磁光玻璃光纤的磁致旋光效应及其在全光纤电流传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对磁光玻璃光纤的磁致旋光效应及其在全光纤电流传感器中的应用进行了研究。
     论文首先分析了单模光纤中电磁场的分布,阐述了磁光玻璃光纤的磁致旋光效应的理论,总结出了磁致旋光效应的规律。对ZF1、ZF6磁光玻璃费尔德常数的色散特性进行了理论分析,得出磁光玻璃费尔德常数与工作波长的关系,并进行了实验验证,实验结果和理论符合得较好。实验研究了ZF1磁光玻璃光纤的磁致旋光效应,分析误差的来源,得出磁光玻璃光纤应用在全光纤电流传感器中的可行性的结论。
     论文简要说明了单模光纤中偏振光的传播特性,实验研究偏振光在通信多模光纤和磁光玻璃多模光纤中传播时的消偏振现象。介绍了一种全光纤电流传感器的基本原理和结构。
     论文的后半部分对实际应用的全光纤电流传感器的关键性元件进行了研究。对二向色性偏振器的敏感波长区域进行了实验研究,对多层介质膜的两种类型偏振器应用在全光纤电流传感器中的原理分别进行了理论分析和实验研究;对ZF1磁光玻璃进行了拉纤的实验;对全光纤电流传感器中,选择光源时要考虑的因素进行了分析;分析了全光纤电流传感器中两种信号检测方案的原理;分析了光纤中线性双折射对系统性能的影响以及解决的方法。
     最后,描述了全光纤电流传感器在电力系统的美好前景,总结出在实际工程应用中有待解决的问题。
Faraday effect in magneto-optic glass fiber and its application to all-fiber current transducer are studied in this thesis.
    The distribution of electromagnetic field in single-mode fiber is analyzed, the theory of Faraday effect in magneto-optic glass fiber is clarified and the rules of Faraday effect are concluded in this thesis. We derive the relationship between Verdet constant of magneto-optic glass and operating wavelength by the dispersion theory of Verdet constant. ZF1 and ZF6 magneto-optic glass are experimentalized to testify the relationship. The experimental results are in agreement with the theory. The polarization properties of ZF1 magneto-optic glass fiber are studied by experiment and the sources of errors are analyzed. We draw a conclusion that magneto-optic glass fiber is applicable to be made into all-fiber current transducer to measure electric current and magnetic filed.
    The propagation properties of linearly polarized light in single-mode fiber are introduced in brief in this thesis. The depolarization phenomena of multi-mode fiber for communication and magneto-optic glass multi-mode fiber are experimented. The fundamental principles and configuration of a sort of all-fiber current transducer are introduced in this thesis.
    The second half part of this thesis studies some critical components of a pragmatic all-fiber current transducer. The range of light wavelength that dichroism polarizer is effective is studied experimentally in this part. The conception of two types of polarizer of multi-layer medium films is brought forward in this part. The principles of the application of these two polarizers to all-fiber current transducer are analyzed theoretically, and then experiments are performed to testify. We use the rod-in-tube method to draw the ZF1 magneto-optic glass into optical fiber. The factors of choosing light sources that are applicable to all-fiber current transducer are considered in this part. The principles of two schemes of signal detection that can be employed in all-fiber current transducer are
    
    
    
    ABSTRACT
    analyzed. The influence on all-fiber current transducer of linear birefringence in optical fiber is analyzed and partial resolvents are concluded in this part too.
    At the end of this thesis, we picture the nice prospect of all-fiber current transducer when it is used in the department of electric power, and some problems that should be solved when all-fiber current transducer is utilized pragmatically are summed up.
引文
1. E. A. Ulmer, Jr.. High accuracy Faraday rotation measurement. OSA/IEEE 1988 Technical Digest of Optical Fiber Sensors Topical Meeting (Jan.27-29, New Orleans LA), 1988:288
    2. Y. N. Ning, B. C. B Chu, D. A. Jackson. Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring. Opt. Lett. 1991, 16:1996-1998
    3. B. C. B Chu, Y. N. Ning, D. A. Jackson. Faraday current sensor that uses a triangular-shaped bulk-optic sensing element. Opt. Lett. 1992, 17:1167-1169
    4. R. L. Heredero, Ramón Fernáindez de Caleya, Héctor Guerrero, Pete Los Santos, Marl Cruz, Jaume Esteve. Micromachined optical fiber current sensor. Appl. Opt.. 1999,38(25): 5298-5305
    5. Y. N. Ning, D. A. Jackson. Review of optical current sensors using bulk-glass sensing elements. Sens. Actuators A. 1995, 50:219-224
    6. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattam, D. A. Jackson. Recent progress in optical sensing techniques. Rev. Sci. Instrum. 1995, 66:3097-3111
    7. Z. P. Wang, S. Q. Zhang, L. B. Zhang. Recent advances in optical current-sensing techniques. Sens. Actuators A. 1995, 50:169-175
    8. E. F. Carome, V. E. Kubulins, R. L. Flanagan, P. Shamray-Bertaud. Intensity-type fiber optical electric current sensor. In fiber Optic and Laser Sensors ⅩⅠ, R. DePaula and E. Udd, Eds., Proc. SPIE. 1991, 1548:110-117
    9. P. D. Dinev. A two-dimensional remote fiber-optic magnetic field and current sensor. Meas. Sci. Technol. 1997, 7:1233-1237
    10.费振乐,杨瀛海,俞本立 et al. 利用磁光玻璃光纤测大电流的光纤电流传感器的设计.激光与光电子学进展(增刊).1999,9:46-49.
    11. Ian G. Clarke. Temperature-stable spun elliptical-core optical-fiber current transducer. Opt. Lett. 1993, 18(2):158-160
    12. Song J., Mclaren P. G., Thomson D. J., et al. A prototype clamp-on magneto-optical current transducer for power system metering and relaying. IEEE Trans. Power Deliv. 1995,10(4):1764-1770
    13. Cease T. W., Johnston Paul. A magneto-optic current transformer. IEEE Trans. Power Deliv.
    
    1990.PWRD-5(2):548-555
    14.张明明,刘延冰。一种新型有源光纤电流传感器.中国仪器仪表.1998,2:15-16
    15. Al-Mohanadi M. R., Ross J. N., Brignell J. E.. Optical power and intelligent sensors. Sensors and Actuators A. 1997,60:142-146
    16.张涛,颜研,申烛 et al. 激光供能的光纤电流传感器.传感技术学报.2001,4:271—276
    17,张景超.一种新型的高压光纤屯流传感器的研究.传感技术学报.2001,4:366—370
    18.刘彬,张君正,张秋婵.一种光纤三相电流传感器的设计.传感器技术.2002,21(1):14—16
    19.颜研,罗承沐.一种新型光电电流互感器的研制,传感器技术.2002,21(1):23—27
    20.廖绍彬.铁磁学(下册).北京:科学出版社,1988:311—314,315-317
    21.赵凯华,钟锡华.光学(下册).北京:北京大学出版社,1984:223-225
    22. S. T. Pai, C. M. Luo, J. Song, G. X. Zhang. Magneto-optical current sensors constructed with ZF glass. Sensors and Actuator A. 1992,35:107-112
    23. Williams P. A., Rose A. H., Day G. W., Milner T. E.. Deeter M. N. Temperature dependence of the Verdet constant in several diamagnetic glasses. Appl. Opt.. 1991,30:1176-1178
    24. Ren Z., Wang Y., Robert P. A.. Faraday rotation dependence measurements in low-birefringence fibers. J. Lightwave Technol.. 1989,7:1275-1278
    25. S. Hamid, R. P, Tatam. Faraday-effect magnetometry: compensation for the temperature-dependent Verdet constant. Meas. Sci.Technol. 1994,5:1471-1479
    26. T. W. Cease, J. G. Driggans, S. J. Weikel. Optical voltage and current sensors used in a revenue metering system. IEEE Trans. Power Deliv. 1991,6:1374-1379
    27. P. Menke, T. Bosselmann. Temperature compensation in magneto-optic ac current sensors using an intelligent ac-dc signal evaluation. J. Lightwave Technol. 1995,13:1362-1370
    28. Chen C. L., Asars J. A., Vaerwyck E. G.. Temperature compensated current sensor involving Faraday effect and fiber optics. 1985, UK Patent 8520392
    29. Vaerewyck E. G., Chen G. L., Asars J. L.. Faraday current sensor with fiber optical compensated by temperature. Degradation and Linearity. 1986, US Patent 4613811
    30. Chen C. L., Asars J. A., Vaerewyck E. G. Temperature stabilized Faraday rotator current sensor by thermal mechanical means. 1986, US Patent 4612500
    31. Miler R. C.. Temperature compensated Faraday effect current sensors for measuring current.
    
    1985, Australian Patent 8543143
    32. Williams P. A., Day G. W., Rose A. H.. Compensation for temperature dependence of Faraday effect in diamagnetic materials: application and to optical fiber sensors. Electron. Lett.. 1991,2:1131-1132
    33. Hamid S., Tatam R. P.. Optical technique for the compensation of the temperature dependent Verdet constant in Faraday rotation magnetometers. 1991, Proc. SPIE 1151:78-79
    34.毛振珑,杨成林,何有余.磁场测量.北京:原子能出版社,1985:265
    35. C. Z. Tan, J. Arndt. Faraday effect in silica glasses. Physica B. 1997,233:1-7
    36. M. Born, E. Wolf. Principles of Optics. London: Pergamon Press, 1959, Ch. Ⅱ.3.4:89-97
    37.天津硅酸盐材料试验厂.光学玻璃汇编.北京:机械工业出版社,1977:148,153
    38.《光学仪器设计手册》编写组.光学仪器设计手册(上册).北京:国防工业出版社,1971:410-411,420
    39. K. P. Birch. A Compact optical isolator. Optics Comm. 1982,43(79):79-84
    40. R. P. Tatam, D. A. Jackson. Remote Probe configuration for Faraday Effect Magnetometry. Optics Comm. 1989,72(1,2):60-65
    41. Noda J., Hosaka T., Sasaki Y., Ulrich R.. Dispersion of Verdet constant in stress-birefringent silica fiber. Electron. Lett.. 1984,20:906
    42.丁俊华.物理(工).沈阳:辽宁大学出版社,1999:240-241
    43.朱世国,付克详.纤维光学原理及实验研究.成都:四川大学出版社,1992:191—197
    44. A. Yariv. Quantum Electronics. J. Wiley Publishing Company. 339-347
    45.周文,陈秀峰,杨冬晓.光子学基础.杭州:浙江大学出版社,2000:221—227,230—233
    46. H. J. Hoffmann, W. W. Jochs, G. P. S. Glaswerke. The Verdet constant of optical glasses. Topical Conf. on Basic Properties of Optical Materials. NBS SP #697,1985:266
    47.赵凯华,钟锡华.光学(上册).北京:北京大学出版社,1984:257-258
    48.黄植文,黄显玲.激光实验.北京:北京大学出版社,1996:179-181.
    49. Emerging Technologies Working Group. Fiber Optic Sensors Working Group. Optic current transducer for power systems: a review. IEEE Trans. On Power Delivery, 1994,9(4):1778-1788
    50.刘晔,苏彦明,王采堂.光纤(光学)电流传感器的现状及发展.应用光学,1998,19(5):21—25
    51. N. C. Pistoni, M. Martinelli. Vibration-insensitive fiber-optic current sensor. Opt. Lett..
    
    1993,18:314-316
    52. A. J. Rogers, J. Xu, J. Yao. Vibration immunity for optical-fiber current measurement. J. Lightwave technol.. 1995,13:1371-1377
    53. A. J. roger. A vibration insensitive optical-fiber current sensor. J. Opt. Sensors. 1986,1:361
    54. 明海,张国平,谢建平.光电子技术.合肥:中国科学技术大学出版社,1998:279-280
    55. Smith A M. Polarization and magneto-optic properties of single mode optical fiber. Appl Opt., 1978,17:52-56
    56. 刘晔,夏建生,张赞.光学电流传感器系统的线性双折射问题及对策.传感器技术.2000,19(3):11-14
    57. 勒伟,廖延彪,张志鹏等.导波光学传感器:原理与技术.北京:科学出版社,1998:186-194
    58. W. Chu, D. McStay, ane A. J. Rogers. Current sensing by mode coupling in fiber via the Faraday effect, Electron. Lett., 27(3),1991:207
    59. A. Ben-Kish, M. Tur, E. Shafir. Geometrical separation between the birefringence components in Faraday-rotation fiber-optic current sensors. Opt. Lett.. 1991,16(9):687-689
    60. Z. B. Ren, and Ph. Robert. Input polarization coding in fiber current sensors, Springer Proc. in Physics 44, Optical Fiber Sensor, Springer-Verlag, Berlin, 1989:261
    61. G. W. Day, and S. M. Etzel. annealing of bend-induced birefringence in fiber current sensors, Tech. Digest Int. Conf. on Integrated Optical and Optical Fiber Commun. European Conf. Optical Commun., (Venice), 1985:871
    62. H. Ahlers, and th. Bosselmann. Complete polarization analysis of a magneto-optic current transformer with a new polarimeter, Conf. Proc. on the 7th Optical Fiber Sensors Conference, 1990:81
    63. 周蓓明,干标,毛涵芬 et al.. TG28磁光玻璃.中国激光,1996,23(9):857-860
    64. Tatam R. P., Berwick M., Jones J. D. C., Jackson D. A.. Faraday effect magnetometry utilizing high Verdet constant glass. Appl. Phys. Lett.. 1987,51:864-866
    65. Tatam R. P., Jackson D. A.. Remote probe configuration for Faraday effect magnetometry. Opt. Commun.. 1989,72:60-65
    66. Shiraishi K., Sugaya S., Kawakami S.. Fiber Faraday rotator. Appl. Opt.. 1984,23:1103
    67. Yoshino T.. Compact and highly efficient Faraday rotators using relatively low Verdet Faraday
    
    materials. Japan. J. Phys.. 1980,19:745-749
    68. Deeter M. N., Rose A. H., Day G. W.. Fast sensitive magnetic-field sensors based on the Faraday effect in YIG. J. Lightwave Technol.. 1990,8:1838
    69. Hoya corporation Data Sheet on Faraday Rotator Glasses. Optical Division, 572 Miyazawa-Chu, Akishima-Shi. Tokyo 196, Japan

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700