新型硼酸盐功能玻璃结构及析晶动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低熔点封接玻璃以及稀土掺杂铋硼酸盐玻璃是近年来新型硼酸盐功能玻璃研究的热点。研究工作主要集中在对新型玻璃体系的开发和认识以及掺杂稀土元素改变玻璃的光学性能方面,而对新型玻璃的结构形成机理及其与特殊功能的关系还认识不足。如果能从玻璃的形成机理和微观结构的角度来研究组成对玻璃结构和性能的影响,便能更好地解析和预测玻璃的性能,对新型功能玻璃的材料设计和应用开发将具有重要的理论指导意义。
     本文采用熔融法制备了PbO-B_2O_3,Bi_2O_3-B_2O_3二元系统玻璃以及多组分的低熔点铅硼酸盐玻璃和稀土掺杂铋硼酸盐玻璃。从分析二元系统的玻璃结构出发,进一步分析了新型硼酸盐功能玻璃的网络形成机理,并结合玻璃的析晶特性分析,探讨了组成对玻璃热稳定性、机械性能以及特殊性能的影响。
     本文通过红外吸收光谱和拉曼散射光谱分析,较系统地研究了PbO-B_2O_3、Bi_2O_3-B_2O_3二元系统玻璃的网络结构。实验结果表明: PbO含量较低时(10mol%≤PbO≤20mol%)在硼酸盐玻璃结构中仅起网络修饰体作用;当PbO含量较高时,PbO逐步进入到玻璃网络中起网络形成体作用。在PbO-B_2O_3玻璃网络中,可能存在三种玻璃结构模型。Bi_2O_3在Bi_2O_3-B_2O_3二元系统玻璃网络中起网络形成体作用,根据Bi_2O_3含量的不同,提出了两种可能的玻璃结构模型。
     PbO和B_2O_3是低熔点封接玻璃的重要组成。本文设计了不同PbO/B_2O_3的铅硼酸盐封接玻璃配方,并探讨了添加氧化物(ZnO、Bi_2O_3、GeO_2)对玻璃封接温度、热膨胀、化学稳定性以及机械性能的影响,获得了综合性能较好的低熔点铅硼酸盐封接玻璃配方。其中G3配方的封接温度仅400℃,其PbO含量为54mol%左右,与目前商品化封接玻璃铅含量相近,但其封接温度降低了40℃,且没有引入Cd、Hg、Tl等剧毒重金属氧化物;BL10配方的封接温度为440℃,与商品封接玻璃的封接温度相同,但其铅含量大大降低,仅为36mol%。
     BiBO3晶体的析出是铋硼酸盐玻璃是否具有特殊的非线性光学性能的重要标志。根据对Bi_2O_3-B_2O_3二元系统玻璃的析晶特性分析,结果表明,在50mol%≤Bi_2O_3≤60mol%范围内,玻璃晶化热处理后可析出BiBO3晶体,有望实现非线性光学性能。因此,本文在组成为Bi_2O_3·B_2O_3的铋硼酸盐玻璃基础上,制备了xRE_2O_3·(100-x) (Bi_2O_3·B_2O_3)玻璃(RE3+=La3+、Pr3+、Sm3+、Gd3+、Er3+、Yb3+, x=0.5~10)。系统地研究了稀土氧化物对玻璃结构、热稳定性、晶体种类以及形貌的影响。研究结果表明,对稀土掺杂铋硼酸盐
Low-melting sealing glass and rare-earth doped bismuth borate glass are the important systems of advanced borate glasses. Recently, the studies on advanced borate glasses are focused on developing and realizing new glass systems, few reports were found on the mechanism of glass formation and the relationship between glass structure and properties. Based on the mechanism of glass formation and glass network structure, studies on compositional effects of glass structure and properties should be an available work to understand and forecast properties of advanced borate glasses and consequently have a significant influence on the design and applications of advanced borate glasses.
     In this work, series of PbO-B_2O_3 glass, Bi_2O_3-B_2O_3 glass, lead borate sealing glass and rare-earth doped bismuth borate glass were prepared by melting-quenching method. Combined with the glass structure and crystallization properties of binary borate glass systems, compositional effects on glass thermal stability, mechanical properties and other properties of advanced borate glasses were investigated.
     The results of FTIR and Raman analysis indicate that PbO only acts as a network modifier of PbO-B_2O_3 glass in the compositional range of 10 mol%≤PbO≤20mol%, with the further increase of PbO, it tends to play as a glass former. In the system of Bi_2O_3-B_2O_3 glass, Bi_2O_3 was one of the glass former. Three possible structure models and two possible structure models were suggested to explain the effects of PbO and Bi_2O_3 on borate glass networks respectively.
     Both PbO and B_2O_3 are the important components of low-melting sealing glass. Therefore a series of lead borate sealing glasses with different ratios of PbO/B_2O_3 were designed. Based on the structure and crystallization analysis of PbO-B_2O_3 glass, effects of PbO/B_2O_3 and additive oxides (including ZnO, Bi_2O_3, GeO2) on sealing temperature, thermal expansion property, chemical stability and mechanical property of lead borate sealing glasses were involved. Two successful batches of low-melting sealing glass were obtained named G3 and BL10. The sealing temperature of G3 glass is 400℃, which is 40℃lower than that of commercial sealing glasses. The PbO content of G3 is 54mol% (as the same as in commercial sealing glass) and no toxic component is involved. The sealing temperature of BL10 glass is similar to that of traditional sealing glass (440℃), while the PbO content is decreased to
引文
[1] 李启甲.功能玻璃[M].北京:化学工业出版社,2004:4.
    [2] S. Inoue, S. Todoroki, S. Suehara et al. Advanced approaches to functional glasses[J]. J. non-cryst. Solids., 2006, 352(6/7):632-645.
    [3] 牧原正记. 微小重力环境を利用レたガラスの研究. New Glass,1999,14(4):20-26.
    [4] 作花济夫. ゾルゲル法应用技术の新展开[M]. シ-エムシ-,2001:15.
    [5] 徐键,夏海平,张约品等. 不同先驱体溶胶-凝胶法制备的硫化锗玻璃薄膜[J]. 硅酸盐学报,2004,32(8):1029-1032.
    [6] 沈定坤,奚松林,陈幼新等. 新型玻璃纤维及其 GRMC 制品的研究[J]. 玻璃与搪瓷,1994,22(2):11-15.
    [7] 吴松全,王福平,何利娜等. 聚丙烯酰胺凝胶法制备 Li2O-Al2O3-SiO2 微晶玻璃超微粉[J]. 硅酸盐学报,2004,32(2):200-204.
    [8] S.Z. Chu, S. Inoue, K. Wada, et al.. Highly porous TiO/AlO composite nanostructures on glass by anodization and the sol-gel process: Fabrication and photocatalytic characteristics[J]. J. Mater. Chem., 2003, 13(4):866-870.
    [9] S. Todoroki, S. Inoue, T. Matsumoto. Combinatorial evaluation system for thermal properties of glass materials using a vertical furnace with temperature gradient[J]. Applied surface science, 2002, 189(3-4):241-244.
    [10] 朱磊,汪饶饶. 生物活性玻璃盖髓的临床研究[J]. 中华实用中西医杂志,2005,18(8):1222-1223.
    [11] 陈金生. 光线与舒适联姻的多功能玻璃[J]. 中国玻璃,2005,30(3):45-46.
    [12] T.H. Wei, T.C. Wen, L.C. Hwang et al. Optical nonlinearity and photoluminescence in CuI doped glass[J]. Opt. Mater., 2006, 28(5):569-573.
    [13] 王耀祥. 光学玻璃的发展及其应用[J]. 应用光学,2005,26(5):61-66.
    [14] U. Osterber, W. Margulis.Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber[J].Optics letters,1986,11(8):516-518.
    [15] R.A. Myers, N. Mukherjee, S. R. J. Brueck. Large second-order nonlinearity in poled fused silica[J]. Opt. Lett., 1991, 16(22):1732-1734.
    [16] P.G. Kazansky, A. Kamal, P.St.J. Russell. High second-order nonlinearities induced in lead silicate glass by electronbeam irradiation[J]. Opt. Lett., 1993, 18(9):1141-1143.
    [17] J.Si, Y. Kondo, J. Qiu et al. Band gap dependence of optically encoded second-harmonic generation in Bi2O3-B2O3-SiO2 glasses[J]. Opt. Commun., 2000, 180(2):179-182.
    [18] S. Matsumoto, T. Fujiwara, A. J. Ikushima. Large second-order optical nonlinearity in Ge-doped silica glass[J]. Opt. Mater., 2001, 18(1):19-22.
    [19] J. Khaled, T. Fujiwara, A. J. Ikushima. Optimization of second-order nonlinearity in UV-poled silica glass[J]. Opt. Mater., 2001, 17(2):275-278.
    [20] 刘启明,赵修建,干福熹.电子束辐射下 Ge-As-S 硫系玻璃的二阶非线性光学效应[J].光学学报,2001,21(6):683-686.
    [21] 余保龙,陈红兵,朱从善等.半导体 CdSe-CdTe 纳米微晶掺杂硼酸盐玻璃材料的三阶光学非线性[J].光学学报,1997,26:430-436.
    [22] P. Chakraborty. Metal nanoclusters in glasses as nonlinear photonic materials[J]. J. Mater. Sci., 1998, 33(9):2235-2249.
    [23] T.Amagishi, K. Fujii, I. Kitano. Gradient-index rod lens with high N·A[J]. Appl. Opt., 1983, 22(3):400-403.
    [24] M. Amane, M. Inami. Variable refractive index systems by sol-get process[J]. J. Non-cryst. solids, 1992, 147/148(3):606-613.
    [25] Y. Koike, A. Asakawa,WUSP, et al. Gradient index contact lens[J]. Appl. Opt., 1995, 34(23):4669-4673.
    [26] J. Hagetry, D.N. Pulsifer. Glass plate fusion for macro-gradient refractive index materials[P]. US Patent, 4929065, 1990
    [27] Y. Koike, A. Kanemitsu. Spherical gradient index polymer lens with low spherical aberration[J]. Appl. Opt., 1994, 33(16): 3393-3400.
    [28] Y. Koike, H. Hidaka, Ohtsuka Y.. Plastic axial gradient index lens[J]. Appl. Opt., 1985, 24(24): 4321-4325.
    [29] H.M. Pask, A.C. Tropper, Hanna D.C.. A Pr3+-doped ZBLAN fiber upconversion laser pumped by an Yb3+-doped silica fiber laser[J]. Opt. Commun., 1997, 134:139-144.
    [30] J. F. Massicott, M.C. Brierley, Wyatt R., et al. Low threshold, diode-pumped operation of a green, Er3+-doped fluoride fibre laser[J]. Electron Lett, 1993, 29: 2119-2120.
    [31] 黎敏,廖延彪,赖淑蓉等.硫化物光纤及其功能器件的应用.光电子激光[J],1999,10(5):480-486.
    [32] 陶海征,王小虎,敬撑斌等. 非氧化物玻璃光纤和波导的组成、制备及应用[J].光电子技术与信息,2003,16(2):1-4.
    [33] J.S. Sanghera, I.D. Ahharwal. Active and passive chalcogenide glass optical fibers for IR applications: a review[J]. J. Non-Cryst. Solids, 1999, 256/257(1):6-16.
    [34] 张成林. 电致变色玻璃窗及其在建筑上的应用[J]. 中国玻璃,2001,26(2):45-48.
    [35] 石成利,梁忠友. 微电子用功能玻璃-延迟线玻璃. [J] 建筑玻璃与工业玻璃,2005,3:19-21.
    [36] 黄海,卜胜利. 磁光玻璃磁致旋光效应的研究[J]. 应用光学,2004,25(4):14-17.
    [37]卜胜利,杨瀛海,马静. 磁光玻璃光纤的偏振特性及其在全光纤电流传感器中的应用[J]. 应用光学,2003,24(5):32-35.
    [38] H.M.巴夫鲁什夫,A.K.茹拉夫列夫.易熔玻璃[M]. 北京:中国建筑工业出版社,1975:1.
    [39] 赵恩录,李微. Li2O-Al2O3-SiO2 系超耐热低膨胀微晶玻璃的研制[J]. 玻璃,2002,164(5):7-8.
    [40] 邓家平,李泽林.复合饰面泡沫玻璃保温装饰砖[J].新型建筑材料,2004,4(1):44-45.
    [41] 王珏,周斌.轻质高效保温材料掺硅气凝胶[J].功能材料,1996,27(2):167-170.
    [42] Hidero unuma, Koh Miura, Tsuyoshi Furusaki, et al. Preparation and Properties of Glass-Ceramics Derived from Nitrogen-Containing β-Spodumene Glasses[J]. J. Am. Ceram. Soc, 1991,74(6): 1291-1295.
    [43] D.H. Grande, J.F. Mandell, K.C.C. Hong. Fibre-matrix bond strength studies of glass ceramics and metal matrix composites[J]. J. Mater. Sci, 1988, 23(1):311-328.
    [44] 高积强,黄清伟,仵亚红等. 流延法制备短纤维增强玻璃陶瓷复合材料[J]. 复合材料学报,1999,16(2):105-109.
    [45] Y. Abe, T. Kasuga, H. Hosono. Preparation of high-strength calcium phosphate glass-ceramics by unidirectional crystallization[J]. J. Am. Ceram. Soc, 1984, 67(7):142-146.
    [46] A. Halliyal, A.S. Bhalla, R.E. Newham. Polar glass ceramics-a new family of electro ceramic materials(tailoring the piezoelectric and hydroelectric properties) [J]. Mater. Res. Bull, 1983, 18(2):1007-1014.
    [47] 张剑平,丁振亚. BaO-SrO-TiO2-SiO2 系统压电微晶玻璃的研究[J]. 硅酸盐学报,1991,19(5):431-434.
    [48] K H G. Ashbee. Anisotropic glass-ceramics produced by extrusion through opposed dies[J]. J. Mater. Sci, 1975, 1 0(1): 456-460.
    [49] K. Watanabe, E. A.Giess. Coalescence and crystallization in powdered high-cordierite (2MgO-2Al2O3-5SiO2) [J]. J. Am. Ceram. Soc., 1985, 68(1): 102-110.
    [50] 沈超,王德宪. 新型功能玻璃[J]. 玻璃,2001,158(5):44-46.
    [51] 石成利,梁忠友,李春红.纳米多孔功能玻璃研究进展[J]. 建筑玻璃与工业玻璃,2005,1:22-24.
    [52] 雷家珩,李英霞,郭丽萍等.多孔网络结构玻璃材料的制备及其应用研究[J].材料导报,2002,16(7):35-37.
    [53] 汤华娟,王承遇,谷秀梅等. 自洁玻璃表面膜中掺杂醋酸锌对抑菌率的影响[J]. 硅酸盐通报,2004,23(6):59-62.
    [54] 唐怀军,张敏,曹志军. Fe3+掺杂 TiO2 光催化自洁玻璃的研制[J]. 玻璃与搪瓷,2003,31(6):20-25.
    [55] Wang Chengyu, Shang Huamei, Tao Ying, et al. Properties and morphology of CdS compounded TiO2 visible-light photocatalytic nanofilms coated on glass surface[J]. Separation Purification Tech., 2003, 32(3):357-362.
    [56] M. Schweiger, P. Gr?ning, L. Schlapbach, et al. Thermal and chemical properties of a glass in the SiO2-CaO-F system for dental applications[J]. J. Therm. Anal. Cal., 2000, 60(7):1009-1018.
    [57] C. Leonelli, G. Lusvardi, G. Malavasi et al. Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity[J]. J. Non-Cryst. Solids, 2003, 316(2):198-216.
    [58] Na Li, Qing Jie, Sumin Zhu. A new route to prepare macroporous bioactive sol-gel glasses with high mechanical strength[J]. Mater. Lett., 2004, 58(22/23):2747-2750.
    [59] T. Honma, Y. Benino, T. Fujiwara, et al. New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system[J].Opt. Mater. 2002, 20(1):27–33.
    [60] T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato. Nonlinear optical crystal line writing in glass by yttrium aluminium garnet laser irradiation[J]. Appl. Phys. Lett. 2003,82(6):892–894.
    [61] 马英仁. 封接玻璃(七)——低熔玻璃[J]. 玻璃与搪瓷,1993,21(4):50-54.
    [62] 白进伟. 低熔封接玻璃组成及其发展[J]. 材料导报,2002,16(12):43-46.
    [63] 李启甲,沈键,殷海荣. 无铅磷酸盐封接玻璃的最新进展[J]. 玻璃与搪瓷,2003,31(3):55-58.
    [64] L. Gaylord. Non-lead sealing glass[P]. US patent:5281560, 1994.
    [65] Toshio Yamanaka, Otsu Shi. Lead-free tin silicate-phosphate glass and sealing material containing the same[P]. US patent:20020019303, 2002.
    [66] Y.B. Peng. High thermal expansion phosphate glasses[J]. Glass. Tech., 1991, 32(6):200-205.
    [67] Draft proposal for a European parliament and council directive on waste electrical and electronic equipment, 2000, 6
    [68] E. M. Vogel. Glass as nonlinear photonic materials[J]. J. Am. Ceram. Soc., 1989, 72(5):719-724.
    [69] C.T. Chen, B.C. Wu, A.D. Jiang. A new-type ultraviolet SHG crystal ?-BaB2O4[J]. Sci. Sin. B., 1985, 28(3):235-240.
    [70] C.T. Chen, B.C. Wu, A.D. et al. New nonlinear-optical crystal:LiB3O5[J]. J. Opt. Soc. Am. B., 1989, 6(4):616-620.
    [71] Y.C. Wu, T. Sasaki, S. Nakai, et al. CsB3O5: a new nonlinear optical[J]. Appl. Phys. Lett., 1993, 62(21):2614-2615.
    [72] T. Sakai, I. Kuroda, S. Nakajima, et al. Proc. advanced solid-stat lasers conference[J], 1995:270-275.
    [73] C.T. Chen, Y.B. Wang, B.C. Wu, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7[J]. Nature, 1995, 373:322-324.
    [74] L.F. Mei, Y.B. Wang, C. T. Chen. Nonlinear optical materials based on MBe2BO3F2(M=Na,K) [J]. J. Appl. Phys., 1993, 74(11):7014-7015.
    [75] Z.G. Hu, T. Higashiyama, M. Yoshimara, et al. A new nonlinear optical borate crystal K2Al2B2O7(KAB) [J]. Jpn. J. Appl. Phys., 1998, 37:L1093-1094.
    [76] A.A. Filimonov, N.I. Leonyuk, L.B. Meissner, et al. Nonlinear optical properties of isomorphic family of crystal aluminum borate(YAB) structure[J]. Kristall and Technik.,1974, 9(1):63-68.
    [77] B.S. Lu, J. Wang, H.F. Pan. Excited emission and self frequency doubling effect of NdxY1-xAl3(BO3)4 crystal[J]. Chin. Phys. Lett., 1986, 3(9):413-417.
    [78] R. Norrestam, M. Nygren, J.O. Bovin, et al. Structure investigation of new calcium-rare earth(Re) Oxyborates with the composition Ca4ReO(BO3)3[J]. Chem. Mater., 1992, 4:737-741.
    [79] T.N. Khamagnova, N.M. Kaperman, Z.G. Bazarova. The double borates Ba3ln(BO3)3(ln=La-Lu, Y) [J]. J. Solid. State. Chem., 1999, 145:33-36.
    [80] H. Hellwig, J. Liebertz, L. Bohaty. Linear optical properties of the monoclinic bismuth borate BiB3O6[J]. J. Appl. Phys., 2000, 88(1):240-244.
    [81] R. Ihara, T. Honma, Y. Benino, et al. Second-order optical nonlinearities of metastable BiBO3 phases in crystallized glasses[J]. Optical Materials, 2004,27(4):403-408.
    [82] W.H. Zachariason. The atomic arrangement in glass[J]. J. Am. Chem. Soc., 1932, 54:3841-3846.
    [83] 杨南如,无机非金属材料测试方法 [M].武汉:武汉工业大学出版社,1993:223-252.
    [84] 文启. 硼酸盐的高温Raman光谱的研究. 硕士学位论文,上海大学,2001
    [85] B.N. Meera, A.K. Sood, N. Chandrabhas, et al. Raman study of lead borate glasses[J]. J. Non-Cryst. Solids., 1990, 126:224-230.
    [86] LEE Chan-soo, KIM Choel-young. Structure and properties in the PbO-B2O3 glass system with addition of divalent metallic oxides[J]. J Korean Ceram Soc.1983, 20(3):146-150.
    [87] LEE Jinn-shing, PERNG Jaw-chay, HUANG Jhing-wang. Devitrification and physical properties of PbO-ZnO-B2O3 low temperature solder glasses. Glass Tech., 1990, 31(1):77-81
    [88] 王民权,程锋,徐耀平等. PbO-ZnO-B2O3 低熔玻璃组成、性能和结构的研究[J]. 硅酸盐通报,1990,9(6):5-12.
    [89] HIKATA Hajime, TANAKA Kumi, SHINDO Kazuyoshi. Low temperature sealing compositon[P]. US Patent, 005346863A, 1994, 9.
    [90] J.H. Flynn.Thermal analysis kinetics-past, present and future[J]. Thermochim. Acta, 1992, 203(1):519-526.
    [91] S.Vyazovkin. C.A.Wight. Int.Reviews in Physical Chemistry. 1998, 17(3): 407-433
    [92] I.P. Prasad. S.B. Kanungo. H.S .Ray. Non-isothermal kinetics :some merits and limitations[J]. Thermochim. Acta.1992, 203(1):503-514.
    [93] 梁开明,程慷果,段仁官等. 玻璃非等温动力学的研究[J]. 清华大学学报(自然科学版),1998,38(6):96-100.
    [94] 方正东,汪郭佳,张传越. 地开石热分解过程及非等温动力学研究[J]. 化学物理学报,2005,18(4):619-624.
    [95] 岳林海,金达莱,吕德义等. Mg(OH)2 热分解反应的非等温动力学研究[J]. 物理化学学报,2005,21(7):752-757.
    [96] 蔡佳利,李杲,董为民等. 反式 1,4-聚丁二烯的非等温结晶动力学研究[J]. 2004,17(1):123-130.
    [97] J.A. Belichmeier, H.K. Cammenga, P.B.Schneider, et al. A simple method for determining activation energies of organic reactions from DSC curves[J]. Thermochim. Acta., 1998, 310(1):147-151.
    [98] S.Vyazovkin. Alternative description of process kinetics[J]. Thermochim. Acta \, 1992, 211(1):181-187.
    [99] J.J. Sestak. Glass-formation phase relations and magnetic properties of the splat-quenched system of laser-melted (Fe, Mn)2O3-(Bi, B)2O3[J]. Thermal anal.. 1988,33:1263-1268.
    [100] H.Tanaka. Thermal analysis and kinetics of solid state reactions[J]. Thermochim. Acta. 1995, 267(1):29-44.
    [101] M. Brown. R.M. Flynn. J.H. Flynn. Report on the ICTAC kinetics committee[J]. Thermochim. Acta. 1995, 256(2):477-483.
    [102] S. Vyazovkin. Int.Reviews in Physical Chemistry, 2000.19(1):45-60
    [103] J.H. Flynn. The `Temperature Integral' - Its use and abuse[J]. Thermochim.Acta. 1997, 300(1):83-92.
    [104] D. Dollimore, S. Lerdkanchanapon, K.S. Alexander. The use of the Harcourt and Esson relationship in interpreting the kinetics of rising temperature solid state decompositions and its application to pharmaceutical formulations[J]. Thermochim. Acta, 1996, 290(1): 73-83.
    [105] S. Kim, Y.C. Kim. Using isothermal kinetic results to estimate the kinetic triplet of the pyrolysis of high density polyethylene[J]. J. Anal. Appl. Pyrolysis, 2005,73(1):117-121.
    [106] F. Rodante, S. Vecchio, M. Tomassetti. Kinetic analysis of thermal decomposition for penicillin sodium salts model-fitting and model-free methods[J]. J. Pharm. Biomed. Anal. 2002, 29(6):1031-1043.
    [107] H.E.Kissinger.. Reaction kinetics in differantial thermal analysis[J]. Anal. Chem., 1957, 29(11): 1702-1706.
    [108] T.Ozawa. Estimation of activation energy by isocoversion methods[J]. Thermochim. Acta, 1992, 203(1):159-165.
    [109] H.L.Friedman. Kinetics of thermal degradation of char-forming platics from thermo-gravimetry application to a phenolie plastic[J]. J. Polym. Sci., Part C, 1964, Part C, (6):183-195.
    [110] T. Ozawa. Kinetics of glass crystallization[J]. J. Therm. Anal., 1970, 31(2):301-305.
    [111] N.P. Bansa, R.H. Doremus. Determination of reaction kinetic parameters from variable temperature DSC or DTA[J]. J. Am. Ceram. Soc.,1984, 29(1):115-119.
    [112] 胡 丽 丽 , 姜 中 宏 . 玻 璃 析 晶 难 易 的 一 种 新 判 据 [J]. 硅 酸 盐 学 报 , 1990, 18(4):315-321.
    [113] F. Branda, A. Martta, A. Buri. Evaluation of glass stability from non-isothermal kinetic data[J]. J. Non-Cryst. Solids, 1991, 134(1):123-128.
    [114] T. Kemény, J. ?esták. Comparision of crystallization kinetics determined by isothermal and non-isothermal methods[J]. Thermochim. Acta, 1987,110(1):113-116.
    [115] H. Yinnon, D.R.Uhlmann, Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory[J]. J. Non-Cryst. Solids, 1983, 54(2):253-275.
    [116] R. Iordanova, E. Lefterova, I. Uzunov, et al. Non-isothermal crystallization kinetics of V2O5-MoO3-Bi2O3 glasses[J]. J. Therm. Anal. Cal., 2002, 70(2):393-404.
    [117] D.W. Henderson. Experimental analysisi of non-isothermal transformations involving nucleation and growth[J]. J. Therm. Anal., 1979, 15(2):325-331.
    [118] N.P. Bansal, R.H. Doremus, A.J. Bruce, et al. Kinetics of crystallization ofZrF4-BaF2-LaF3 glass by differential scanning calorimetry[J]. J. Am. Ceram. Soc., 1983, 66(4):233-238.
    [119] K. Matusita, T. Komatsu, R. Yokota. Kinetic of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials[J]. J. Mater. Sci. 1984, 19(1): 291–296.
    [120] H. S. Chen. A method for evaluating viscosities of metallic glasses from the rates of thermal transformations[J]. J. Non-Cryst. Solids, 1978, 27(2):257-263.
    [121] T. Ozawa. Kinetics of non-isothermal crystallization[J]. Polymer, 1971, 12(1):150–158.
    [122] V. ?atava. Mechanism and kinetics from non-isothermal TG traces[J]. Thermochim. Acta. 1971, 2(5):423-428.
    [123] F. Branda, A. Marotta, A. Buri. Evaluation of glass stability from non-isothermal kinetic data[J]. J. Non-Cryst. Solids, 1991, 134(1):123-128.
    [124] K. Matusita, S. Sakka. Kinetic study on crystallization of glass by DTA-criterion on application of Kissinger plot[J]. J. Non-Cryst. Solids, 1980, 38/39(2):741–746.
    [125] D.R. Uhlmann. Glass formation[J]. J. Non-Cryst. Solids, 1977, 25(1):43-46.
    [126] D. R. Uhlmann. A kinetic treatment of glass formation[J]. J. Non-Cryst. Solids, 1972, 7(4):337-348.
    [127] R. J. H. Gelsing, H. N. Stein, J. M. Stevels. Vitreous alkali tungstates[J]. Glass Phys. Chem., 1966, 7(6):185-190.
    [128] Takashi Wakasugi, Rikuo Ota, Jiro Fukunaga. Glass-forming ability and crystallization tendency evaluated by the DTA method in the Na2O-B2O3-Al2O3 system[J]. J. Am. Ceram. Soc., 1992, 75(11):3129-3132.
    [129] A. Hruby, Evaluation of glass-forming tendency by means of DTA, Physica B, 1972, 22(4):1187-1193
    [130] A. Hruby. Glass-forming tendency in the GeSx system[J]. Physica B, 1973, 23(5):1263-1272.
    [131] Y. Messaddeq, M. Poulain. Stablizing effect of aluminium, yttrium and zirconium in divalent fluoride glasses[J]. J. Non-Cryst. Solids., 1992, 140(1-3):41-46.
    [132] N.P. Bansal, A.J. Bruce, R.H. Doremus, et al. The influence of glass composition on the crystal growth kinetics of heavy metal fluoride glasses[J]. J. Non-Cryst. Solids., 1985,70(3): 379-396.
    [133] 作花济夫著,蒋幼梅等译. 玻璃非晶态科学[M]. 北京:中国建筑工业出版社,1986.
    [134] C.S. Ray, W.H. Huang, D.E. Day. Effect of sample characteristics and thermal analysis measurement techniques[J]. J. Am. Ceram. Soc., 1991, 74(1):60-66.
    [135] A. Marotta, S. Saiello. A. Buri. Remarks on determination of the avrami exponent by non-isothermal analysis[J]. J. Non-Cryst. Solids, 1983, 57(3):473-475.
    [136] W.L. Konijnendijk, H, Verweij, Structral aspects of vitrous PbO-2B2O3 studied by Raman scattering. J. Am. Ceram. Soc. 1976, 59(10):459-461
    [137] E. I. Kamitsos, A.P. Patsis, M. A. Karakassides, et al. Infrared reflectance spectra of lithium borate glasses[J]. J. Non-Cryst. Solids, 1990, 126(1):52-67.
    [138] A. K. Hassan, L. B?rjesson, L.M. Torell. The boson peak in glass formers of in creasing fragility[J]. J. Non-Cryst. Solids. 1994, 172/174(1):154-160.
    [139] G. El-Damrawi, K. El-Egili. Characterization of novel CeO2–B2O3 glasses, structure and properties[J]. Physica B, 2001, 299(1):180-186.
    [140] T. Uchino, T. Yoko. Vibration of alkali cations in borate glasses from molecular orbital calculations. Solid State Ionics, 1998,105(1):91-95
    [141] P.J. Bray. B10 NMR studies of the structure of Borate Glasses[J]. J. Non-Cryst. Solids, 1980, 38/39(1):93-98.
    [142] E.N. Boulos, N.J. Kreidl. Structure and properties of silver borate glasses[J]. J. Am. Ceram. Soc., 1971, 54(2):368-373.
    [143] 卢安贤,黄继武,卢仁伟等. 高B2O3含量的(5x)B2O3·(20-x)PbO·(80-4x)Bi2O3系统玻璃的结构和分相研究[J]. 中南工业大学学报,1995,26(5):646-651.
    [144] Y. Dimitriev, M. Mihailova. In Proceedings of the 16th International Congress on Glass, Madrid, vol.3, 1992, p. 293
    [145] M.E. Lines, A.E. Miller, K. Nassau, et al. Absolute Raman intensities in glasses II germania-based heavy metal oxides and global criteria[J]. J. Non-Cryst. Solids 1987, 89(1-2): 163-180.
    [146] Lusian Baia, Razavan Stefan, et al. Vibrationl spectroscopy of highly iron doped B2O3-Bi2O3 glass systems[J]. J.Non-Crystal.Solids, 2003, 324(1):109-117.
    [147] W.L. Konijnendijk, H.Verweij. Structure aspects of vitreous PbO·2B2O3 studied byRaman Scatting[J]. J. Am. Ceram. Soc., 1976, 59(9/11): 459-461.
    [148] S. Hazra, S. Mandal. Properties of unconventional lithium bismuthate glasses[J]. A. Ghosh. Phys. Rev. B, 1997, 56(13):8021-8025.
    [149] 杨南如,岳文海. 无机非金属材料图谱手册[M]. 武汉:武汉工业大学出版社,2000年
    [150] LEE Jinn-shing, PERNG Jaw-chay, HUANG Jhing-wang. Devitrification and physical properties of PbO-ZnO-B2O3 low temperature solder glasses[J]. Glass Tech., 1990, 31(1):77-81.
    [151] 曹锡章,王杏乔,宋天佑.无机化学(下册)[M]. 北京:高等教育出版社,1978:1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700