Sagnac式光纤电流互感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤电流互感器是一种测量电网中电流的传感器,它在电力行业中起着至关重要的作用。目前传统式的电子式电流互感器已经发展成熟,但它在小型化、人员安全等方面存在着困难。与传统的电子式电流互感器相比,光纤电流互感器采用光纤作为信号的传载介质及敏感介质,在实现光纤电流互感器小型化及安全性方面的优势明显。因此对光纤电流互感器的研究具有重要意义。本课题主要针对光纤电流互感器结构中的器件性能及环境因素的误差消除的若干问题进行了研究。论文的主要工作如下:
     1.对光纤电流互感器的理论模型进行了详细分析。根据琼斯矩阵理论建立各个光学器件的矩阵模型及传感系统的理论输出模型。针对光学器件的性能对系统输出误差进行了仿真分析,从理论上得到了反映误差规律的曲线。从仿真结果看来,要使得误差小于0.2%,分束器及波片的对接误差应控制在0.05°以内;波片的相位延迟角度应控制在0.3度以内。
     2.针对外界恶劣环境影响系统输出的问题,提出了相应的误差抑制方案。对于振动因素的影响,提出了增加补偿光纤线圈的方法来消除误差的方案。从理论上详细推导了此种方案在载体中有电流和无电流时两种情况时的振动消除效果的可行性并进行了实验测试。实验结果表明,此种方案能够极大的消除所敏感到的外界振动因素的影响;对扭转光纤传感线圈所受到的温度因素影响进行了理论分析,仿真结果表明,在温度变化时,扭转速率越大其相对温度变化的双折射值越大且扭转速率对温度的敏感性要高于弯曲半径对温度的敏感性。针对传感系统的温度漂移问题进行了温度实验,首次将小波神经网络应用到系统的输出误差补偿中,使得补偿后的误差在±0.5A以内。
     3.针对系统中光源的性能及光源强度噪声抑制方法进行了研究。根据光波色散理论,推导计算了光源波长稳定性对系统的影响。结果表明,随着传输光的光波长的增加介质的折射率是呈变小的趋势,而且在波长越长的范围内,其介质的折射率的变化率是逐渐变小的。因此,在选择光源时,选择长波长段的光源来降低光源波长稳定性对系统标度因数稳定性的影响。针对光源波长稳定性的控制问题,提出了递进式PID的控制算法并对光源泵浦进行了温度控制实验。实验结果表明在实验室环境下能够使得光源泵浦的温度控制在±0.05°以内,提高了光源泵浦的温度稳定性,进而使得光源输出具有很好的波长稳定性。针对光源强度噪声抑制问题,根据信号的相关性理论,提出了耦合器输出端增加偏振器的方法来提高信号的相关性,进而提高噪声抑制效果。
     4.对光纤环的四极对称缠绕方法进行了详细分析并实现了双环的四极对称缠绕;在闭环信号处理方式、时钟、PCB设计等方面,采取措施来优化电路系统,提高系统的稳定可靠性;光纤电流互感器的输出数据中包含有大量的噪声,把小波阈值去噪方法引入到光纤电流互感器的数据处理中,提出一种新型的具有更好的平滑性及连续性的软阈值函数。对小波阈值去噪效果进行了对比,采用Allan方差对滤波处理后的数据进行分析,并对滤波效果做出评价。
Fiber optic current sensor (OCS) is a current sensor used in National Grid, which playsan important role in electric power system. At present, traditional electronic currenttransformer (CT) has reached a mature state, but it faces some difficulties such asminiaturization and safety. Compared with CT, Fiber optic current sensor, which use opticalfiber as the transmission and sensing medium has great predominance in miniaturization andsafety. Therefore, the research on OCS is of great significance. The performances of\opticaldevices in the system and environmental factors such as vibration and temperature have greatinfluence on the sensing signal. So a number of key issues in those were studied in thisdissertation, detailed as follows:
     1. The theoretical modal was analyzed in detail. Each optical device and sensing systemtheoretical modal were established according to Jones matrix theory. The output error basedon performance of devices was simulated and the curved which represent the effecting rulesare theoretically acquired. According to the simulation results, it was found that the jointingerror of splitter and the phase delay of the wave plate should be in0.05and0.3°, for the errorin0.2%.
     2. For the adverse environmental factor, the corresponding error suppressionscheme was put forward. For the influence of vibration, the additional fiber compensationcoil was proposed to suppress the error. The theoretical analysis and the correspondingexperimental tests were realized where there was current and no current in the wire. Theresults showed that the new scheme could suppress the extra vibration effects obviously. Thetheoretical analysis of the influence of temperature on the optical sensing coil was done. thesimulation result showed that the heat-reactivity of rotating rate was much bigger than theradius of the coil. For the output bias due to temperature changing, the wavelet neuralnetwork was induced into the output error compensation, and the error after compensationwas in±0.5A.
     3. The influence on the theoretical modal of performance of power source and thesuppression of resource intensity noise were researched. According to the theory of wavedispersion, the influence on the system of optical power source wavelength was analyzed.The result showed that the reflective index of the medium became smaller with the increaseof wavelength and the gradient becoming small too in the larger wavelength range. So, thebigger wavelength optical fiber source was the best choice for the stability of scale factor. Forthe stability of power wavelength, a new stepped-in PID control method was proposed, the new method could keep the temperature of the pump in the range of±0.05℃and make thepower source has good wavelength stability. For the suppression of resource intensity noise,in combination with relativity between signals, the new method of adding an extra polarizerafter the coupler was proposed. The new method could suppress the noise vastly.
     4. The winding method of fiber coil was analyzed in detail and the realization of windingmethod of two fiber coils with QAD was researched. The optimization methods in signalprocessing, PCB design and so on were researched. For the de-nosing of the output data ofoptical current sensor, the wavelet threshold de-noising method was induced into the outputdata processing and a new threshold function was proposed. Comparison to the ordinaryfunction was done and the de-noising results were analyzed using the method of Allanvariance.
引文
[1]孙兵,张丽,吴丽章.全光型大电流光纤电流传感器.传感器世界.2008(2):17-21页,51页
    [2]龚伟.电子式电流互感器传感头的研究与设计.长沙:湖南大学硕士论文.2009
    [3]周立猛.光纤电流传感器的初步研究.沈阳:沈阳工业大学硕士论文.2007
    [4]方志,邱毓昌,李双.光纤电流传感器的发展.电力建设.2002,23(12):42-44页
    [5]孙敦艳.光纤电流互感器研究.南京:南京理工大学硕士论文.2010
    [6]汪秀丽.中国电力系统自动化综述.水利电力科技.2005,31(2):6-26页
    [7]江智伟,林勇锋,李福兴等.全光纤电流传感器的原理及应用.华东电力.2006,34(8):78-81页
    [8]王政平,康崇,张雪原等.全光纤光学电流互感器研究进展.激光与光电子学进展.2005,42(3):36-40页
    [9]徐时清,戴世勋,张军杰,汪国年等.全光纤电流传感器研究新进展.激光与光电子学进展.2004,41(1):41-45页
    [10]侯美.干涉式光纤电流传感器的理论与信号处理系统研究.哈尔滨:哈尔滨工业大学硕士论文.2007
    [11]王政平,李庆波,孙晶华等.光纤电流传感器研究新进展.激光与光电子学进展.1999,(7):1-6页
    [12]张德赛,罗道军,彭剑.国内外光电式电流互感器研究现状.四川电力技术.1995,(2):53-60页
    [13]李莉,张心天.光纤电流传感器及其研究现状.光电子技术与信息.2002,15(2):37-41页
    [14]焦斌亮,郑绳楦.用于电力系统的光学电流互感器技术进展.应用光学.2004,25(6):47-53页
    [15]刘晔,苏彦民,王采堂.光纤(光学)电流传感器的现状及发展.应用光学.1998,19:22-24页
    [16]乔峨,安作平,罗承沐等.光电式电流互感器的开发与应用—21世纪互感器技术展望.变压器.2000,(2):40-43页
    [17] Shayne X. Short, Alexandr A. Tselikov, Josiel U. de Arruda, and James N. Blake.Imperfect Quarter-Waveplate Compensation in Sagnac Interferometer-Typer CurrentSensors. Journal of lightwave technology.1998,16(7):1212-1219P
    [18] Klaus Bohnert, Hubert Br ndle, Martin Georg Brunzel, Philippe Gabus, and PeterGuggenbach. Highly Accurate Fiber-Optic DC Current Sensor for the ElectrowinningIndustry. IEEE Transactions on industry applications.2007,43(1):180-187P
    [19] N.Itoh, H.Minemoto, D.Ishiko, and S.Ishizuka. Commercial Current Sensor Activityin Japan.12thInternational Conference on Optical Fiber Sensors.1997,16:92-95P
    [20]尚秋峰,王仁洲,杨以涵.光学电流互感器及其在电力系统中的应用.华北电力大学学报.2001,28(2):14-18页
    [21]邸荣光,刘仕兵.光电式电流传感器技术的研究现状与发展.电力自动化设备.2006,26(8):98-100页
    [22] J Blake,P Tantaswadi,R T de Carvalho. In line Sagnac Interferometer Current Sensor.IEEE Transaction on PowerDelivery.1996,11(1):116-121P
    [23] Richard B.Dyott, Oak Lawn, IL (US). CURRENT SENSOR. United States Patent.2005
    [24]王巍,张志鑫,杨仪松.全光纤式光学电流互感器技术及工程应用.供用电.2009,26(1):45-48页
    [25]李祎程,张丽娟.光纤电流互感器的原理浅析.机械管理开发.2008,23(6):96-97页
    [26]王夏霄,张春熹,张朝阳等.全光纤电流传感器的偏振误差的研究.光子学报.2007,36(2):320-323页
    [27] Hyun Seo Kang, Member, Jong Hun Lee, and Kyung Shik Lee. A StabilizationMethod of the Sagnac Optical Fiber Current Sensor with Twist Control. IEEEPhotonics technology letters.1998,10(10):1464-1466P
    [28] D.Tang, A.H.Rose, G.W.Day etal. Annealing of Linear Birefringence in Single ModeFiber Coils: Application to Optical Fiber Current Sensors. Lightwave Technol.1991,9(8):1031-1037P
    [29] A.H.Rose, R.J. Espejo, R.M.Craig. Annealed Fiber: Properties and Applications. IEEEProc.1998,4947:397-398P
    [30] A.H.Rose, Z.B.Ren, G.W.Day. Improved Annealing Technique for Optical Fiber. SPIEProc.1994,2360:306-311P
    [31]焦斌亮. Sagnac干涉型光纤电流传感器研究.秦皇岛:燕山大学博士论文.2005
    [32] Yah Y, Kim D I, Kim B Y. New digital close-loop processor for a fiber optic gyroscope.IEEE Photonics Technology Letters.1999,11(3):361-363P
    [33]顾宏,赵启大,杨功流.数字闭环光纤陀螺仪过调制技术研究.光电子·激光.2008,19(8):1035-1038页
    [34] Lihui Wang, Sun Feng, Wang Rui. Research on the modulation phase distortion errorcharacter of Y wave-guide in fiber optic gyroscope. IEEE IITA Workshop2008.2008:847-849P
    [35]刘晔,陈江波等.光源调制全光纤电流互感器的研究.西安交通大学学报.2008,42(4):436-439页
    [36]张朝阳,张春熹,王夏霄等.闭环全光纤电流互感器相位差的计算与测试.仪器仪表学报.2009,30(1):152-156页
    [37]杨雪郁,廖延彪,吴庚生等.光纤电流传感器的系统Verdet常数的测定.应用激光.1986,7(4):151-154页
    [38]傅怀杰,黄秀钦.光纤环的绕制.光通信研究.1996,1:51-54页
    [39]李绪友.高精度数字闭环光纤陀螺的研究.哈尔滨:哈尔滨工程大学博士论文.2002:6-8页,71-75页
    [40]陈迎丽,谢良平,陈平等.光纤陀螺中光纤环非互易效应及其补偿技术.科学技术与工程.2008,8(11):3059-3062页
    [41]方志,邱毓昌,李双.光纤电流互感器的发展.电力建设.2002,23(12):42-44页,58页
    [42] K. Bohnert, H. Br ndle, and G. Frosio. Filed test of interferometeric optical fiberhigh-voltage and current sensors.10th Optical Fibre Sensors Conference.1995,8194:16-19P
    [43] A.H. Rose and J.N.Blake. Free Form Factor Optical Current Sensor for AC and DCComercial Power Applications. OFS2006.2006, FB5.
    [44] Lee. Byoungho. Review of the present status of optical fiber sensors. In: Optical FiberTechnology.2003,9(2):57-79P
    [45] www.areva-td.com
    [46]尹朝,赵一虓.国产全光纤电子式电流互感器迈向超高压.电气时代.2009,9:50-51页
    [47] http://www.jlck.cn/html/2010-6/34746.html
    [48] http://gongkong.gongye360.com/news_view.html?id=152057
    [49] E. J. Post. Sagnac Effect. Rev. Modern Phys.1967,39:475-494
    [50] P. D. Mcintyre, A. W. Snyder. Power transfer between optical fibers. Journal of theOptical Society of America.1973,(12):1518-1527P
    [51] G. A. Pavlath, H. J. Shaw. Birefringence and polarization effects in fiber gyroscopes.Applied Optics,1982,21(10):1752-1757P
    [52]廖延彪.偏振光学.北京:科学技术出版社.2003,45-47页.
    [53]马科斯·玻恩,埃米尔·沃尔夫著.光学原理——光的传播、干涉和衍射的电磁理论.杨葭荪译.北京:科学出版社.2006
    [54]梁铨廷.物理光学.北京:机械工业出版社.1987
    [55] SMITH A M. Polarization and magnetooptic properties of single-mode opticalfibers.Appl Opt,1978,17(1):52-56P
    [56]廖延彪.偏振光学.北京:科学技术出版社.2003,49-51页
    [57]王嘉,侯宏录,徐金涛.一种新型Saganc式光纤电流传感器.光子学报,2010,39(1):57-61页
    [58]廖延彪.偏振光学.北京:科学技术出版社.2003,170页
    [59] DONG Xiaopeng. Twisted fibre electric current sensor with compensation fortemperature and polarization perturbation. SPIE.1998,3555:18-27P
    [60] X. P. Dong, H. Hao and J. R. Qian. Measurement of fiber Verdet constant with twistmethod. SPIE.1991,1572:56-60P
    [61] X P Dong, B C B Chu and K S Chiang. An electric-current sensor employing twistedfibre with compensation for temperature and polarization fluctuations. Meas. Sci.Technol.1997,8:606-610P
    [62] J-I. Sakai and T. Kimura. Birefringence and polarization characteristics of single-modeoptical fibers under elastic deformations. IEEE J. Quantum Electronics.1981, QE-17:1041P
    [63]王刚.光纤电流传感器性能分析与研究.哈尔滨:哈尔滨工程大学硕士论文.2010
    [64] Dongbing Gu, Huosheng Hu. Neural predictive control for a car like mobile robot.Elsevier Science, Robotics and Automation.2002,39:73-86P
    [65] César D. Perciante and José A. Ferrari. Cancellation of bending-induced birefringencein single-mode fibers: application to Faraday sensors. Applied Optics.2006,45(9):1951-1956P
    [66] X. Z. Wang, B. H. Chen, S. H. Yang, C. McGreavy. Application of wavelet and neuralnet-works to diaonostic system development,2, an integrated framework and itsapplication. Elsevier Science, Computer and Chemical Engineering.1999,23:945-954P
    [67] Klaus Bohnert, Philippe Gabus, Jürgen Nehring, Hubert Br ndle, and Martin GeorgBrunzel. Fiber-Optic Current Sensor for Electrowinning of Metals. Journal oflightwave technology.2007,25(11):3602-3609P
    [68] Jun Zhang, Gilbert G. Walter, Yubo Miao, Wan Ngai Wayne Lee. Wavelet Neural Net-works for Function Learning. IEEE Transactions on Signal Processing.1995,43(6):1485-1497P
    [69] SM I TH A M. Birefringence induced by bend s and twists in singlemode opticalfiber. Appl-Opt,1980.19(15):2606-2610P
    [70] CHU P L. Thermal stress induced birefringence in single mode elliptical opticalfiber.Electron Lett.1982,18(1):45-47P
    [71] EICKHOFF W. Stress induced single-polarization single-mode fiber. Opt Lett.1982,7:629-631P
    [72] Robert Wüest, Andreas Frank, Samuel Wiesendanger. Influence of Residual FiberBirefringence and Temperature on the High-Current Performance of anInterferometric Fiber-Optic Current Sensor. Proc. of SPIE.2009,7356(73560K):1-8p
    [73] R.Ulrich and A.Simon. Polarization optics of twisted single-mode fibers.ApplOpt.1979,18:2241-2251P
    [74] J. Sakai and T. Kimura. Birefringence and polarisation characteristics of single modeoptical fibre under elastic defor-mations. Quantum Electronics,1981,17(6):041
    [75]王夏霄,张春熹,张朝阳等.全光纤电流互感器的偏振误差的研究.光子学报.2007,36(2):320-323页
    [76] R. Ulrich, S. C. Rashleigh, W. Eickhoff. Bending-induced birefringence in singlemode fibers. OptLett.1980,5:273-275P
    [77] Mohr F. Thermooptically Induced Bias Drift in Fiber Optical Sagnac Interferometers.J. Lightwave Technology.1995,14(1):27-41P
    [78] Shayne X. Short, Josiel U. deArruda, Alexandr A. Tselikov, and James N. Blake.Elimination of Birefringence Induced Scale Factor Errors in the In-Line SagnacInterferometer Current Sensor. Journal of lightwave technology.1998,16(10):1844-1850P
    [79]穆杰,王嘉,赵卫,徐金涛.消除振动敏感性与温度漂移的光纤电流互感器.高电压技术.2010,36(4):980-986P
    [80]姜中英,张春熹,徐宏杰,王夏霄.线性双折射对光纤电流互感器影响的研究.光学技术.2006,32(增刊):218-223页
    [81] Hermann Lin, Wuu-Wen Lin, and Mao-Hsiung Chen. Modified in-line Sagnacinterferometer with passive demodulation technique for environmental immunity of afiber-optic current sensor. Applied Optics.38(13):2760-2766P
    [82] S.X.Short, P.T.ANTASWADI, R.T. de Carvalho, B.D.Russell, J.Blake. AnExperimental Study of Acoustic Vibration Effects in Optical Fiber Current Sensors.Transactions on Power Delivery.1996,11(4):1702-1706P
    [83]王嘉,侯宏录,徐金涛.一种新型Sagnac式光纤电流互感器.光子学报.2010,39(1):57-61页
    [84]穆杰,王嘉,赵卫,徐金涛.消除振动敏感性与温度漂移的光纤电流互感器.高电压技术.2010,36(4):980-986页
    [85]薛亚军.基于小波神经网络的车牌识别技术研究.南京:南京航空航天大学硕士论文.2010
    [86]张德丰等. MATLAB神经网络应用设计.北京:机械工业出版社.2009
    [87] W.lain Madden, W.Craig Michie, Andrew Cruden, Pawel Niewczas, James R.McDonald. Temperature compensation for optical current sensors. OpticalEngineering.1999,38(10):1699-1707P
    [88]许玲,姚寿铨.温度对扭转光纤环性能的影响.激光技术.2005,29(1):52-55页
    [89] K. Bohnert, P. Gabus, J. Nehring, and H. Br ndle. Temperature and VibrationInsensitive Fiber-Optic Current Sensor. Journal of lightwave technology.2002,20(2):267-276P
    [90] F. Zhang and J. W. Lit. Temperature and strain sensitivity measure-ments ofhigh-birefringent polarization maintaining fibers. Appl. Opt.1993,32(13):2213-2218P
    [91] Antonio C.Zimmermann, Marcio Besen, Leonardo S. Encinas, Rosane Nicolodi.Improving Optical Fiber Current Sensor Accuracy using Artificial Neural Networks toCompensate Temperature and Minor N0n-Ideal Effects. Proc. SPIE2011,7753Q:1-4P
    [92]李玉.小波神经网络及其研究进展.科技信息.2006,9:24-25页
    [93]沈世镒.神经网络系统理论及其应用.北京:科学出版社.2000
    [94] Hagan,M.T.等著,戴葵等译.神经网络设计.北京:机械工业出版社.2002
    [95] L.Mandel and E. Wolf, Optical Coherence and Quantum Optics(CambridgeU.Press,New York,1995)
    [96] J. L. Cruz, M. V. Andres, and M. A. Hernandez. Faraday effect in standard opticalfibers: dispersion of the effective Verdet constant.1996,35(6):922-927P
    [97] L.Mandel. Fluctuations of light beams. Progress in Optics.1963,2:181-248P
    [98]李绪友,郝金会,黄平,王瑞.光纤陀螺用光纤光源的新型自动温度控制.中国惯性技术学报.2010,18(5):612-615页
    [99]李彦,张春熹,欧攀,徐宏杰.光源偏振度对光纤陀螺零漂影响的研究.光学技术.2006,32(6):893-895,899页
    [100] Gregory E. Obarski and Jolene D.Splett. Transfer standard for the spectral density ofrelative intensity noise of optical fiber sources near1550nm. Optical Society ofAmerica.2001,18(6):750-761P
    [101]孙国飞,那永林,吴衍记.抑制掺铒光纤光源强度噪声的方法研究.红外与激光工程.2007,36(增刊):589-592页
    [102] Ira Jacobs, Life Fellow. Dependence of optical amplifier noise figure onrelative-intensity-noise. Journal of lightwave technology.1995,13(7):1461-1465P
    [103] P. R. Morkel, R. I. Laming, D. N. Payne. Noise characteristics of high-powerdoped-fibre superluminescent sources. Electronics letters.1990,26(2):96-98P
    [104] Renato C R, Ricardo T D, James B. SNR enhancement of intensity noise-limitedFOGs. Journal of Lightwave Technology.2000,12:2146-2150P
    [105] P.R.Morkel, R.I.Laming, D.N.Payne. Noise characteristics of high-power doped-fibersuperluminescent sources. Electron. Lett.1990,26(2):96-98P
    [106] PAVEL POLYNKIN. Sagnac and in-line interferometer technology advances. Degreeof doctor of philosophy of Texas A&M University.2000.
    [107] A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, and A. Dandridge. Quantum noisein superluminescent diodes. IEEE J.Quant Electron.1986, QE-22,522-527P
    [108] Moeller RP, Burns WK.1.06μm all-fiber gyroscope with noise subtraction. OptLett.1991,16:1902-1904P
    [109] K.Killian, M.Burmenko, W. Hollinger. High performance fiber optic gyroscope withnoise reduction. Proc.SPIE.1994,2292:255-263P
    [110] O.laznicka, L.Freier, J.Gilmore, and M.Fontanella. IFOG technology achievements atDraper Laboratory. Proc.SPIE.1994,2292:177-191P
    [111] G.Sanders, B.Szafraniec, R.-Y. Liu, M.Bielas, L.Strandjord. Fiber-optic gyrodevelopment for a broad range of applications. Proc.SPIE.1995,2510:2-11P
    [112] Pavel Polynkin, Josiel de Arruda, and James Blake. All-optical noise-subtractionscheme for a fiber-optic gyroscope. OPTICS LETTERS.2000,25(3):147-149P
    [113] Dongbing Gu, Huosheng Hu. Neural predictive control for a car like mobile robot.Elsevier Science, Robotics and Automation.2002,39(2):73-86P
    [114] X. Z. Wang, B. H. Chen, S. H. Yang, C. McGreavy. Application of wavelet and neuralnet-works to diaonostic system development,2, an integrated framework and itsapplication. Elsevier Science, Computer and Chemical Engineering,1999,23:945-954P
    [115]汪梅.基于小波和神经网络的电缆故障诊断方法研究.西安:西安科技大学博士论文.2006.
    [116] W. Liu, L. Jiang, M. Wang. Research of Signal Denoising Algorithm Based onWavelet Threshold.2009International Workshop on Intelligent. Systems andApplications.2009,1-4P
    [117] Y. Zhang, L. Wu, J. Zhao. A New Threshold Method Exploration about WaveletDe-noising.2008International Conference on Computer Science and SoftwareEngineering.2008,1008-1011P
    [118]张桂才.光纤陀螺原理与技术.北京:国防工业出版社.2008.
    [119]杜浩藩,丛爽.基于MATLAB小波去噪方法的研究.计算机仿真.2003,20(7):119-122页
    [120]何丽莉. PCB的抗干扰设计.芜湖职业技术学院学报.2006,8(3):16-18页
    [121]梁振光.电磁兼容原理、技术及应用.北京:机械工业出版社,2007
    [122] Eric Bogatin著,李玉山等译.信号完整性分析.北京:电子工业出版社,2005.
    [123]王立辉.消偏型光纤陀螺仪关键技术研究.哈尔滨:哈尔滨工程大学博士论文.2009
    [124]程正兴.小波分析算法与应用.西安:西安交通大学出版社.1998
    [125] Ying Qian.A method of improved wavelet threshold for signal de-noising. ICMT2010,(5630200):1-3P
    [126]刘涛,曾祥利,曾军.实用小波分析入门.北京:国防工业出版社.2006
    [127] IEEE Aerospace and Electronic Systems Society. IEEE Standard Specification FormatGuide and Test Procedure for Single-Axis Laser Gyros. IEEE Std647-2006.2006.
    [128] Gyro and Accelerometer Panel of the IEEE Aerospace and Electronic Systems Society.IEEE Standard Specification Format Guide and Test Procedure for Single-AxisInterferometric Fiber Optic Gyros. IEEE Std952-1997.1997.
    [129]孙延奎.小波分析及其应用.北京:机械工业出版社.2005
    [130]衡彤.小波分析及其应用.成都:四川大学博士论文.2003
    [131]李士心.小波去噪理论及其在陀螺漂移信号处理中的应用.天津:天津大学博士论文.2002
    [132]侯媛彬.神经网络.西安:西安电子科技大学出版社.2007
    [133] X. Ma, C. Zhou, I. J. Kemp. Automated Wavelet Selection and Thresholding for PDDetection. IEEE Electr. Ins. Mag.2002,18(2):37-45P
    [134]关山,王龙山.小波阈值去噪技术研究及其在信号处理中的应用.计算机工程与设计.2008,29(22):5857-5859页
    [135] zkan Altay, zcan Kalenderli. Noise Reduction on Partial Discharge Data withWavelet Analysis and Appropriate Thresholding.2010International Conference onHigh Voltage Engineering and Application (ICHVE).2010,552-555P
    [136]飞思科技产品研发中心. MATLAB6.5辅助小波分析与应用.北京:电子工业出版社.2003
    [137]贝绍轶,孙广田,冯俊萍.小波实时阈值消噪在信号分析中的应用.机床与液压.2009,37(4):167-168页
    [138]韦力强.基于小波变换的信号去噪研究.长沙:湖南大学硕士论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700