面向图像处理的独立分量分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立分量分析(Independent Component Analysis, ICA)是一种新近发展起来的信号处理技术,在许多领域有着广泛应用。论文围绕ICA算法及其在图像处理中的应用进行了深入系统的研究。
     在论述ICA基本方法的基础上,论文深入分析了广为应用的快速ICA算法(FastICA),提出一种改进算法。通过在下降方向增加一维搜索,减少了迭代次数,改善了算法的收敛性能。
     在ICA用于纹理图像分类的研究中,提出了一种基于独立子空间分析(Independent Subspace Analysis, ISA)和独立谱表述(Independent Spectral Representation, ISR)的纹理特征提取方法。所提供的特征滤波器与传统的滤波器相比,可以有效挑选出数量更少、分类性能更优的纹理特征。
     在ICA用于图像去噪的研究中,从变换和分离两个不同的技术建立了去噪算法。一、从变换的角度出发,提出了一种改进的ICA变换去噪算法,通过建立收缩补偿的概念和一种新的收缩函数,可以有效地避免软阈值收缩函数在去噪过程中造成的图像边缘特征损失。二、从分离的角度出发,将噪声图像作为源图像和噪声混合叠加而成的混合信号,尝试了全新的处理模式。据此,我们分别提出用重构相空间(RPS)和增加虚拟观测两个方法进行图像去噪,初步的实验结果是令人满意的。
     在ICA用于图像分离的研究中,结合脊波变换和复杂性寻踪,建立了两个混合图像分离算法。一、从脊波变换出发,提出了基于脊波变换的ICA混合图像盲分离算法。该算法保留了小波ICA的特点,同时由于脊波可以有效表述直线的特性,提高了具有明显线特征的混合图像的分离精度。该方法适用于源图像相互统计独立的混合图像分离。二、从复杂性寻踪出发,将图像分离过程表述为复杂性寻踪过程,提出一种基于复杂性寻踪的不动点迭代算法,成功分离了传统盲分离算法不能分离的非独立源混合图像。
     在ICA用于运动目标检测的研究中,在提出一种结合Infomax和FastICA的改进梯度学习算法基础上,形成了一个改进的运动目标检测算法。它可以精确检测出序列图像中的运动目标,具有较强的抗噪声性能。
Independent component analysis (ICA) is a new signal processing technique developed in the last decades and has been used in a broad range of applications. This thesis focuses on the ICA algorithm and its applications in image processing.
     Based on discussion of ICA basic theory, the thesis analyses the fast fixed point algorithm (FastICA),which is widely applied. Then a modified FastICA algorithm is offered by imposed one-dimensional search on the iterative direction. With the modified algorithm, number of iteration is reduced and convergence performance is improved.
     In texture image classification, a method to select the texture feature based on independent subspace analysis (ISA) and independent spectral representation is proposed. We can achieve better classification performance by the feature filters comparable to other traditional filter schemes while resulting in considerably smaller filters.
     In image denoising, two different denoising techniques are developed. The first is based on ICA transform. After obtained the independent components of the corrupted image by ICA, a new compensating operation and an improved shrinkage function are proposed to effectively combat the loss of image details in ordinary soft-thresholding shrinkage. The second is based on BSS. In this method the noisy image is regarded as a mixture by the source image and the noise, and fire-new processing patterns are tried. Based on it, two approaches to separate source image and the noise are developed, which use the theory of reconstructive phase space (RPS) and adding a dummy image as another observation, respectively. The experimental results is satisfied.
     In image separation, two algorithms are proposed. The first is based on ridgelet transform, it inherits the advantage of wavelet ICA and can improved the separation performance for the mixed images with notable line feature. The method is suitble to separate the mixed images, in which the source images are statistically independent each other. The second is based on complexity pursuit, it describes the process of separation as a process to find out the interesting projective directions, and a fixed point iterated algorithm is developed. It can separate the mixed images successfully, in which the source images are not statistically independent each other.
     In moving targets detection in the series of images, a modified algorithm of detecting moving targets is presented based on a new gradient leaning algorithm combined Informax and FastICA. It can detect the moving targets in image series accurately and be robust to the noise.
引文
[1] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki. Combined approach of array processing and independent component analysis for blind separation of acoustic signals. Ieee Transactions on Speech and Audio Processing, 2003, 11:204-215.
    [2] H. Saruwatari, T. Kawamura, T. Nishikawa, and K. Shikano. Fast-convergence algorithm for blind source separation based on array signal processing. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2003, E86A:634-639.
    [3] F. Sattar, M. Y. Siyal, and L. C. Wee. Blind source separation of audio signals using improved ICA method. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001, 452-455.
    [4] J. H. Lee, H. Y. Jung, and T. W. Lee. Speech enhancement with MAP estimation and ICA-based speech features. Electronics Letters, 2000, 36(17):1506-1507.
    [5] T. W. Lee and M. S. Lewicki. Unsupervised image classification, segmentation, and enhancement using ICA mixture models. Ieee Transactions on Image Processing, 2002, 11:270-279.
    [6] X. H. Han, Y. W. Chen, and Z. Nakao. Robust edge detection by independent component analysis in noisy images. Ieice Transactions on Information and Systems, 2004, E87D:2204-2211.
    [7]张安清.盲分离技术及其在水声信号中的应用研究.大连理工大学博士学位论文, 2006.
    [8] J. F. Cardoso and P. Comon. Independent component analysis: a survey of source algebraic methods. Proceesings of IEEE International Symposium on Circuits and Systems, ISCAS'96, 1996, 2:93-96.
    [9] A. Hyvarinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Computation, 2000, 13:411-430.
    [10] T. W. Lee. Independent component analysis: Theory and application. Boston: Kluwer Academic Publisher, 1998.
    [11]李木森,毛剑琴.盲信号分离的现状和展望.信息与电子工程, 2003, 1(1):69-79.
    [12] X. Cao and R. Liu. General approach to blind source separation. IEEE Trans. Signal Processing, 1996, 44:562-571.
    [13] S. I. Amari, A. Cichocki, and H. Yang. A new learning algorithm for blind source separation. Advances in Neural Information Proceeding System, MIT Press, 1996.
    [14] P. Pajunen. Blind source separation using algorithmic information theory. Neurocomputing, 1998, 22:35-48.
    [15] K. I. Diamantaras. Blind source separation using principal component neural networks. Artificial Neural Networks-Icann 2001, Proceedings, 2001, 2130:515-520.
    [16] R. Vollgraf, I. Schiessl, and K. Obermayer. Blind source separation of single componentsfrom linear mixtures. Artificial Neural Networks-Icann 2001, Proceedings, 2001, 2130:509-514.
    [17] S. Cruces, L. Castedo, and A. Cichocki. Robust blind source separation algorithms using cumulants. Neurocomputing, 2002, 49:87-118.
    [18] A. Cichocki, J. Karhunen, and W. Kasprrzak. Neural networks for blind separation with unknown number of sources Neurocomputing, 1999, 24:55-93.
    [19] A. Amari. Natural gradient for over-and under-complete bases in ICA. Neural Computation, 1999, 11:1875-1883.
    [20] L. Q. Zhang, A. Cichocki, and A. Amari. Natural gradient algorithms for blind separation of overdetermined mixture with additive noise. Ieee Signal Processing Letters, 1999, 6(11):293-295.
    [21]高隽.智能信息处理方法导论.北京:机械工业出版社, 2003.
    [22]斯华龄,张立明.智能视觉图像处理-多通道图像的无监督学习方法及其他方法.上海科技教育出版社, 2002.
    [23] A. Hyvarinen, J. Karhunen, and E. Oja. Independent component analysis. Ner York: John Wiley 2001.
    [24] S. J. Roberts and R. Everson. Independent component analysis: principles and practice. Cambridge University Press, 2001.
    [25] A. Cichocki and S. I. Amari. Adaptive blind signal and image processing-learning algorithms and applications. Wiley, 2002.
    [26] J. Han, K. Chi, and Y. Yeon. Aquaculture feature extraction from satellite image using independent component analysis. Machine Learning and Data Mining in Pattern Recognition, Proceedings, 2005, 3587:660-666.
    [27] C. Bauer, F. J. Theis, W. Baumler, and E. W. Lang, Local Features in Biomedical Image Clusters extracted with Independent Component Analysis, Portland, OR, United States, 2003.
    [28] L. Fan, F. Long, D.-X. Zhang, X.-J. Guo, and X.-P. Wu, Applications of independent component analysis to image feature extraction, Hefei, China, 2002.
    [29] Q.-H. Huang, S. Wang, and Z. Liu. Improved algorithm of image feature extraction based on independent component analysis. Guangdian Gongcheng/Opto-Electronic Engineering, 2007, 34:121-125.
    [30] V. R. Riasati and D. Braunreiter, Feature extraction and fusion for protein structure identification in cryo-electron microscopic images using Independent Component Analysis and the Projection-slice Synthetic Filter, Kissimmee, FL, United States, 2006.
    [31] M. Haritopoulos, H. J. Yin, and N. M. Allinson. Image denoising using self-organizing map-based nonlinear independent component analysis. Neural Networks, 2002, 15:1085-1098.
    [32] P. Mayo, F. R. Escriba, and G. V. Martin. Denoising mammographic images using ICA. Independent Component Analysis and Blind Signal Separation, 2004, 3195:1064-1071.
    [33] N. Gueorguieva and I. Valova, ICA based neural network for image denoising, Clearwater Beach, FL, United States, 2004.
    [34] M. Funaro, E. Oja, and H. Valpola. Independent component analysis for artefact separation in astrophysical images. Neural Networks, 2003, 16:469-478.
    [35] X.-Y. Deng and Y. Li. Blind images separation based on the subband independent component analysis. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2005, 37:97-99.
    [36] S.-Z. Hou, M. Wang, X.-C. Tian, X. Wang, and L.-Y. Huang, Research of image separation based on improved independent component analysis, Guilin, China, 2007.
    [37] J. Ji and Z. Tian. Blind noisy image separation based on a new robust independent component analysis network. Chinese Optics Letters, 2006, 4:573-575.
    [38] T.-M. Tu. Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach. Optical Engineering, 2000, 39:897-906.
    [39] J.-A. Yang, L. Tao, Z. Zhuang, and L. Guo, Research and realization of image separation method based on independent component analysis and genetic algorithm, Hefei, China, 2002.
    [40] B. J. Noe and F. M. Ham, Change detection through subspace projection using independent component analysis to track moving targets in scenery, Washington, DC, 2001.
    [41] B. J. Noe and F. M. Ham, Tracking of moving objects in scenery using subspace projection using independent component analysis, Orlando, FL, 2001.
    [42] M. Yamazaki, G. Xu, and Y.-W. Chen, Detection of moving objects by independent component analysis, Hyderabad, India, 2006.
    [43] K. C. Kwak and W. Pedrycz. Face recognition using an enhanced independent component analysis approach. Ieee Transactions on Neural Networks, 2007, 18:530-541.
    [44] J.-Y. Gan and C.-Z. Li. Face recognition based on wavelet transform, two-dimensional principal component analysis and independent component analysis. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2007, 20:377-381.
    [45] L. Yongguo, C. Gang, J. Lu, and W. Chen, Face recognition based on independent component analysis and fuzzy support vector machine, Dalian, China, 2006.
    [46] Y. Q. Xu, B. C. Li, and B. Wang. Fast independent component analysis for face feature extraction. Advances in Neural Networks - Isnn 2005, Pt 1, Proceedings, 2005, 3496:979-984.
    [47] M. Wang and Y. Mo, Face recognition method based on independent component analysis and BP neural network, Providence, RI, United States, 2003.
    [48] P. C. Yuen and J. H. Lai. Face representation using independent component analysis. Pattern Recognition, 2002, 35:1247-1257.
    [49] M. I. McKeown. Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. NeuroImage, 2000, I1:24-35.
    [50] D. E. Callan, A. M. Callan, and C. Kroos. Multimodal contribution to speech perceptionrevealed by independent component analysis: a single-sweep EEG case study. Cognitive Brain Research, 2001, 10:349-353.
    [51] H. F. Chen, D. Z. Yao, and L. Chen. A new method for detecting brain activities from fMRI dataset. Neurocomputing, 2002, 48:1047-1052.
    [52] S. Vorobyov and A. Cichocki. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis. Biological Cybernetics, 2002, 86:293-303.
    [53] V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvarinen, and O. Tervonen. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage, 2003, 19:253-260.
    [54] J. J. Murillo-Fuentes. Independent component analysis in the blind watermarking of digital images. Neurocomputing, 2007, 70:2881-2890.
    [55] G. Feng, Q. Lin, and J. Zheng, A novel watermarking algorithm based on ICA, Xizmen, China, 2007.
    [56] X. H. Ma, X. Y. Ding, C. Wang, and F. L. Yin. A blind source separation based multi-bit digital audio watermarking scheme. Advances in Neural Networks - Isnn 2006, Pt 3, Proceedings, 2006, 3973:306-311.
    [57] L. Wei, Z. Jian, X. B. Sun, and K. Okada. A digital watermarking technique based on ICA image features. Independent Component Analysis and Blind Signal Separation, 2004, 3195:906-913.
    [58] S. Bounkong, B. Toch, D. Saad, and D. Lowe. ICA for watermarking digital images. Journal of Machine Learning Research, 2004, 4:1471-1496.
    [59] J. Shi, X. G. Liu, and Y. X. Sun. Melt index prediction by neural networks based on independent component analysis and multi-scale analysis. Neurocomputing, 2006, 70:280-287.
    [60] J. Krejza, P. Szydlik, D. S. Liebeskind, J. Kochanowicz, O. Bronov, Z. Mariak, and E. R. Melhem. Age and sex variability and normal reference values for the V-MCA/V-ICA index. American Journal of Neuroradiology, 2005, 26:730-735.
    [61] T. Yokoi, H. Yanagimoto, and S. Omatu. Information filtering with extracted index words using ICA. IEEJ Transactions on Electronics, Information and Systems, 2007, 127:1468-1473.
    [62]潘红,吴飞,赵雪雁,刘骏伟.基于关键子块的图像检索新方法.计算机研究与发展, 2003, 40(7):956-962.
    [63] L. Jiang, Z. Ji, L. Zhang, and J.-H. Zhang, A handwritten numeral recognition algorithm based on independent components analysis, Beijing, China, 2003.
    [64] T. Rui, C. Shen, J. Ding, and N. Jiang. Handwritten digit character recognition by model reconstruction based on independent component analysis. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2005, 17:455-460.
    [65] J. Zhong and R. Wang. Multi-temporal remote sensing change detection based onindependent component analysis. International Journal of Remote Sensing, 2006, 27:2055-2061.
    [66] J. X. Zhang, Y. W. Chen, Z. Naka, and T. Tateyama. Independent component analysis for classification of remotely sensed images. International Journal of Innovative Computing Information and Control, 2006, 2:659-666.
    [67] C. H. Chen and X. Zhang. Independent component analysis for remote sensing study. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3871:150-158.
    [68] B. R. Foy and J. Theiler, Scene analysis and detection in thermal infrared remote sensing using independent component analysis, Orlando, FL, United States, 2004.
    [69] Y. Yang and W. Runsheng, Saline soile detection from Landsat-7 ETM+ using ICA based texture operator in Daqing of Heilongjiang Province, Int. Conf. on Pattern Recognition, HongKong, China, August 2006.
    [70] A. Hyvarinen and E. Oja, Image feature extraction by sparse coding and independent component analysis, Int. Conf on Pattern Recognition (ICPR'98), Brisbane, Australia, 1998.
    [71] A. J. Bell and J. Sejnowsky. The "independent components" of natural scenes are edge filters. Vision Research, 1997, 37:3327-3338.
    [72] J. Cheng, Y. W. Chen, H. Q. Lu, and X. Y. Zeng. Color- and Texture-based Image Segmentation using local feature analysis approach. Third International Symposium on Multispectral Image Processing and Pattern Recognition, 2003, 5286:600-604.
    [73]黄启宏,王帅,刘钊.改进的基于独立成分分析的图像特征提取算法.光电工程, 2007, 34(1):121-125.
    [74] A. HyvArinen, P. lloyer, and E. Oja, Sparse code shrinkage for denoising, IEEE Inl. Joint Conf. on Neural Networks, Anchorage Alaska, 1998.
    [75]黄启宏,段昶,刘钊.基于独立分量分析的图像特征提取及泊松噪声去除.光电工程, 2006, 33(11):128-132.
    [76] P. Gruber, K. Stadlthanner, A. M. Tome, A. R. Teixeira, F. J. Theis, C. G. Puntonet, and E. W. Lang. Denoising using local ICA and a generalized eigendecomposition with time-delayed signals. Independent Component Analysis and Blind Signal Separation, 2004, 3195:993-1000.
    [77] J. Sarela and H. Valpola. Denoising source separation. Journal of Machine Learning Research, 2005, 6:233-272.
    [78] T. Rabie. Robust estimation approach for blind denoising. Ieee Transactions on Image Processing, 2005, 14:1755-1765.
    [79] F. Sroubek and J. Flusser. Multichannel blind iterative image restoration. Ieee Transactions on Image Processing, 2003, 12:1094-1106.
    [80] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli. Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain. Ieee Transactions on Image Processing, 2003, 12(11):1338-1351.
    [81] A. Cichocki and W. Kasprzak. Nonlinear learning algorithms for blind separation of naturalimages. Neural Network World, 1996, 4:515-523.
    [82] T. Bakir, A. Peter, and R. Riley. Non-Negative Maximum Likelihood ICA for Blind Source Separation of Images and Signals with Application to Hyperspectral Image Subpixel Demixing. IEEE International Conference on Image Processing, 2006, 3237-3240.
    [83]王毅,齐华,郝重阳.一种基于独立分量分析的模糊图像盲分离算法.计算机应用, 2006, 26( 10):2366-2368.
    [84]杨俊安,解光军,庄镇泉.量子遗传算法及其在图像盲分离中的应用研究.计算机辅助设计与图形学学报2003, 15(7):847-851.
    [85]吴小培,冯焕清,周荷琴,王涛.基于独立分量分析的图像分离技术及应用中国图象图形学报, 2001, 6A(2):133-137.
    [86] A. Tonazzini, L. Bedini, and E. Salerno. A Markov Model for Blind Image Separation by a Mean-Field EM Algorithm. Ieee Transactions on Image Processing, February 2006, 15(2):473-482.
    [87] H. Zhao, W. Zhou, and Y. Peng, Application of independent component analysis on noisy image separation, Beijing, China, 2004.
    [88] A. M. Djafari and M. M. Ichir. Wavelet domain image separation. In Proceedings of American Institute of Physics, MaxEnt2002, Moscow, Idaho, USA, 2002, 208-223.
    [89]王明祥,莫玉龙.一种基于FastICA的运动目标检测新方法.计算机工程, 2004, 30(3): 58-60.
    [90]伏思华,张小虎.基于序列图像的运动目标实时检测方法.光学技术, 2004, 215-217.
    [91]曹炬,谭毅华,马杰,田金文.从移动背景红外序列图像中检测运动目标.电子与信息学报, 2005, 27(1):43-46.
    [92]王栓.基于差分图像的多运动目标的检测与跟踪.中国图象图形学报, 1999, 4(6):470-475.
    [93] Z. Zhang, Z. Shi, S. Zhang, and Z. Shi. Moving object segmentation based on wavelet transform and ICA. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2007, 19:448-453.
    [94] C. Jutten and J. Herault. Blind aeparation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24:1-10.
    [95] G. Burel. Blind separation of sources: a nonlinear neural algorithm. Neural Networks, 1992, 5(6):937-947.
    [96] J. P. Nadal and N. Parga. Non-linear neurons in the low noise limit: A factorial code maximize information transfer. Network, 1994, 5(4):49-67.
    [97] A. Cichocki and L. Moszczynski. A ner learning algorithm for blind separation of sources. Electronics Letters, 1992, 28(21):1386-1387.
    [98] A. Cichocki, R. Unbehauen, and L. Moszczynski, A new on-line adaptive leaning algorithm for blind separation of sources, In Proc. ISANN’94, Tainan, Taiwan, 1994.
    [99] J. karhunen and J. Loutsensalo. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 1994, 7(1):113-127.
    [100] E. Oja and H. Ogawa, Learning in nonlinear constrained Hebbian networks, Int. Conf. on Artificial Neural Networks(ICANN'91), Espoo, Finland, 1991.
    [101] A. cichochi and R. Unbehauen. Robust neural networks with on-line learning for blind identification and blind separation of sources. Ieee Transactions on Circuits and Systems, 1996, 43(11):804-906.
    [102] A. cichochi, R. Unbehauen, and E. Rummert. Robust learning algorithm for blind separation of signals. Electronics Letters, 1994, 30(17):1986-1987.
    [103] P. Comon. Independent Component Analysis -a new concept? Signal Processing, 1994, 36:287-314.
    [104] A. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6):1129-1159.
    [105] R. Linsker. Self-organization is a perceptual network. Computer, 1988, 21:105-117.
    [106] A. Hyvarinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7):1483-1492.
    [107] A. Hyvarinen. Fast and robust fixed-point algorithm for independent component analysis. Ieee Transactions on Neural Networks, 1999, 10(3):626-634.
    [108] M. Girolami. An alrenative perspective on adaptive independent component analysis algorithm. Neural Computation, 1998, 10:2103-2114.
    [109] M. Girolami. Self-orgnising neural networks-independent component analysis and blind source separation. Springer-Verlag, 1999.
    [110] T.-W. Lee, M. Girolami, and T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 1999, 11:417.
    [111] J. F. Cardoso and B. H. Laheld. Equivariant adaptive source separation. Ieee Transactions on Signal Processing, 1996, 44(12):3017-3030.
    [112] S. Choi, H. Hong, H. Glotin, and F. Berthommier. Multichannel signal separation for cocktail party speech recognition: a dynamic recurrent network. Neurocomputing, 2002, 49:299-314.
    [113] T.-W. Lee, R. Orglmeister, A. Ziehe, and T. Sejnowski, Combining time-delayed decorrelation and ICA: towards solving the cocktail party problem, Seattle, WA, USA, 1998.
    [114] M. J. Zhong, H. E. Wang, and Y. Y. Tang. An EM algorithm for independent component analysis in the presence of Gaussian moise. Neural Information Processing:Letters and Reviews, 2004, 2(1):11-17.
    [115] M. Girolami. A variational method for learning sparse and overcomplete representations. Neural Computation, 2001, 13(11):2517-2532.
    [116] M. S. Lewiski and T. J. Sejnowski. Learning overcomplete representations. Neural Computation, 2000, 12(2):337-365.
    [117] A. Hyvarinen. Complexity pursuit: separating interesting components from time-series. Neural Computation, 2001, 13(4):883-898.
    [118] S. Harmelin. Nonlinear blind source separation using kernel feature spaces. ICA2001, 102-107.
    [119] S. Harmeling, A. Ziehe, M. Kawanabe, and K. R. Muller. Kernel-based nonlinear blind source separation. Neural Computation, 2003, 15:1089-1124.
    [120] A. Hyvarinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness. Neural Computation, 1999, 12:429-439.
    [121] H. Lappalainen and A. Honlela. Bayesian nonlinear independent component analysis by multi-layer perceptrons. Springer, 2000.
    [122] T. W. Lee, B. Kohler, and R. Orgmeister, Blind source separation of nonlinear mixing model, IEEE Proc. NNSP, Florida, 1997.
    [123] A. Tabeb and C. Jutten. Nonlinear source separation: the post-nonlinear mixture. ESANN'97, 1997, 279-284.
    [124] A. V. Sanchez. Frontiers of research in BSS/ICA. Neurocomputing, 2002, 49:7-23.
    [125] J. F. Cardoso. Informax and maxinum likelihood for blind separation. Ieee Signal Processing Letters, 1997, 4(4):112-114.
    [126] T. W. Lee, M. Girolami, A. J. Bell, and T. J. Sejnowski. A unifying information-theoretic framework for independent component analysis. Computers and Mathematics with Applications, 2000, 31(11):1-21.
    [127] W.-D. Jiao, S.-X. Yang, and Z.-T. Wu. Study of noise removal technique based on independent component analysis. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2004, 38:872-876.
    [128] S.-I. Maeda and S. Ishii, A noisy nonlinear independent component analysis, Sao Luis, Brazil, 2004.
    [129] C. Jutten and J. Karhunen, Advances in Nonlinear Blind Source Separation, 4th International Symposium Independent Component Analysis and Blind Source Separation(ICA2003), Nara, Japan, 2003.
    [130] L. Tong, R. Liu, and V. Soon. Indeterminancy and identifiability of blind identification. IEEE Trans on Circuits and Systems, 1991, 38(5):499-509.
    [131] P. J. Huber. Projection pursuit. The Annals of Statistics, 1985, 13(2):435-475.
    [132] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transaction on Computers C-23, 1974, 9:881-890.
    [133] A. Hyvarinen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 2000, 13:411-430.
    [134]王惠刚.自适应盲信号处理理论及应用研究.西北工业大学博士学位论文, 2002.
    [135]倪晋平.水声信号盲分离技术研究.西北工业大学博士学位论文, 2002.
    [136]杨行峻.人工神经网络与盲信号处理.北京:清华大学出版社, 2003.
    [137] J. Karhunen, P. Pajunen, and E. Oja, Nonlinear PCA type approaches for source separation and independent component analysis, IEEE International Conferences on Neural Networks(I CNN'95), 1995.
    [138] E. Oja. The nonlinear PCA learning rule and signal separation - Mathematic analysis. Neurocomputing, 1997, 17:25-45.
    [139] L. K. Hansen, J. Larsen, and T. K. olenda. Multimedia image and video processing: On independent component analysis for multimedia signals. CRC Press, 2000.
    [140] N. L. Keshia. A survey paper on independent component analysis. Proceedings of the thirt-fourth Southeastern Symposium on Systerm Theory, 2002, 239-242.
    [141] S. Amari. Natural gradient works efficiently in learning. Neural computing, 1998, 10:251-276.
    [142] A. Hyvarinen, Family of fixed-point algorithms for independent component analysis, Munich, Ger, 1997.
    [143] A. Hyvarinen and E. Oja. Fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9:1483.
    [144] E. Oja, Nonlinear PCA criterion and maximum likelihood in independent component analysis, In Proceedings of International Workshop on Independent Component Analysis and Signal Separation( ICA'99), 1999.
    [145] A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 1999, 10:626-634.
    [146]马振华主编.现代应用数学手册――运筹学与最优化理论卷.清华大学出版社, 1998.
    [147] I. T. Jolliffe. PrincipalComponent Analysis. Springer-Verlag, 1986.
    [148] H. H. Harman. Modern Factoer Analysis. University of Chicago Press, 2nd editor, 1967.
    [149] A. Hyvarinen. Survey on independent component analysis. Neural Computing Surveys, 1999, 2(4):94-128.
    [150] R. Manduchi and J. Portilla, Independent Component Analysis of textures, Kerkyra, Greece, 1999.
    [151] Y.-W. Chen, X.-Y. Zeng, and H. Lu. Edge detection and texture segmentation based on independent component analysis. Proceedings - International Conference on Pattern Recognition, 2002, 16:351-354.
    [152] R. Jenssen and T. Eltoft. Independent component analysis for texture segmentation. Pattern Recognition, 2003, 36:2301-2315.
    [153] J. Cheng, Q. Liu, H. Lu, and Y.-W. Chen, Texture classification using Kernel independent component analysis, Cambridge, United Kingdom, 2004.
    [154] S. Xiang, G. Liu, R. Chen, and H. Li. Unsupervised texture segmentation using Gabor filters and ICA. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2004, 16:284-289.
    [155] C. Yang and W. Runsheng, Texture segmentation using independent component analysis of gabor features, Hong Kong, China, 2006.
    [156] X. Liu and L. Cheng, Independent filters for texture classification, Proceedings of the International Conference on Image Processing, 2002.
    [157] R. Jenssen and T. Eltoft, Ica filter bank for segmentation of textured images, 4th International Symposium on Independent Component Analysis and Blind Signal Separation(ICA2003), Nara, Japan, April 2003.
    [158] K. Greblicki. Continuous - time Hammerstein System Identification. IEEE Trans on Automatic Control, 2000, 45(6):1232~1236.
    [159]王震,王执锉.图像纹理分析与纹理测度.南京理工大学学报, 2002, 26(12):36-42.
    [160]王润生.图像理解.国防科技大学出版社,长沙, 1995.
    [161] P. Jeong and S. Nedevschi. Efficient and Robust Classification Method Using Combined Feature Vector for Lane Detection. IEEE TRans on Circuits and Systems for Video Technology, 2005, 15(4):528-537.
    [162] U. Kandaswamy, A. Donald, and M. C. Lee. Efficient Texture Analysis of SAR Imagery. IEEE Trans on Geoscience and Remote Sensing, 2005, 43(9):2075-2083.
    [163]王勇,吕扬声.基于纹理特征的超声医学图像检索.天津大学学报, 2005, 38(1):57-60.
    [164] M. Konesh, P. K. Biswas, and B. N. Chatterji. Texture Image Retrieval Using New Rotated Complex Wavelet Filters. IEEE Trans on Systerm, Man and Cybemetics, 2005, 35(6):1168-1178.
    [165]孙晓军,张中兆,方伟林.基于纹理覆盖的静止图像数据恢复.通信学报, 2000, 21(8):90-96.
    [166] R. W. Conners and C. A. Harlow. A Theoretical Comparision of Texture Algorithms. IEEE Trans On Pattern Analysis and Machine Intelligence, 1980, 2(5):204-222.
    [167] A. K. Jain and F. Farrokhnia. Unsupevised Texture Segementation Using Gabor Filters. Pattern Recognition, 1991, 24(12):1167-1186.
    [168] T. Chang and C. Luo, J. Texture Analysis and Classification with Tree-Structure Wavelet TRansform. IEEE Trans on Image Processing, 1993, 2(4):429-441.
    [169] A. Laine and J. Fan. Texture Classification by Wavelet Paket Signatures. IEEE Trans On Pattern Analysis and Machine Intelligence, 1993, 15(11):1186-1191.
    [170] M. Unser. Texture Classification and Segmentation Using Wavelet Frames. IEEE Trans on Image Processing, 1995, 4(11):1549-1560.
    [171] M. Tuceryan and A. K. Jain. Texture Analysis--The Handbook of Patter Recognition and Computer Vision. 2nd ed.. Singapore: World Scientific Publishing Co., 1998, 207-248.
    [172]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析.电子学报, 2006, 34(1):155-158.
    [173] K. Haralick, K. Shangmugam, and L. Dinstein. Texture Features for Image Classification. IEEE Trans on Systerm, Man and Cybemetics, 1973, 3(6):610-621.
    [174] K. I. Kim, K. Jung, and S. H. Park. Support Machines for Texture Classification. IEEE Trans On Pattern Analysis and Machine Intelligence, 2002, 24(11):1542-1550.
    [175] S. Z. Li. Markov Random Field Modeling in Computer Vision. Springer Verlag, 1995.
    [176] C. S. Lu. Unsupevised Texture Segementation via Wavelet Transform. Pattern Recognition, 1997, 30(5):729-742.
    [177] B. S. Manjunath and W. Y. Ma. Texture Feature for Browsing and Retrival of Image Data. IEEE Trans On Pattern Analysis and Machine Intelligence, 1996, 18(8):837-842.
    [178] J. K. Kourosh and S. Z. Hamid. Radon Transform Orientation Estimation for Rotation Invariant Texture Analysis. IEEE Trans On Pattern Analysis and Machine Intelligence, 2005, 27(6):1004-1008.
    [179] C. M. Pun and M. C. Lee. Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification. IEEE Trans On Pattern Analysis and Machine Intelligence, 2003, 25(5):590-603.
    [180]吴均,赵忠明.利用基于小波的尺度共生矩阵进行纹理分析.遥感学报, 2001, 5(2):100-103.
    [181]李峰,蔡碧野,陈志坚.利用多进制小波变换和模糊c-均值聚类进行纹理分割.计算机工程与应用, 2003, 39(20):45-47.
    [182]李峰,陈志坚,蔡碧野.一种基于三进制小波变换的纹理分割方法.计算机应用研究, 2004, 2:248-249.
    [183] K. I. Laws, Rapid Texture Identification, Conference of Image Processing for Missile Guidance, San Diego, 1980.
    [184] H. Man, L. Chen, and R. Duan. Rotation Invariant Texture Classification Using Directional Filter Bank and Support Vector Machine. IEEE International Conference on Image Processing, Singapore, 2004, 1545-1548.
    [185] T. Randen and J. H. Hus?y. Filtering for Texture Classification:A Comparative Study. IEEE Trans. on Pattern Analysis and Machine Intelligence, APRIL 1999, 21(4):291-310.
    [186]王琪,费耀平.基于小波包分析的虹膜特征提取方法.计算机工程与应用, 2006, 42(l3):60-62.
    [187]黎奎,宋于,邓建奇.基于特征脸和BP神经网络的人脸识别.计算机应用研究, 2005, 22(6):236-238.
    [188] K. Kameyama and K. Taga. Texture classification by support vector machines with kernels for higher-order Gabor filtering IEEE International Joint Conference on Neural Networks, 2004, 1:3009-3014.
    [189] S. E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of texture features based on Gabor filters. IEEE Trans on Image Processing, 2002, 11 (10):1160 -1167.
    [190] R. Porter and N. Canagarajah. Gabor filters for rotation invariant texture classification. Proceedings of 1997 IEEE International Symposium on Circuits and Systems, Bristol Univ., UK, 1997, 2:1193-1196.
    [191] C. K. Chui. Wavelets: A Turorial in Theory and Applicatopns. Academic Press, Boston, 1992.
    [192] [美]崔锦泰著,程正兴译.小波分析导论.西安交通大学出版社, 1995.
    [193] S.-D. Kim and S. Udpa. Texture classification using rotated wavelet filters. IEEE Trans on Systerm, Man and Cybemetics, 2000, Part A:847-852.
    [194] N. Sebe and M. S. Lew. Wavelet based texture classification. 15th International Conference on Pattern Recognition, 2000, 3:947-950.
    [195] P. Kyungsuk, J. Lim, and R. M. Gray. On Gauss Mixture Vector Quantizers and GaborWavelet Classifiers for Texture Classification. Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, 2005, 1222-1225.
    [196] X. Huang, L. Zhang, Z. Shao, and P. Li. Dimension reduction of texture features based upon independent component analysis. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2006, 31:1055-1058.
    [197] D. Lai, N. Rao, C.-H. Kuo, S. Bhatt, and V. Dogra, Independent component analysis applied to ultrasound speckle texture analysis and tissue characterization, Lyon, France, 2007.
    [198] D.-M. Tsai, Y.-H. Tseng, S.-M. Chao, and C.-H. Yen, Independent component analysis based filter design for defect detection in low-contrast textured images, Hong Kong, China, 2006.
    [199] S. Xiang, G. Zhao, L. Cui, R. Chen, and H. Li. Texture probing via topographic independent component analysis and spectral cluster. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2005, 17:935-940.
    [200] H. B. Barlow. Unsupervised learning. Neural Computation, 1989, 1:295-311.
    [201] B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381:607-609.
    [202] J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo. Class of neural networks for independent component analysis. IEEE Transactions on Neural Networks, 1997, 8:486-504.
    [203] X. Liu and L. Cheng. Independent spectral representations of images for recognition. Journal of the Optical Society of America A: Optics and Image Science, and Vision, July 2003, 20(7):1271-1282.
    [204] A. Hyvarinen and P. Hoyer. Emergence of phase and shift invariant features by decomposition of natural images into independent features subspaces. Neural Computation, 2000, 12(7):1705-1720.
    [205] A. Hyvarinen, P. Hoyer, and M. Inki. Topographic independent component analysis. Neural Computation, 2001, 13(7):1527-1558.
    [206]刘进,厉树忠,张媛.基于混合中值滤波的图像去噪处理.甘肃科技, 2006, 22(9):41-43.
    [207] X. Huang and G. A. Woolsey. Image denoising using Wiener filtering and wavelet thresholding. IEEE International Conference on Multimedia and Expo, 2000, 3:1759-1762.
    [208] L. David, M. Donoho, and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, December 1995, 90(432):1200-1224.
    [209] G. Y. Chen, T. D. Bui, and A. Krzyzak. Image Denoising using Neighbouring Wavelet Coefficients. Integrated Computer-Aided Engineering, 2005, 12(1):99-107.
    [210]查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪.中国图象图形学报, 2005, 10(5):567-570.
    [211]李敏,冯象初,杨文杰.基于全变差和小波硬阈值的图像去噪.信号处理, Sep. 2006, 22(6) 917-919.
    [212] R. Gonzalez and P. Wints. Digital Image Processing. Addison-Wesley Publishing Company,1987.
    [213]杨守义,罗伟雄.一种基于高阶统计量的图像平滑去噪法.中国图象图形学报, 2002, 7A(7):654--657.
    [214] M. Schervish. Theory of Statistics. Springer, 1995.
    [215] D.-T. Pham, P. Garrat, and C. Jutten, Separation of a mixture of independent sources through a maximum likehood approarch, In Proc. EUSIPCO, 1992.
    [216] J. H. Van Hateren and A. Van DeR Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Biological Sciences, 1998, 265:359-366.
    [217] H. H. Yong and S. Amari. Adaptive on-line learning algorithm for blind separation: Maximum entropy andminimum mutual information. Neural computing, 1997, 7:1457-1482.
    [218] F. Takens. Dynamical system and turbulence, lecture notes in mathematics. Springer, 1981.
    [219] N. H. Packard, J. P. Crutchfield, and J. D. Farmers. Geometry from a time series. Phys Rev e t, 1980, (45):712- 716.
    [220] T. Saner, J. A. Yorke, and M. Grotepass. Embedolagy. Statistical Physics, 1991, 65:579-561.
    [221] A. M. Albano. SVD and Grassberger Procaccia algorithm. Phy Rev : A, 1988, 38(20):3017-3026.
    [222] A. M. Fraser. Information and entropy in strange attractors. IEEE Trans on ITMar, 1989, 35(2) 245-262.
    [223] D. Kugiumtzis. State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length. Physica : D, 1996, 95(1):13-28.
    [224] A. Hyvarinen. Fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Processing Letters, 1999, 10:1-5.
    [225]韦岗,陆以勤.混沌、分形理论与语音信号处理.电子学报, 1996, 24 (1) 34 - 39.
    [226] V. Sa and S. Av. The recurrent normalized range method for relevation offractural structure and its application to aIlal s of EEG. Radioelectron Inform, 1998, 3:162-165.
    [227] I. M. Johnstone and B. W. Silverman. Wavelet threshold estimators for data with correlated noise. Journal of Royal Statist. Soc., 1997, B 59:319-351.
    [228] M. Castella and J. C. Pesquet. An iterative blind source separation method for convolutive mixtures of images. Independent Component Analysis and Blind Signal Separation, 2004, 3195:922-929.
    [229] P. Sajda and Y. Y. Zeevi. Guest editorial: Special issue on blind source separation and de-convolution in imaging and image processing. International Journal of Imaging Systems and Technology, 2005, 15:1-1.
    [230] L. F. Guo and M. Garland. The use of entropy minimization for the solution of blind source separation problems in image analysis. Pattern Recognition, 2006, 39:1066-1073.
    [231] N. Zhang, J. Lu, and T. Yahagi. Nonlinear blind source separation method for X-ray image separation. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2006, E89A:924-931.
    [232]史晓非,刘人杰.参数化自适应图像盲分离算法.传感技术学报, 2005, 18(4):919-922.
    [233]周俊临,傅彦,吴跃.基于自适应学习率独立分量分析的图像盲分离.计算机工程与应用, 2007, 43(5):21-23.
    [234]吴正国,唐劲松等译,A.Cichocki等著.自适应盲信号与图像处理.电子工业出版社, 2005.
    [235] F. L. Long and B. Kong. Independent Component Analysis and Applications in the Fingerprint Image Processing. Proceedings of 2004 International Conference on Information Acquisition, 2004, 365-368.
    [236] A. M. Bronstein and M. M. Bronstein, Separation of Semireflective Layers Using Sparse ICA, IEEE International Conference on Acoustics, Speech Signal Processing, 2003.
    [237] N. Vlassis and Y. Motomura. Efficient source adaptivity in independent component analysis. IEEE Transactions on Neural Networks, 2001, 12:559-566.
    [238] S. Choi, A. Cichocki, and S.-I. Amari. Flexible independent component analysis. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2000, 26:25-38.
    [239] H. Snoussi, P. Patanchon, J. F. Mac′?as-P′erez, A. Mohammad-Djafari, and J. Delabrouille. Bayesian blind component separation for cosmic microwave background observations. In Robert L. Fry, editor, Bayesian Inference and Maximum Entropy Methods, August 2001, 125-140.
    [240] B. Rivet, V. Vigneron, A. Paraschiv-Ionescu, and C. Jutten. Wavelet de-noising for blind source separation in noisy mixtures. Independent Component Analysis and Blind Signal Separation, 2004, 3195:263-270.
    [241] M. M. Ichir and A. Mohammad-Djafari. Hidden Markov models for wavelet-based blind source separation. Ieee Transactions on Image Processing, 2006, 15:1887-1899.
    [242] M.-X. Wang, Y. Fang, and H.-P. Hu. ICA method based on 2-D wavelet transform and its application to image separation. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2006, 28(3):471-475.
    [243] I. Geracei, F. Cricco, and A. Tonazzini, An extended maximum likelihood approach for the robust blind separation of autocorrelated images from noisymixtures, Proc. ICA2004, Granada, Spain, 2004.
    [244]曾生根,王小敏,范瑞彬等.基于独立分量分析的遥感图像分类技术.遥感学报, 2004, 8(2):150-157.
    [245]曾生根,朱宁波,包晔等.一种改进的快速独立分量分析算法及其在图像分离中的应用.中国图象图形学报, 2003, 8(10):1159-1165.
    [246] E. E. Kuruoglu, L. Ledini, and M. T. Paralore. Source separation in astrophysical maps using independent component analysis. Neural Networks, 2003, 16:479-491.
    [247] J. F. Cardoso and P. Common. Independent component analysis: a survey of some algebraic methods. Proceedings of IEEE International Symposium on Circuits and Systems, 1996, 2:93-96.
    [248]王明祥,方勇,胡海平.基于二维小波变换的独立分量分析方法及其在图像分离中的应用.电子与信息学报, 2006, 28(3):471-475.
    [249] D. T. Pham and P. Garat. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans on Image Processing, 1997, 45(7):1712-1725.
    [250] E. J. Candes. Ridgelets: Theory and Applications. USA: Department of Statistics, Stanford University, 1998.
    [251] E. J. Candes. Monoscale Ridgelets for the Representation of Image with Edges. USA: Department of Statistics, Stanford University, 1999.
    [252] M. N. Do and M. Vetterli. Contourlets. Academic Press, 2002.
    [253] M. N. Do and M. Vetterli. Contourlets: a new directional multiresolution image representation. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Syatems and Computers, 2002, 1:497-501.
    [254] M. C. Jones and R. Sibson. What is projection pursuit? J. of the royal Statistical Society, ser. A, 1987, 150:1-36.
    [255] D. G. Luenberger. Optimization by vector space methods. John Wiley, 1969.
    [256] A. Hyvarinen. Independent component analysis for time-dependent stochastic processes. In Proceedings of the International Conference on Artificial Neural Networks (ICANN’98), Skovde, Sweden 1998, 135-140.
    [257] R. Rockafellar. Convex analysis. Princeton University Press, 1970.
    [258] J. D. Peter. Digital Change Detection Techniques. Civilian and Military Application, U K, Taylar & Francis Ltd, 1999, 231-235.
    [259] M. Soumekh. Moving Target Detection and Automatic Target Recognition via Signal Subspace Fusion of Images. In SPIE, Orlando, 1998, 120-131.
    [260] A. J. Lipton, H. Fujiyoshi, and R. S. Patil. Moving target classification and tracking from real-time video. IEEE Trasactions on WorkshoP Application of Computer Vision, 1998, 8-14.
    [261] A. Behrad, A. Shahrokni, and S. A. Madani, A robust vision-based moving target detection and tracking system, Procedings of Image and Vision Computing Conference, University of Otago, Dunedin, New Zealand, 2001.
    [262] E. Sayrol and A. Gasull. Motion estimation using higher order statistics. IEEE Trans on Image Processing, 1996, 5(6):1077-1083.
    [263] M. P. Dubuisson and A. K. Jain. Contour extraction of moving objects in complex outdoor scenes. International Journalof Computer Vision, 1995, 14(1):83-105.
    [264] Y. Mae, Y. Shirai, and J. Miura. Object tracking in cluttered background based on optical flow and edges. Proc. 13th Int. Conf. on Pattern Recognition, 1996, 1:196-200.
    [265] R. Okada, Y. Shirai, and J. Miura. Object tracking based on optical flow and depth. Proc. of IEEE/SICE/RSJ Int. Conf. on MFI, 1996, 565-571.
    [266] T. Aack and A. Kaup. Statisics model based change detection in moving video. Signal Processing, 1993, 31:165-180.
    [267]魏波.点时空约束图像目标跟踪理论与实时实现技术研究.西安:电子科技大学博士论文, 2000.
    [268] Y. Rosenberg and M. Werman. Representing local motions as a probability distribution matrix for object tracking and other applications. IUW'97 DARPA, 1997,
    [269] S. Mallat and W. L. Hwang. Singularity detection and processing with wavelets. IEEE Trans on IT, 1992, 38(2):617-643.
    [270] D. P. Casasent and J. S. Smokelin. Wavelet and Gabor transforms for detection. Optical Engineering, 1992, 31(4):1893-1898.
    [271]李红艳.图像低信噪比小目标检测与跟踪算法研究.西安:西安电子科技大学博士论文, 2000.
    [272] C. E. Naniell, D. J. Kemsley, and W. Lincoln, P. Artificial neural networks for automatic target recognition. Optical Engineering, 1992, 31(12):2521-2530.
    [273] S. K. Rogers, J. M. Colombi, and C. E. Matrtin. Neural networks for automatic target recognition. Neural Networks, 1995, 18(7/8):1153-1184.
    [274] W. A. Thoet, T. G. Rainey, and D. W. Brettle. ANVIL neural network program for three-dimensional automatic target recognition. Optical Engineering, 1992, 31(12):2532-2539.
    [275]彭复员,周鑫杰等.基于K-L变换的红外图像弱小目标检测与分析.红外与毫米波学报, 2001, 20(3):78-80.
    [276]徐永兵,裴先登,夏涌.基于向量小波变换及Fisher算法的红外弱小目标检测.红外技术, 2004, 26(1):17-20.
    [277] A. Hyvarinen. An alternative approach to infomax and independent component analysis. Neurocomputing, 2002, 44:1089-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700