiber and its laser amplifying performances has been made. It is discovered that raising the doping domain of erbium-ions can efficiently increase the overlap factor and improve the amplifying efficiency. The laser amplifying experiments and bending loss tests of erbium-doped optical fibers show that the erbium-doped PCF has comparatively higher gain, better gain flatness and anti-bending ability than the common erbium-doped optical fiber. These results are attributed to the bigger overlap factor and better confining ability of fundamental mode light field for air-silica compounded structured materials.
     (5) The ultra-large mode-area ytterbium-doped optical fiber has been investigated. The novelty structure DCYDF with a core-diameter of 100μm has been designed and fabricated successfully. The lasers experiments show that the ultra-large mode-area ytterbium-doped optical fiber with Frustrated Total Internal Reflection structure can remarkably improve the laser beam quality. With this fiber, the average laser beam quality factor M2 in the directions of x and y are 2.977 and 2.583, which is 40% smaller than that of the common large-core YDFs.
     (6) The photo-darkening characteristics of YDFs have been investigated. On the basis of analyzing the photo-darkening mechanisms, the YDFs with different material prescriptions have been fabricated. The aging tests of pumping laser and laser experiments of output power stability have been carried out with these YDFs, the results show that the kinds of YDFs with high doping concentration of ytterium-ions are inclined to photo-darkening, and the aluminum-ions and phosphorus-ions co-doping agents can reduce the photo-darkening of the same-concentration YDFs.
引文
[1]C. J. Koester and E. Snitzer, Amplification in a Fiber Laser, Appl. Opt.1964,3: 1182-1186
    [2]R R.J. Mears, L. Reekie, I.M. Jauncey & D.N. Payne, Low-noise Erbium-doped fibre amplifier at 1.54μm, Electron. Lett.1987,23:1026-1028
    [3]E. Desurvire, J. R. Simpson, and P. C. Becker, High-gain erbium-doped traveling-wave fiber amplifier, Opt. Lett.1987,12:888~890
    [4]E.Snitzer, H.Po, F.Hakimi, R.Tumminelliand, B.C.McCollum, Double-clad off set core Nd fiber laser, in Proc. Of Optical FiberSensors, NewOrleans,1988, PD5.41
    [5]H. Zellmer, A. Tunnermann, H. Welling, and V. Reichel, Double-clad fiber with 30 W output power, in OSATOPS:Proc. OAA 1997,16:137-140
    [6]H. M. Pask, D. C. Hanna. Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1 μm region. Electron. Lett.,1994,30(11):863-865
    [7]H.M.Pask, R.J.Carman, D.C.Hanna, A.C.Tropper, C.J.Mackechnie, P.R.Barber, J.M.Dawes, IEEE J.Selected Topics Quant. Eletron.1995,1:2-13
    [8]L.Goldberg, J.P.Koplow, D.A.V.Kliner, Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode, Opt. Letter.1999,24(10):673-675
    [9]Yong Wang and Hong Po, Dynamic Characteristics of Double-Clad Fiber Amplifiers for High-Power Pulse Amplification, J. Lightwave Technol.2003,21(10):2262-2270.
    [10]T. F. Morse, A. Carter, and V. Kozlov, Recent progress in fiber lasers, in 11th Annual Diode Laser Technology Rev. Tech. Dig., Albuquerque, NM,1998, Mar.2~4,. 1404~1405
    [11]V.Dominic, S.MacCormack, R.Waarts, S.Sanders, S.Bicknese, R.Dohle, E.Wolak, P.S.Yeh. E.Zucker, 110W fibre laser, Electron. Lett.1999,35:1158-1160
    [12]Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express 2004,12(25):6088~6092.
    [13]Baoyin Zhao, Kailang Duan, Wei Zhao, Cheng Li, and Yishan Wang, Experimental study on high power all-fiber laser, Chin. Opt. Lett.2010,8(4):404~406
    [14]楼棋洪,周军,孔令峰,薛冬,高功率脉冲双包层光纤激光器的新进展,量子电子学报,2005,22(4):510-515
    [15]Yoonchan Jeong, Alexander J. Boyland, Jayanta K. Sahu, Seunghwan Chung, Johan Nilsson, and David N. Payne, Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser, Journal of the Optical Society of Korea,2009,13(4):416~422
    [16]V.P.Gapontsev, Recent progress in beam quality improvement of multi-kW fiber lasers, PhotonicsWest, January 2005,5709~5711
    [17]Kang Li, Yishan Wang, Wei Zhao, Guofu Chen. Qinjun Peng, Dafu Cui, and Zuyan Xu Lasing characteristics of strongly pumped Yb-doped photonic crystal fiber laser, Chin. Opt. Lett.,2007,5(6):347~350
    [18]P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, Efficient single-mode operation of a claddingpumped ytterbium-doped helical-core fiber laser, Opt. Lett.,2006,31(2): 226-228
    [19]J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, and A. Tunnermann, Extended single-mode photonic crystal fiber lasers, Opt. Express,2006,14(7): 2715-2720
    [20]G. Bonati, H. Voelckel, T. Gabler, U. Krause, A. Tunnermann, J. Limpert, A. Liem, T.Schreiber, S. Nolte, and H. Zellmer,1.53 kW from a single Yb-doped photonic crystal fiber laser, Photonics West, San Jose, Late Breaking Developments,2005, Session 5709-2a
    [21]Philip St. J. Russell,Photonic Band Gaps, Physics World,1992,5(8):37~42
    [22]Jes Broeng, et al., Photonic Crystal Fibers:A New Class of Optical Waveguides, Optical Fiber Technology,1999,5:305~330
    [23]J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett.1996,21:1547~1549
    [24]J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, Photonic band gap guidance in optical fiber, Science,1998,282:1476~1478
    [25]R.F. CreganB.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, and D.C. Allan, Singlemode photonic band gap guidance of light in air, Science,1999,285: 1537~1539
    [26]P. St.J. Russell. Photonic crystal fibers, Science,2003,299(5605):358~362
    [27]Birks, T. A., Roberts, P. J., Russell, P. S. J., Atkin, D. M., and Shepherd, T. J., Full 2-D photonic bandgaps in silica/air structures, Electronics Letters,1995,31(22):1941~1943
    [28]Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonics crystal fiber. Opt. Lett.1997,22(13):961~963
    [29]J. Broeng, S. E. Barkou, T. Sodergaard, and A. Bjarklev, Analysis of air-guiding photonic bandgap fibers, Opt. Lett.2000,25:96-98
    [30]Kunimasa Saitoh, Yukihiro suchida, Masanor Koshiba, Niels Asger Mortensen. Endlessly single-mode holey fibers:the influence of core design, Opt. Express 2005, 13(26):10833~10839
    [31]J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, D. J. Richardson, Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source, Opt. Express 2002,10(8):382-387
    [32]V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St.J. Russell, Tellurite photonic crystal fiber, Opt. Express,2003,11(20):2641-2645
    [33]M C J Large, R. Lwin, S. Manos, L. Poladian, G. Barton, Experimental studies of bandwidth behavior in Graded Index Microstructured Polymer Optical Fibres, ECOC2007, Berlin Germany,2007:Session 4.1.3
    [34]Niels Asger Mortensen and Jacob Riis Folkenberg, Modal cut-off and the V parameter in PCFs. Opt. Lett.2003,28 (20):1879~1882
    [35]T. Schreiber, J. Limpert, A. Liem, S. Nolte, H. Zellmer Thermo-optical analysis of air-clad photonic crystal fiber lasers, OFC2002 Anaheim California, USA,2002:TuA2
    [36]Kazunori Suzuki, Hirokazu Kubota, Satoki Kawanishi, Masatoshi Tanaka, Moriyuki Fujita, Optical properties of a low-loss polarization maintaining photonic crystal fiber. Opt. Express,2001,9 (13):676~680
    [37]Zhaoming Zhu, Thomas Brown, Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fieber, Opt. Express,2004, 12(5):791~796
    [38]Sigang Yang, Yejin Zhang, Xiaozhou Peng, Yang Lu, Shizhong Xie, Jinyan Li, Wei Chen, Zuowen Jiang, Jinggang Peng, Haiqing Li,Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Opt. Express,2006,14(7):3015~3023
    [39]M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, Single mode photonic crystal fiber with effevtive area of 600 μm2 and low bending loss, Electron. Lett.2004,39: 1802-1805
    [40]D. Mogilevtsev, T. A. Birks, and P. St.J. Russell, Group-velocity dispersion in photonic crystal fibers, Opt. Lett.1998,23:1662~1664
    [41]W.J. Wadsworth, J.C. Knight, W.H. Reeves,P.St.J. Russell and J. Arriaga, Yb3+-doped photonic crystal fibre laser, Electron. Lett.,2000,36(17):1452~1453
    [42]K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson and D. J. Richardson, Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding, Opt. Express,2001,9(13):714~720
    [43]P. Glas and D. Fischer, Cladding pumped large-mode-area Nd-doped holey fiber laser, Opt. Express,2002,10,286-290
    [44]J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen, High-Power Air-clad Large-Mode-Area Photonic Crystal Fiber Laser, Opt. Express.2003,11:818~823
    [45]C. Simonneau, P. Bousselet, G. Melin, L. Provost, and C. Moreau, High-power air-clad photonic crystal fiber cladding-pumped EDFA for WDM applications in the C-band, in Proc. European Conference on Optical Communication ECOC 2003, Rimini, Italy, Sept. 2003,21~25
    [46]R. E. Kristiansen and J. Broeng, Air-clad photonic crystal fibers for high-power single-mode lasers [EB/OL]. http://www.phastconference.org/materials/air-cladphotoniccrystalfibers.pdf,2004-03-15.
    [47]K. Furusawa, T. Kogure, T. M. Monro, and D. J. Richardson. High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber, Opt. Express,2004,12: 3452~3458
    [48]Jens Limpert, Fabian R"oser, Thomas Schreiber, and Andreas T"unnermann, High-Power Ultrafast Fiber Laser Systems, IEEE Jounal of Selected Topics in Quantum Electronics,2006,12(2):233~244
    [49]C. D. Brooks and F. Di Teodoro, Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter. Yb-doped rodlike photonic crystal fiber amplifier, Applied Physics Letters 2006,89:111-119
    [50]Johan Boullet, Yoann Zaouter, Rudy Desmarchelier. Matthieu Cazaux, Francois Salin, Julien Saby, Ramatou Bello-Doua and Eric Cormier, High power ytterbium-doped rod-type three level photonic crystal fiber laser, Opt. Express2008,16(22): 17891~17902
    [51]J. A. Sanchez-Martin, J. M. Alvarez, M. A. Rebolledo, S. Torres-Peir, A. Diez and M.V. Andres, Erbium-Doped Photonic Crystal Fibers:Fabrication and Characterization,1ST workshop on specialty optical fibers and their applications. AIP Conference Proceedings,2008,1055:99~102
    [52]Moritz M. Vogel, Marwan Abdou-Ahmed, Andreas Voss, and Thomas Graf, Very-large-mode-area, single-mode multicore fiber, Opt. Lett.2009,34(18):2876~2878
    [53]A. Shirakawa, Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55um. Opt. Express,2005,13(4): 1221~1228
    [54]陈伟,李进延,李诗愈等.高非线性光子晶体光纤及其超连续光谱研究.光通信研究,2007,2:49-50
    [55]A. Huttunen and P. Torma, Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Opt. Express,2005, 13(11):627-635
    [56]T. Fujisawa, K. Saltoh.K. Wada. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Opt. Express,2006,14(2):893-901
    [57]Si-gang Yang, Ye-jin Zhang, Xiao-zhou Peng. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Opt. Express,2006,14(7),3015-3023
    [58]Si-gang yang, Ye-jin Zhang, Li-na He. Design and Fabrication on the Wide-Frequency Single-mode photonic crystal fibers, in Proc.Optical Fiber Communication (OFC 2007), 1-3,2007, Paper OThA6
    [59]Si-gang Yang, Ye-jin Zhang, Jin-yan Li, et al. Experimental study of mode field evolution of dual-core photonic crystal fiber. IEEE Photon. Technol. Lett.,2007,19(19): 1523-1525
    [60]P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express,2003,11(26): 3568-3573
    [61]Jay E. Sharping, Microstructure Fiber Based Optical Parametric Oscillators,Journal of Lightwave Technology,2008,26(14):2184-2191
    [62]Thomas Tanggaard, Larsen David Sparre, Hermann Anders Bjarklev, Tunable Photonic Band Gaps In Photonic Crystal Fibers Filled With a Cholesteric Liquid Crystal, Acta Optica Sinica,2003,23(Z1):382-386
    [63]Robert W. Boyd, Daniel J. Gauthier, Maximum time delay achievable on propagation through a slow-light medium, Phys. Rev. A 2005,71,023801-1-4
    [64]Yingchun Cao, Peixiang Lu, Zhenyu Yang, and Wei Chen, An efficient method of all-optical buffering with ultra-small core photonic crystal fibers, Opt. Express,2008, 16(18):14142-14150
    [65]M. G. Herraez, Arbitrary-bandwidth Brillouin slow light in optical fibers, Opt. Express 2006,14(4):1395~1400.
    [66]S. Chin. Zero-gain slow & fast light propagation in an optical fiber, Opt. Express 2006,14(22):10684~10692
    [67]Yoshitomo Okawachi, Large tunable optical delays via self-phase modulation and dispersion, Opt. Express 2006,14(25):12022~12027
    [68]Takashi Kunihiro, Experimental demonstration of all-optical tunable delay line based on distortion-less slow and fast light using soliton collision in optical fiber, Opt. Express, 2006,14(24):11736~11747
    [69]Joe T. Mok, Delay-tunable gap-soliton-based slow-light system, Opt. Express 2006, 14(25):11987~11996
    [70]J.T. Mok, M. Ibsen, Dispersionless slow light with 5-pulse-width delay in fibre Bragg grating, Electron. Lett.2007,43(25):1418~1419
    [71]W. C. L. Hopman, Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings, Opt. Express 2007,15(4):1851~1970
    [72]Ryan M. Camacho, All-Optical Delay of Images using Slow Light, Phys. Rev. Lett. 2007,98:043902
    [73]Zhaoming Zhu and Daniel J. Gauthier, Numerical study of all-optical slow-light delaysvia stimulated Brillouin scattering in an optical fiber, J. Opt. Soc. Am. B 2005, 22(11):2378~2385
    [74]Thomas Schneider, Markus Junker,Potential ultra wide slow-light bandwidth enhancement, Opt. Express 2006,14(23):11082~11087
    [75]Zhaoming Zhu, Andrew M. C. Dawes, Broadband SBS Slow Light in an Optical Fiber, J. Light. Tech.2006,25(1):201~206
    [76]Thomas Schneider, Comparison of delay enhancement mechanisms for SBS-based slow light systems, Opt. Express 2007,15(15):9606~9613
    [77]Avi Zadok, Avishay Eyal and Moshe Tur, Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp, Opt. Express 2006,14(19):8498~8503
    [78]E. Shumakher, On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers. Opt. Express 2006,14(13):5877~5884
    [79]B. Zhang, L. Zhang. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line, Opt. Express 2007,15(13):8317~8322
    [80]E. Shumakher, Large tunable delay with low distortion of 10Gbit/s data in a slow light system based on narrow band fiber parametric amplification, Opt. Express 2006, 14(19):8540~8545
    [81]R. Pant. M.D. Stenner, M.A. Neifeld, Z. Shi, R.W. Boyd, and D.J. Gauthier, Maximizing the opening of eye diagrams for slow-light systems, Appl. Opt.,2007, 46(26):6513~6519
    [82]Likhachev M E, Levchenko A E, Bubnov M M, (et al). Low-loss dispersion-shifted solid-core photonic bandgap bragg fiber. In:Proceedings of ECOC'2007. Berlin,2007, Session 7.1.2
    [83]Goto R, Takenaga K, Matsuo S. Solid photonic band-gap fiber with 400 nm bandwidth and loss below 4 dB/km at 1520 nm. In:Proceedings of OFC/NFOEC'2007. Anaheim, 2007, OLM7,1~3
    [84]KoSolapov A F, Semjonov S L, Denisov A N. Mechanical strength and fatigue of microstructured optical fibers. In:Proceedings of OFC/NFOEC'2007. Anaheim,2007, OThA3,1~3
    [85]Stach M, Broeng J, Petersson A.10 Gbit/s 850 nm VCSEL based data transmission over 100 m-long multimode PCFs. In:Proceedings of ECOC-IOOC'2003. Rimini,2003, Th3.3.3
    [86]Kenji Kurokawa, Katsusuke Tajima, Kazuhide Nakajima. lOGHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication. Journal of Lightwave Technology,2007,25(1):75~78
    [87]Katsusuke Tajima, Kenji Kurokawa, Kazuhide Nakajima. Toward transmission applications with micro structured fibers. In:Proceedings of OFC/NFOEC'2006. Anaheim,2006. OThH1
    [88]Kurokawa K, Nakajima K, Tsujikawa K. Penalty-free 40 Gb/s transmission in 1000 nm band over low loss PCF. In:Proceedings of OFC/NFOEC'2006. Anaheim,2006, OThH2
    [89]Nikolaos Florous, Kunimasa Saitoh, Masanori Koshiba. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in PCFs:towards high speed reconfigurable transmission platforms. Opt. Express,2006, 14(2):901~913
    [90]Kwok C H, Chow C W. Tsang H K. S/C/L-Band wavelength conversion by cross-polarization modulation in a dispersion-flattened nonlinear photonic-crystal fiber. In:Proceedings of OFC/NFOEC'2006. Anaheim,2006, OThA4
    [91]Kim G H, Han Y G, Jo H S,. A novel fabrication method of versatile holey fibers with low bending loss and their optical characteristics. In:Proceedings of OFC/NFOEC'2006. Anaheim,2006, OWI2
    [92]Toshio Kurashima,. Potential of hole-assisted fibres in optical access and in-house networks. In:Proceedings of ECOC'2007. Berlin,2007, Session 6.1.1
    [93]Zhu Z M, Brown T. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fieber. Opt Express,2004,12(5):791~796
    [94]Zhang R, Teipe J, Giessen H. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt Express,2006,14(15):6800~6812
    [95]Takara H, Ohara T, Mori K. More than 1000 channel optical frequency chain generation from single super-continuum Source with 12.5 GHz channel spacing. Electron. Lett. 2000,36(25):2089-2090
    [96]Varshney S, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Opt. Express,2005,13(23):9516~9526
    [97]Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett.2002, 25(1):25~27
    [98]Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected core photonic crystal fiber with low confinement losses. Opt Express, 2005,13(21):8365~8371
    [99]Gorbach A V, Skryabin D V, Stone J M. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short wavelength edge of a super-continuum. Opt Express,2006,14(21):9854~9863
    [100]Kazuhide Nakajima, Takashi Matsui, Kenji Kurokawa, et al. High-speed and wideband transmission using dispersion-compensating/managing photonic crystal fiber and dispersion-shifted fiber. Journal of Lightwave Technology,2007,25(9):2719~2726
    [101]Yang S G, Zhang Y J, He L N. Experimental demonstration of very high negative chromatic dispersion dual-core photonic crystal fiber. In:Proceedings of OFC/NFOEC'2007. Anaheim,2007, OThA6
    [102]Yang S G, Zhang Y J, Peng X Z. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Opt Express, 2006,14(7):3015~3023
    [103]Tadashi Murao, Kunimasa Saitoh, Nikolaos J Florous, et al. Single-mode air-guiding photonic bandgap fiber with improved broadband transmission characteristics:the benefits of an anti-resonant core design. In:Proceedings of OFC/NFOEC'2007. Anaheim,2007, JWA4,1~3
    [104]Skorobogatiy M, Dupuis A, Guo N. Design and fabrication of ferroelectric all-polymer hollow Bragg fibers for THz guidance. In:Proceedings of OFC/NFOEC-2007. Anaheim,2007, JWA98
    [105]Sigang Yang, Hongwei Chen. Ciyuan Qiu, Ming Chen, Minghua Chen, Shizhong Xie. Jinyan Li, Wei Chen, slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering. Opt. Lett.2008,33:95~97
    [106]A. Podlipensky, P. Szarniak, N. Y. Joly. Bound soliton pairs in photonic crystal fiber. Opt. Express,2007,15(4):1653~1662
    [107]F. Luan, D. V. Skryabin, A. V. Yulin, et al, Energy exchange between colliding solitons in photonic crystal fibers. Opt. Express,2006.14(21):9844~9853
    [108]Robert S.Windeler, et al., Silica-Air microstructured fibers:properties and applications,OFC-1999,FG1,106~107
    [109]P.J.Bennett, et al.,Towards practical holey fibre technology:fabrication, splicing and characterization, ECOC-1999.1:20~23
    [110]Pochi Yeh, Amnon Yariv, Emanuel Marom. theory of Bragg fiber. JOSA,1978,68(9): 1196~1201
    [111]P.St.J.Russell et al.,Recent progress in Photonic Crystal Fibers, OFC-2002,ThG1
    [112]M. Aslund, J. Canning, S. D. Jackson, A. Teixeira and K. Lyytikainen, Diffraction in air-clad fibres. Opt. Express,2005,13(14):5227~5233
    [113]Nader A. Issa, High numerical aperture in multimode microstructured optical fibers, APPLIED OPTICS,2004,43(33):6191~6197
    [114]Fitt A.D, Furusawa K, Monro T M, and Please, C P, Modeling the fabrication of hollow fibers:capillary drawing,Journal of Lightwave Technology,2001,19(12): 1924~1931
    [115]Fitt A.D, Furusawa K, Monro T M, and Please, C P, The mathematical modeling of capillary drawing for holey fibre manufacture.Journal of Engineering Mathematics, 2002.43(2):201~227
    [116]Deflandre G, Modeling the manufacturing of complex optical fibers:the case of the holey fibers, Proceedings of the 2nd International Colloquium of Modelling of Glass Forming and Tempering, Valenciennes, France,2002:150~156
    [117]Kafja Johanna Lyytikainnen, control of complex structural geometry in optical fiber drawing, The thesis of Doctor of Philosophy in the School of Physics and Optical Fibre Technology Centre University of Sydney,2004
    [118]G. P. Agrawal, N. K. Dutta. Long-wavelength semiconductor lasers. San Diego:Van Nostrand Reinhold.1986:236~247
    [119]黄川,高功率掺镱双包层光纤激光器研究:[硕士论文],武汉:华中科技大学图书馆,2008
    [120]P.Hand, P.St.J.Russell. Photoinduced refractive-index changes in germano-silicate fibers. Opt. Lett.1990,15:102~104
    [121]L.Dong, J.L.Archambault. P.St.J.Russell. Photoinduced absorption change in germano-silicate performs:evidence for the color model of photo-sensitivity. Appl. Opt.1995,34:3436~3440
    [122]Akifumi Sakoh et al. Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses. Opt. Lett.2003,11(21):2678~2679
    [123]Hideo.Hosono, Yoshihiro.Abe, et al. Nature and origin of the 5ev band in SiO2:GeO2 glasses. Phys. Rev.B,1992,52(3):11445~11451
    [124]A.I.Gusarov, D.B.Doyle. Contribution of photoinduced densification to refractive-index modulation in Bragg gratings written in Ge-doped silica fibers. Opt. Lett.2000,25(12):872~874
    [125]A.I.Gusarov, F.Berghmans, et al. Analysis of photoinduced stress distribution in fiber bragg gratings. Opt. Lett.1999,24(19):1334~1336
    [126]C.Y.Wei, C.C.Ye et al. AFM observation of surface topography of fiber bragg gratings fabricated in germanium-boron codoped fibres and hydrogen-loaded fibres. Opt. Mater. 2002,20:283~294
    [127]M.G.Sceats, G.R.Atkins, Photolytic index changes in optical fibers. Annv. Rev. Mater. Sci.1993,23:381~410
    [128]G.Brambilla, V.Pruneri, et al. High photosensitivity in SnO2:SiO2 optical fibers. Fiber and Integrated Optics,2001,20(6):553~564
    [129]T.Taunay, P.Niny, et al. Bragg grating inscriptions within strained monomode high NA germania-doped fibres, J. Phys. D:Appl. Phys.1997,30:40-52
    [130]Hewlett.S.J, Love.J.d, et al. Cladding-mode coupling characteristics of bragg grating in depressed-cladding fibre. Electr. Lett.1995,31(10):820-822
    [131]Kim.J.M, Seo.H.S et al. Suppression of cladding mode coupling in bragg grating using GeO2-B2O3 codoped photosensitive cladding optical fiber. Electr. Lett.1999,35(5): 423-424
    [132]C.Randy Giles, Modeling erbium-doped fiber amplifers, Journal of Lightwave Technology,1991,9(2):271~283
    [133]S. Hilaire, P. Roy, D. Pagnoux, S. Fevrier, and D. Bayart, Large mode Er3+-doped photonic crystal fibre amplifier for highly efficient amplification, in Proc. European Conference on Optical Communication, ECOC 2003, Rimini, Italy, Sept.21-25,2003
    [134]R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, Distribution of spontaneous emission from and Er3+-doped photonic crystal fiber, IEEE/OSA Journal of Lightwave Technology,199,17:2138-2141
    [135]A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, Amplification properties of Er3+-doped photonic crystal fibers, IEEE/OSA, Journal of Lightwave Technology,2003, 21:782~788
    [136]M.A.Rebolledo and S.Jarabo, Erbium-doped silica fiber modeling with overlapping factors, Applied Optics,1994,33(24):5585-5593
    [137]C.Randy Giles, Modeling Erbium-Doped Fiber Amplifiers, Journal of Lightwave Technology,1991,9(2):271-283
    [138]M. Karimi and F. E. Seraji, Effects of geometry on amplification property of erbium doped holey fiber amplifiers using scalar effective index method,Progress In Electromagnetics Research B,2010,19:385-403
    [139]S. Selleri, A. Cucinotta, F. Poli, L. Vincetti, and M. Zoboli, Amplification properties of erbium doped photonic crystal fibers, in Proc. European Conference on Optical Communication ECOC 2002, Copenhagen, Denmark, Sept.8-12,2002
    [140]G. Carlonea, A. D'Orazioa, M. De Sarioa, L. Mesciaa, V. Petruzzellia and F. Prudenzan, Design of double-clad erbium-doped holey fiber amplifier, Journal of Non-Crystalline Solids,2005,351(21-23):1840~1845
    [141]Prudenzano, F., Erbium-doped hole-assisted optical fiber amplifier:Design and optimization, IEEE J. Lightwave Technol.,2005,23:330~340
    [142]A. Cucinotta, F. Poli, and S. Selleri, Design of erbium-doped triangular photonic crystal fiber based amplifiers, IEEE Photonics Technology Letters,2004,16: 2027-2029
    [143]Poli, F., A. Cucinotta, D. Passaro, S. Selleri, J. Legsgaard, and J. Broeng, Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs, IEEE J. Select. Topic. Quant. Electron.,2009,15:54-60
    [144]T. Haruna, J. Iihara, K. Yamaguchi, Y. Saito, S. Ishikawa, and M. Onishi, Local structure analyses around Er3+ in Er doped fiber with Al co-doping, Takahiro Murata, Opt. Express,2006,14(23):11036~11042
    [145]F. E. Seraji and Mohammad D. Talebzadeh, Analysis of erbium doped holey fiber using fundamental space filling mode, Chin. Opt. Lett.,2008,6(9):644~647
    [146]A. D"Orazio, M. De Sario, L. Mescia, and V. Petruzzelli, Refinement of Er3+-doped hole-assisted optical fiber amplifier, Opt. Express,2005,13(25):9970~9981
    [147]Varshney, S.K. Saitoh. K. Koshiba, M.,Bend-resistant, single-stage, S-band erbium-doped photonic crystal fiber amplifiers, Lasers and Electro-Optics,2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009
    [148]Rogier H, De Zutter D, Berenger and leaky modes in optical fibers, Journal of Lightwave Technology,2002,20(7):1141~1148
    [149]杨杰,龚正烈,夏秀兰,受抑全反射特性研究,光电工程,1996,23(5):12-16
    [150]S. Yoo,C. Basu, A. J. Boyland. C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation, Opt. Lett.2007,32(12):1626-1628
    [151]Shigeru Suzuki. Hugh A.McKay, Xiang Peng, Libin Fu and Liang Dong, Highly ytterbium-doped silica fibers with low photo-darkening, Opt. Express,2009,17(12): 9924~9932
    [152]Mikko J.Soderlund. Joan J.Montieli Ponsoda. Jeffey P.Koplow and Seppo Honkanen, Heat-induced darkening and spetral broadening in photodarkened ytterbium-doped fiber under thermal cycling, Opt. Express,2009,17(12):9940-9946
    [153]M.Engholm, L. Norin, Divalent Ytterbium in Ytterbium doped aluminosilicate glass Aspects on photodarkening in fiber lasers, CLEO2007,JTUA61
    [154]Mikko J.Soderlund, Joan J.Montieli Ponsoda, Simo K.T. Tammela, Kalle Yla Jarkko, Arto Salokatve. Seppo Honkanen, Mode-induced transverse photodarkending loss variations in large-mode-area ytterbium doped silica fibers. Opt. Express,2008,16(14): 10633~10640
    [155]S.Yoo, C.Basu, A.J. Boyland. C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, Reply to comment on "Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation", Opt. Lett.2008,33(11):1217-1218.
    [156]M. Engholm and L. Norin,Comment on "Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation", Opt. Lett.2008,33(11): 1216-1216
    [157]Rudiger Paschotta, Anne C.Tropper. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ =980nm with a regard to the ytterbium ion-pairs' effect:Comment, Opt. Express.2006, 14(15):6981~6982
    [158]Alexander V.Kir'yanov, Yuri O.Barmenkov, Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ =980nm with a regard to the ytterbium ion-pairs'effect:Reply, Opt. Express,2006. 14(15):6983~6985
    [159]Kent Erik Mattsson, Stig Nissen Knudsen, Benoit Cadier, Thierry Robin, Crystal Fibre A/S, Denmark, Photo-darkening in ytterbium co-doped silica material, Photonics West 2008
    [160]J.J.Koponen, M.J. Soderlund, and H.J.Hoffman,Measuring photodarkening from single-mode ytterbium doped silica fibers. Opt. Express,2008,14(24):11539-11544
    [161]Sylvia Jetschke, Sonja Unger, Ulrich Ropke, Johannes Kirchhof, Photodarkening inn Yb doped fibers:experimental evidence of equilibrium states depending on the pump power, Opt. Express,2007,15(22):14838~14843
    [162]I.Manek-Honninger, J.Boullet, Photo-darkening and photo-bleaching of an ytterbium-doped silica double-clad LMA fiber, Opt. Express,2007,15(4):1606~1611
    [163]M.Engholm, L.Norin, Preventing photodarkening in ytterbium-doped high power fiber lasers:correlation to the UV-transparency of the core glass, Opt. Express,2008,16(2): 1260~1268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700