无轴承开关磁阻全周期发电机励磁优化的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开关磁阻发电机与永磁电机相比在功率密度方面存在着不足。本文将无轴承技术和开关磁阻电机的发电技术相结合,研究无轴承开关磁阻电机的全周期发电功能,有望在保持开关磁阻发电机的高速适应性的同时改善其功率密度的局限性。
     本文推导了全周期发电机的数学模型,建立了全周期发电机的MATLAB仿真模型,并搭建了全周期发电机的实验平台。实验平台主要包括数字控制系统、功率驱动系统、全周期发电机本体、拖动用异步电动机。
     在此基础上,提出了加宽导通励磁控制策略,在不增加控制复杂性的基础上优化励磁,并解决悬浮力凹陷问题。其后,从开关磁阻发电机的相电流解析及应用出发,研究了电流斩波控制方式下的无轴承开关磁阻全周期发电机,求解其相电流,推导其磁链电流关系式进而分析其能量转换关系,并总结出开通、关断角度的优化方法,进一步提高输出电压。通过仿真和实验证明了加宽导通策略的优越性,验证了相电流解析和开关角度优化方法的有效性。
     最后展望了下一步的研究工作。
     本课题受国家自然科学基金(50877036)的支持。
The power density of switched reluctance generators (SRGs) is lower than that of permanent magnet generators. Combining SRGs with the technology of bearingless, the full-period bearingless switched reluctance generator (FPBSRG) is studied, which is hopeful to improve the limitation of power density in SRGs as well as holding the high-speed adaptability of them.
     Firstly, the mathematical model is deduced, and the simulation model is built in MATLAB. Meanwhile, the experimental platform is built, which contains digital control system, power drive system, FPBSRG, and asynchronous motor.
     Based on the above works, the wide-excitation strategy is proposed to increase excitation and improve levitation force as well as holding the control complexity. The FPBSRG in chopping mode is researched based on the analysis and applications of SRGs. The phase current is obtained, and the expression between flux-linkage and current is also deduced to analyze the energy conversion. The optimization method of firing angles is proposed to increase the output voltage. The simulations and experiments are included to validate the advantage of wide-excitation strategy and verify the effectiveness of current analysis. And the effectiveness of firing angle optimization method is also verified.
     In the last part of the thesis, the prospect of research is presented.
     This subject is supported by NSFC (NO. 50877036).
引文
[1] R. Bosch. Development of a bearingless motor[C]. In: Proc. Int. Conf. Electric. Machines (ICEM’88), 1988, pp: 373~375.
    [2] J. Bichsel. The bearingless electrical machine[C]. In: Proc. Int. Symp. Magnetic Suspension Technology, NASA Langley Res. Center, Hampton, 1991, pp: 561~573.
    [3] T. Fukao. The evolution of motor drive technologies[C]. Development of bearingless motors[C]. In: Proc. 3th Conf. Power Electronics and Motion Control (IPEMC 2000), Beijing, China, 2000, pp: 33~38.
    [4] A. O. Salazar, A. Chiba, T. Fukao. A review of developments in bearingless motors[C]. In: Proc. 7th Int. Symp. Magnetic Bearings, ETH Zurich, Switzerland, 2000, pp: 335~340.
    [5] W. Amrhein, S. Silber, K. Nenninger. Developments on bearingless drive technology[C]. In: Proc. 8th Int. Symp. Magnetic Bearings, Japan, 2002, pp: 229~234.
    [6] M. A. Rahaman, T. Fukao, T. Ohishi. Principles and developments of bearingless AC motors [C]. In: Proc. IPEC, Yokohama, Japan, 1995, pp: 1334~1339.
    [7] A. Chiba, T. Deido, T. Fukao, et al.. An analysis of bearingless AC motors[J]. IEEE Trans. Energy Convers., 1994, 9(1), pp: 61~68.
    [8]邓智泉,严仰光.无轴承交流电机的基本理论和研究现状[J].电工技术学报,2000,15(2):29~35.
    [9] A. Radun. Generating with the switched-reluctance motor[C]. In: Proc. IEEE APEC’94, 1994, pp: 41~47.
    [10] D. A. Torrey. Switched reluctance generators and their control[J]. IEEE Trans. Ind. Electron., 2002, 49(1), pp: 3~14.
    [11]张琦雪.开关磁阻风力发电机系统研究与实践,[硕士学位论文].南京:南京航空航天大学,2000.
    [12]刘闯.开关磁阻电机起动/发电系统理论研究与工程实践,[博士学位论文].南京:南京航空航天大学,2000.
    [13]吴韬.小功率开关磁阻发电系统的理论研究与实践,[硕士学位论文].南京:南京航空航天大学,2003.
    [14]李声晋.开关磁阻起动/发电系统研究与实践,[博士学位论文].西安:西安交通大学,2000.
    [15]茆美琴,余世杰,苏建徽,等.开关磁阻发电机用于直接驱动、变速运行风力发电系统的评估[J].太阳能学报,2005,26(3):386~390.
    [16] D. A. Terrey. Variable-reluctance generators in wind energy system[C]. In: Proc. IEEE Specialists Conf. Power Electronics, Seattle, WA, 1993, pp: 561~567.
    [17]张慧,潘再平.开关磁阻发电机电感的非线性数学模型与应用[J].中小型电机,2003,30(3):6~9.
    [18]严利.基于MATLAB/SIMULINK开关磁阻电机非线性建模方法研究与实践,[硕士学位论文].南京:南京航空航天大学,2005.
    [19]钱燕娟.7.5kW开关磁阻起动/发电平台研发,[硕士学位论文].南京:南京航空航天大学,2007.
    [20]孙晓明,赵德安,李瑶,等.基于MATLAB的开关磁阻电机非线性建模仿真[J].电力系统及其自动化学报,2006,18(1):67~70.
    [21] Song Shoujun, Liu Weiguo. A novel method for nonlinear modeling and dynamic simulation of a four-phase switched reluctance generator system based on MATLAB/SIMULINK[C]. In: Proc. 2th IEEE Conf. Industrial Electronics and Applications, 2007, pp: 1509~1514.
    [22]杨静,袁爱平.基于MATLAB的开关磁阻电动机建模与仿真[J].江苏理工大学学报(自然科学版),2000,21(3):74~77.
    [23]修杰,夏长亮,王世宇.开关磁阻电机的Pi-sigma模糊神经网络建模[J].电工技术学报,2009,24(8):46~51.
    [24]张志宝,谭国俊,吕现钊.神经网络在开关磁阻电机建模中的应用[J].电机与控制应用,2009,36(2):23~29.
    [25]周素莹,林辉.无位置传感器的开关磁阻电机转子位置检测技术[J].电气传动,2006,36(2):8~16.
    [26]司利云,林辉.开关磁阻电机无位置检测方法及关键技术研究综述[J].测控技术,2008,27(4):1~6.
    [27] A. Krishnan. Sensorless operation of SRM drives[C]. In: Proc. 27th Annu. IEEE Conf., 2001, 29(2), pp: 1498~1503.
    [28] M. Ehsani, B. Fahimi. Elimination of position sensors in switched reluctance motor drives[J]. IEEE Trans. Ind. Electron., 2002, 49(1), pp: 40~47.
    [29]邱亦慧,詹琼华,马志源,等.基于简化磁链法的开关磁阻电机间接位置检测[J].中国电机工程学报,2001,21(10):59~62.
    [30] A. J. Sanchez, P. Andrada, B. Blanque, et al.. Post-fault performance of a fault-tolerant switched reluctance motor drive[C]. In: Proc. 11th IEEE European Conf. Power Electronics andApplications, 2005, pp: 1~8.
    [31] I. Husain, N. M. Anwa. Fault analysis of switched reluctance motor drives[C]. In: Proc. EMDC'99, 1999, pp: 41~43.
    [32] S. Gopalakrishnan, M. OmekandaAvoki, B. Lequesne. Classification and remediation of electrical faults in the switched reluctance drive[J]. IEEE Trans. Ind. Appl., 2006, 42, pp: 479~486.
    [33] K. V. Sharma, S. S. Murtthy, B. Singh. Analysis of switched reluctance motor dive under fault conditions[C]. In: Proc. 33th IAS Conf., 1998, pp: 553~562.
    [34]周强,严加根,刘闯,等.航空开关磁阻发电机双通道容错性能研究[J].航空学报,2007,28(5):1146~1152.
    [35] D. Gerling, A. Schramm. Analytical comparison of two different redundancy concepts for switched reluctance machines[C]. In: Proc. IEEE Int. Conf. Industrial Technology, 2006, pp: 871~876.
    [36] J. Faiz, R. Fazai. Optimal excitation angles of a high speed switched reluctance generator by efficiency maximization[C]. In: Proc. Conf. Power Electronics and Motion Control, 2006, pp: 287~291.
    [37] E. Mese, Y. Sozer, J. M. Kokernak, et al.. Optimal excitation of a high speed switched reluctance generator[C]. In: Proc. Conf. Applied Power Electronics, 2000(1), pp: 362~368.
    [38] M. Christos, K. Iordanis. Optimizing performance in current-controlled switched reluctance generators[J]. IEEE Trans. Energy Convers., 2005, 20(3), pp: 556~565.
    [39]全力,颜科,韦银,等.基于Ansoft的开关磁阻电机强化励磁分析与仿真[J].微电机,2006,39(8):60~62.
    [40]刘羡飞,茅靖峰.开关磁阻发电机角度优化的仿真研究[J].南通工学院学报,2004,3(1):59~62.
    [41] R. V. Arthur, R. Eike. Switched reluctance machine including permanent magnet stator poles[P]. United States Patent, Patent Number: 5327069, 1994.
    [42] Li Yue, L. Jerry. Reluctance machine with permanent magnet rotor excitations[P]. United States Patent, Patent Number: 5973431, 1999.
    [43] Tang Yifan. Doubly-fed switched reluctance machine[P]. United States Patent, Patent Number: 5811905, 1998.
    [44] Tang Yifan. Switched reluctance motor with damping windings[P]. United States Patent, Patent Number: 6008561, 1999.
    [45] A. Chiba, K. Chida, T. Fukao. Principles and characteristics of a reluctance motor with windings of magnetic bearing[C]. In: Proc. PECTokyo, 1990, pp: 919~926.
    [46] M. Takemoto, A. Chiba, T. Fukao. A feed-forward compensator for vibration reduction considering magnetic attraction force in bearingless switched reluctance motors[C]. In: Proc. 7th Int. Symp. Magnetic Bearings, ETH Zurich, 2000, pp: 395~400.
    [47] M. Takemoto, K. Shimada, A. Chiba, et al.. A design and characteristics of switched reluctance type bearingless motors[C]. In: Proc. 4th Int. Symp. Magnetic Suspension Technology, NASA/CP-1998-207654, May 1998, pp: 49~63.
    [48] M. Takemoto, A. Chiba, T. Fukao. A new control method of bearingless switched reluctance motors using square-wave currents[C]. In: Proc. 2000 IEEE Winter Meeting Power Engineering Society, Singapore, CD-ROM, Jan. 2000, pp: 375~380.
    [49] M. Takemoto, A. Chiba, T. Fukao. A method of determining advanced angle of Square-wave currents in a bearingless switched motor[J]. IEEE Trans. Ind. Appl., 2001, 37(6), pp: 1702~1709.
    [50] M. Takemoto, H. Suzuki, A. Chiba, et al.. Improved analysis of a bearingless switched reluctance motor[J]. IEEE Trans. Ind. Appl., 2001, 37(1), pp: 26~34.
    [51] M. Takemoto, A. Chiba, H. Suzuki, et al.. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation[J]. IEEE Trans. Ind. Appl., 2004, 40(1), pp: 103~112.
    [52] A. Chiba, T. Fukao, C. Michioka. Switched reluctance rotator[P]. United States Patent, Patent Number: 005880549, 1999.
    [53] Ye Shuang, Deng Zhiquan, Yan Yangguang. New formulae based on fourier extension for bearingless switched reluctance motors[C]. In: Proc. 8th Int. Symp. Magnetic Bearings (ISMB-8), Mito, Japan, 2002, pp: 53~58.
    [54]邓智泉,杨钢,张媛,等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139~146.
    [55]曹鑫,邓智泉,杨钢,等.新型无轴承开关磁阻电机双相导通数学模型[J].电工技术学报,2006,21(4):50~56.
    [56]张媛,邓智泉.无轴承开关磁阻电机控制系统的设计与实现[J].航空学报,2006,27(1):77~81.
    [57]杨钢,邓智泉,张媛,等.无轴承开关磁阻电机实验平台的设计与实现[J].中国电机工程学报,2006,26(22):97~103.
    [58]杨钢,邓智泉,曹鑫,等.基于悬浮绕组三相半桥功率变换器的无轴承开关磁阻电机绕组结构分析[J].中国电机工程学报,2008,28(27):95~103.
    [59]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻电机独立控制策略的研究[J].中国电机工程学报,2008,28(24):94~100.
    [60]杨钢,邓智泉,曹鑫,等.适用于无轴承开关磁阻电机的功率变换器设计[J].航空学报,2008,29(1):110~116.
    [61]范东,杨艳,邓智泉,等.无轴承高速开关磁阻电机设计中的关键问题[J].电机与控制学报,2006,10(6):547~552.
    [62] Yang Gang, Deng Zhiquan, Cao Xin, et al.. Optimal winding arrangements of a bearingless switched reluctance motor[J]. IEEE Trans. Power Electron., 2008, 23(6), pp: 3056~3066.
    [63] Cao Xin, Deng Zhiquan, Yang Gang, et al.. Independent control of average torque and radial force in bearingless switched-reluctance motors with hybrid excitations[J]. IEEE Trans. Power Electron., 2009, 24(5), pp: 1376~1385.
    [64]曹鑫.无轴承开关磁阻发电系统的基础研究,[硕士学位论文].南京:南京航空航天大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700