基于F-P滤波器的全光时钟提取技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超高速长距离光通信网中,全光时钟提取技术成为具有挑战性的热点研究领域,其对网络同步和全光3R再生等全光信号处理技术起着至关重要的作用。基于Fabry-Perot(F-P)滤波器的单波长及多波长时钟提取技术具有结构简单,时钟建立时间短等优点,F-P滤波器是无源线性储能器件,受外界干扰比较小。本文主要研究基于F-P滤波器的多波长时钟提取的理论基础、参数仿真及实验验证。主要内容包括:
     通过比较各种单波长及多波长时钟提取方案的优缺点及现有实验条件,提出基于F-P滤波器及SOA的时钟提取实验方案。对F-P滤波器的器件参数进行Matlab仿真,根据实际实验条件及要求,选择适当的F-P滤波器参数,以达到提取出高质量时钟的目的。主要分析F-P滤波器精细度对提取时钟的幅度抖动的影响,以及对长连零码幅度下降的影响。
     进行了基于F-P滤波器的单波长及双波长10GbpsRZ信号的时钟提取实验研究,并用单一SOA对提取出的时钟脉冲进行去幅度噪声的处理。在背靠背实验基础上,对恶化RZ信号也进行了时钟提取。实验结果表明,F-P滤波器对两路不同波长信号时钟提取的可行性,以及同一SOA同时处理双波长时钟的能力,两路的提取时钟的单边带相位噪声可分别达到-82.815dBc/Hz@10kHz和-83.072dBc/Hz@10kHz。
     为了对强度调制信号的幅度抖动进行处理,提出在高非线性光纤(HNLF)中利用自相位调制(SPM)效应抑制幅度噪声。通过强度调制信号进入HNLF中产生的SPM效应,注入恶化信号频谱被展宽,并通过后面的偏移滤波滤出再生信号,以达到去幅度噪声的作用。在理论分析的基础上,通过实验证实了基于SPM的10GbpsRZ信号的全光2R再生,从波形眼图上可看到明显的抑制0码和1码噪声效果。另外,还应用HNLF中的四波混频效应(FWM)对RZ信号进行波长变换实验研究,过滤出闲频光Idler作为波长变换信号。
In the high-speed and long-haul all-optical networks, the all-optical clock extraction technique is a very challenging and hot research area, which is the key technique for the all-optical signal processing, such as the networking synchronization and 3R regeneration and so on. The technique of clock recovery, based on Fabry-Perot (F-P) filter, for single and multi-wavelength signals has lots of merits, like simple infrastructure and short time for clock building. Moreover, the F-P filter is an optical passive tank circuit. So it can be less influenced by the environment. This dissertation mainly focuses the research on the theory foundation, parameters simulation and experimental investigation of the multi-wavelength clock extraction based on F-P filter.
     Through comparing the advantages and disadvantages of kinds of single and multi-wavelength clock extraction techniques and the current experimental conditions, we propose the experimental investigation of the clock recovery based on F-P filter and a single SOA. We do the numerical simulation for F-P filter’s parameters by Matlab. We can choose the proper F-P filter for extracting the best clock signals based on the simulation and the experimental condition and demand. We compare the amplitude jitter of the extracted clock under different finesse and calculate their relative standard deviation (RSD). The dissertation also simulates the effects of finesse for the amplitude descent of long-continuous zeros code that is a key factor for the high-order pseudorandom code’s clock extraction.
     For the experimental investigation, we operate the experiment of single and multi-wavelength clock extraction for 10Gbps RZ signal, and we use a single SOA to suppress the amplitude noise. After operating the back-to-back experiment, we also extract the degraded signals’clock. Through the experiment, we demonstrate the possibility of recovering the clocks of two channels 10Gbps signals with different wavelength by F-P filter and the ability of single SOA to deal with two wavelengths clocks, and the phase noise of the two extracted clocks are -82.815dBc/Hz@10kHz and -83.072dBc/Hz@10kHz.
     For reducing the amplitude jitter of the intensity modulated signals, we propose another method, which is based on the self-phase modulation (SPM) effect in High Non-linear fiber (HNLF) with a subsequent optical filter at the shifted frequency compared to the input clock carrier frequency. Based on the theory analysis, we demonstrate the 2R regeneration for 10Gbps RZ signal by experiment. From the eye diagram of the degraded and regenerated signals, the amplitude noises of zero and one code are suppressed obviously. And, we take the experimental research on the wavelength conversion based on the four wave mixing (FWM) in HNLF, the idler of which is filtered as the new wavelength conversion signal.
引文
[1] C.K.Kao, and G.A.Hockham,“Dielectric-fibre surface waveguides for optical frequencies,”Proc. IEE,1966, 113(7): 1151-1158.
    [2] F.P.Kapron, D.B.Keck, and R.D.Maurer,“Radiation losses in glass optical waveguides,”Appl. Phys. Lett., Nov 1970, 17(10): 423-425.
    [3] E.Desurvire, J.R.Simpson, and P.C.Becker,“High-gain, erbium-doped traveling-wave fiber amplifier,”1978, Opt. Lett., 12(11): 888-890.
    [4] C.A.Brackett,“Dense wavelength division multiplexing networks: principles and applications,”IEEE J.Select. Area Commun., 1990, vol.8: 373-380.
    [5] Weber, H.G.; Ferber, S.; Kroh, M., et al,“Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission”, Electronics Letters, vol. 42, No.3, Feb. 2006, pp: 178-179.
    [6] Lavigne, B.; Chiaroni, D.; Hamon, L., et al,“Experimental analysis of SOA-based 2R and 3R optical regeneration for future WDM networks”, Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest 22-27 Feb. 1998 pp: 324-325.
    [7] Yu, C.; Luo, T.; Zhang, B., et al,“3R regeneration of a 40Gbit/s optical signal by optical parametric amplification in a highly-nonlinear fiber,”Optical Fiber Communication Conference, 2005.Technical Digest.OFC/NFOEC.
    [8] Spyropoulou, M.; Sygletos, S.; Tomokos, I.,“Investigation of Multi-Wavelength Regeneration Employing Quantum-Dot Semiconductor Optical Amplifier beyond 40Gb/s,”Transparent Optical Networks, 2007. ICTON’07. 9th International Conference on,Volume:1, pp: 102-105.
    [9] Provost, L.; Petropoulos, P.; Richardson, D.J.,“Optical WDM regeneration: Status and future prospects”, Optical Fiber Communication-incudes post deadline papers, 2009. OFC 2009. Conference on, Page(s): 1-3.
    [10] Petropoulos, P.; Provost, L.; Parmigiani, F., et al,“Simultaneous 2R regeneration of WDM signals in a single optical fibre”, IEEE/LEOS Winter Topicals Meeting Series, 2009, Digital Object Identifier:10.1109/LEOSWT.2009.4771753, Page(s): 252-253.
    [11] J.C. Simon, L. Billes, A. Dupas,“All-optical regeneration”, ECOC’98, pp:467-469, 1998.
    [12] Yikai Su; Lijun Wang; Kumar, P,“Wavelength tunable all-optical clock recovery using a fiber parametric oscillator”, Laser and Elctro-Optics Society 1999 12th Annual Meeting. LEOS’99.IEEE, vol. 1, Page(s): 351-352.
    [13] Jay E.Sharping,“Microstructure Fiber Based Optical Parametric Oscillators”, Journal of Lightwave Technology, vol.26, NO.14, July 15, 2008.
    [14] Jacob Lasri; Preetpaul Devgan; Renyong Tang, et al,“A Microstructure-Fiber-Based 10-GHz Synchronized Tunable Optical Parametric Oscillator in the 1550-nm Regime”, IEEE Phntonics Technology Letters, Vol.15, No.8, August 2003.
    [15] Zhang, Ailing; Tam, H.Y.; Lu, C., et al,“Photonic Crystal Based 10 GHz Optical Clock Recovery Using an Optical Parametric Oscillator”, Conference on Laser and Electro-Optics(CLEO) 2007 paper: CThFF1.
    [16] K. Vlachos; G. Theophilopoulos; A. Hatziefremidis, et al,“30 Gb/s All-Optical Clock Recovery Circuit”, IEEE Photonics Technology Letters, vol.12, No.6, June 2000, Page(s): 705-707.
    [17] Fernandez, A.; Lu Chao; Chi, J.W.D.,“All-Optical Clock Recovery and Pulse Reshaping Using Semiconductor Optical Amplifier and Dispersion Compensating Fiber in a Ring Cavity”, IEEE Photonics Technology Letters, Vol.20, No.13, July 1, 2008, pp: 1148-1150.
    [18] He, Jian; Chan, Kam,“Wavelength-switchable all optical clock recovery at 10Gbit/s based on semiconductor fiber ring laser”, Optics Express, Vol. 13 Issue 1, pp.327-335 (2005)
    [19] Chen, L.R.; Cartledge, J.C.,“Mode-Locking in a Semiconductor Fiber Laser Using Cross-Absorption Modulation in an Electroabsorption Modulator and Application to All-Optical Clock Recovery”, Lightwave Technology, Journal of, Vol.26, No. 7, April 1, 2008, Page(s): 799-806.
    [20] Weiming Mao; Yuhua Li; Mohammed Al-Mumin, et al,“All-optical clock recovery for both RZ and NRZ data”, Photonics Technology Letters, IEEE, Vol.14, No.6, June 2002, pp: 873-875.
    [21] Inwoong Kim; Cheolhwan Kim; LiKamWa, P.L., et al,“Dynamics of All-Optical Clock Recovery Using Two-Section Index- and Gain-Coupled DFB Lasers”, Lightwave Technology, Journal of, Vol.23, No.4, April 2005, Page(s): 1704-1712.
    [22] Weiming Mao; Yuhua Li; Al-Mumin, M., et al,“All-Optical Clock Recovery From RZ-Format Data by Using a Two-Section Gain-Coupled DFB Laser”, Lightwave Technology, Journal of, Vol.20, No.9, September 2002, Page(s): 1705-1714.
    [23] M. Jinno and T. Matsumoto,“Optical tank circuits used for all-optical timing recovery,”IEEE J. Quantum Electron., vol. 28, Apr.1992, pp: 895–900.
    [24] Xiang Zhou; Chao Lu; Ping Shum, et al,“A Performance Analysis of an All-Optical Clock Extraction Circuit Based on Fabry–Perot Filter”, Lightwave Technology, Journal of, Vol.19, No.5, May 2001, Page(s): 603-613.
    [25] A. Ellis, K. Smith, and D. Patrick,“All-optical clock recovery at bit rates up to 40 Gbit/s,”Electron. Lett., vol. 29, Sept. 1993, pp:1741–1743.
    [26] G. Contestabile; A. D'Errico; M. Presi, et al,“40-GHz All-Optical Clock Extraction Using a Semiconductor-Assisted Fabry–Pérot Filter”, Photonics Technology Letters, IEEE, Vol. 16, No. 11, November 2004, Page: 2523-2525.
    [27] Johnson, C.; Demarest, K.; Allen, C., et al,“Multiwavelength All-Optical Clock Recovery”, Photonics Technology Letters, IEEE, vol. 11, No.7, July 1999, Page: 895-897.
    [28] Pudo, D.; Depa, M.; Chen, L.R.,“All-Optical Clock Recovery Using the Temporal Talbot Effect”, Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. Conference on, Page: 1-3.
    [29] Pudo, D.; Depa, M.; Chen, L.R.,“Single and Multiwavelength All-Optical Clock Recovery in Single-Mode Fiber Using the Temporal Talbot Effect”, Lightwave Technology, Journal of, vol.25, No.10, October 2007, Page: 2898-2903.
    [30] Oiwa, M.; Minami, S.; Tsuji, K., et al,“All-optical clock recovery using temporal Talbot effect followed by SOA-based fiber ring laser”, Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009. Conference on, Page: 1-2.
    [31] Douglas L. Butler; Jun Shan Wey; Michel W. Chbat, et al,“Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering”, Optical Letters, Vol.20, No. 6, march 15, 1995.
    [32] [美] Govind P. Agrawal著,非线性光纤光学原理及应用,北京:电子工业出版社, 2002.12.
    [33]张艳冬于晋龙王耀天等,全光时钟提取中利用SOA抑制低频噪音的实验研究[J],光学学报. 2007, 36(2): 267-269.
    [34] M. Spyropoulou; S. Sygletos; I. Tomkos,“Simulation of multiwavelength regeneration based on QD Semiconductor Optical Amplifers[J].”IEEE Photon. Technol. Lett., vol. 19. pp. 1577-1579, Oct. 2007.
    [35] Spyropoulou, M.; Sygletos, S.; Tomkos, I.,“Study of a Multi-wavelength Regenerative subsystem based on Quantum Dot Semiconductor Optical Amplifiers at 40Gbps”, Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. Conference on, Page: 1-3
    [36] P. V. Mamyshev,“All-optical data regeneration based on self-phase modulation effect,”in Proc. ECOC 1998, Sep. 1998, pp: 475–476.
    [37] Masayuki Matsumoto,“Performance Analysis and Comparison of Optical 3R Regenerators Utilizing Self-Phase Modulation in Fibers”, Lightwave Technology, Journal of, Vol.22, No.6, June 2004, Page: 1472-1482.
    [38] P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson,“2R-regenerative all-optical switch based on a highly nonlinear holey fiber,”Opt. Lett., vol. 26, pp: 1233–1235, 2001.
    [39] J.Hansryd; P.A. Andrekson; M.Westlund, et al.,“Fiber-based optical parametric amplifiers and their applications”, IEEE J. Sel. Top. In Quantum Electron, 2002, 8(3): 506-520.
    [40] T. Sakamoto; K.K.Y. Wong; K. Uesaka, et al.,“Tunable wavelength converter using cross-gain modulation in fiber optical parametric amplifier”, Proc. OFC 2002, 2002, TuS4, Page: 127-129.
    [41] K. Inoue,“Arrangement of Fiber pieces for a wide wavelength conversion range by fiber four-wave mixing”, Opt.Lett., 1994, 19(16): 1189-1191.
    [42] M.N. Islam and O.Boyraz,“Fiber parametric amplifier for wavelength band conversion”, IEEE J. Select. Topics Quantum Electron., 2002, 8(3): 527-537.
    [43] E. Ciaramella and S. Trillo,“All-optical signal reshaping via four-wave mixing in optical fibers,”IEEE Photon. Technol. Lett., vol. 12, 2000, pp:849–851.
    [44] S. Radic; C.J. McKinstrie; R.M. Jopson, et al.,“All-Optical Regeneration in One- and Two-Pump Parametric Amplifiers Using Highly Nonlinear Optical Fiber”, Photonics Technology Letters, IEEE, Vol.15, No.7, July 2003, Page: 957-959.
    [45] McKinstrie, C.J.; Radic, S.; Chraplyvy, A.R.,“Parametric Amplifiers Driven by Two Pump Waves”, Selected Topics in Quantum Electronics, IEEE Journal of, Vol.8, No.3, May/June 2002, Page: 538-547.
    [46] J. Hansryd and P. Andrekson,“Broad-band continuous-wave-pumped fiberoptical parametric amplifier with 49-dB gain and wavelength conversion efficiency,”IEEE Photon. Technol. Lett., vol. 13, Mar. 2001, pp:194-196.
    [47] R.H. Kingston,“Parametric amplification and oscillation at optical frequencies”, Proc. Institute of Radio Engineers(IRE), vol. 50, April 1962, Page: 472
    [48] N.M. Kroll,“Parametric amplification in spatially extended media and application to the design of tunable oscillator at optical frequencies”, Phy. Rev., vol. 127(4), August 1962, Page: 1207-1211.
    [49] Thomas Torounidis and Peter Andrekson,“Broadband single-pumped fiber-optic parametric amplifiers”, IEEE Photon. Technol. Letters, 2007, 19(9): 650-652.
    [50] Thomas Torounidis; B-E Olsson; P. Andrekson,“Fiber optical parametric amplifier with 70 dB gain”, IEEE Photon. Technol. Letters, 2006, 18(10): 1194-1196.
    [51] J. Hansryd, P.A. Andrekson, M. Westlund, et al.,“Fiber-based optical parametric amplifier and their application”, IEEE J.Sel.Top. In Quantum Electron, 2002, 8(3): 506-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700