全固化Yb:YAG锁模激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固化飞秒激光器是超短脉冲激光器中一个新颖的研究方向,它体积小、成
    本低、波长多样化,是未来超短脉冲激光器发展的必然趋势,本文对全固化Yb:YAG
    锁模激光器进行了理论和实验研究,论文工作的主要内容包括以下几个方面: 
     ? .   综述了全固化激光器的基本特点、发展历史和现状。并简单介绍了
     半导体激光器的耦合方式;阐述并分析了飞秒激光器及全固化飞秒
     激光器的发展状况及应用。 
     ? .   对实验所需解决的理论问题进行了研究。建立了基于 Yb:YAG 晶体
     的准四能级速率方程并对 Yb:YAG 激光器的阈值和输入-输出特性
     进行了分析。进行了谐振腔设计并对锁模机制进行了初步研究。 
     ? .   简单介绍了半导体可饱和吸收镜(SESAM),对三种被动锁模理论模
     型进行了讨论。并对稳定 CW 锁模的条件进行了分析。 
     ? .   提出了切实可行的色散补偿方案。在理论上推导了用于超短脉冲色
     散补偿的棱镜对的负 GDD 和玻璃材料引入的正 GVD。在理论推导的
     基础上对实验中所需的棱镜对进行了具体的设计。 
     ? .   将 Yb:YAG 锁模激光器的实验研究进行了介绍,介绍并简单分析了
     实验现象,最后给出了实验结果。详细描述了实验所用到的几种
     SESAM 的结构。实现了稳定的 CW 锁模,锁模脉冲宽度 4ps,锁模平
     均功率 200mW。 
     ? .   在论文的最后一章里,我们对论文工作进行了总结;根据实验取得
     的成果对这个课题的前景进行了展望。
In this thesis, theoretical and experimental studies about all-solid-state Yb:YAG
    mode-locked laser was presented. The main contents are as follows:
     1. The development and application of all-solid-state lasers and femtosecond
     lasers are introduced. A brief introduce on the collimation and focus
     system of diode lasers was presented.
     2. The theoretical problems that needed in the experiment were studied.
     From the theory of rate equations, the dynamic behaviors of
     diode-pumped quasi-four-level Yb:YAG laser were investigated, which
     would be the theoretical groundwork for all-solid-state femtosecond
     Yb:YAG lasers. In this chapter, the cavity of the laser and mode-lock
     mechanism were studied.
     3. A brief introduce of semiconductor saturable absorber mirror (SESAM)
     was presented. The three theoretical models ofpassive mode-locking were
     discussed. The condition for stable mode-locking with a SESAM was
     analysed.
     4. A feasible dispersion compensation scheme was designed. The negative
     GDD created by prism pair and the positive GVD induced by prism
     material were theoretically derived. Based on the theoretically formulas,
     real prism pair needed in our experiment was designed.
     5. The experimental studies of Yb:YAG laser was introduced, and the
     phenomena and results of the experiment were presented. The SESAMs’
     used in our laser were detailedly introduced. Stable CW mode-locking
     was obtained. The laser generates as much as 200mW average power at
     1047nm in trains of 4 picoseconds pulses with repetitionrate 200MHz.
     6. In the last chapter, a summarization and a prospect of our work were
     presented.
引文
[1] Roger Newman, Excitation of the Nd3+ fluorescence in CaWO4 by recombination
     radiation in CaAs, J. Appl. Phys., 1963, 34:437~440
    [2] R. J. Keys and T. M. Quist, Injection luminescent pumping of CaF2:U3+ with CaAs
     diode lasers, Appl. Opt., 1964, 4:50~54
    [3] Monte Ross, YAG laser operation by semiconductor laser pumping, Proceeding of
     the IEEE, 1968, 56:196~201
    [4] F. W. Ostermayer, Jr., R. B. Allen and E. G. Dierschke, Room-temperature CW
     operation of a GaAs1-xPx diode-pumped Nd:YAG laser, Appl. Phys. Lett., 1971,
     18:289~295
    [5] S. C. Tidwell, J. F. Seamans, and M. S. Bowers, High efficiency 60-W TEM00
     diode-end-pumped Nd:YAG laser, Opt. Lett., 1993, 18:116~221
    [6] Susumu Konno, Shuichi Fujikawa and Koji Yasui, 80 W CW TEM00 1064nm
     beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser, Appl.
     Phys., Lett., 1997, 70:2650~2656
    [7] B. Comasky et al., CLEO1993, CW15
    [8] E. C. Honea, R. J. Beach, S. C. Mitchell et al., High-power dual-rod Yb:YAG
     laser, Opt. Lett., 2000, 25:805~809
    [9] Project yields a pair of 3.3-kW solid-state lasers, Laser Focus World, July
     1999:38~40
    [10] 姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995,
     61~74
    [11]Tetsuo Kojima, Susumu Konno, Shuichi Fujikawa et al., 20-W ultraviolet-beam
     generation by fourth-harmonic generation of an all-solid-state laser, Opt. Lett.,
     2000, 25:58~64
    [12] 从征,二极管泵固体激光器产生 315W 脉冲绿光,激光与光电子进展,1999,
     1:40~42
    [13] J. A. Valdmanis, R. L. Fork and J. P. Gorden, Generation of optical pulse as short
     as 27 femtosecond intracavity directly from a laser and balancing self-phase
     modulation, group-velocity, saturable absorption and saturable gain, Opt. Lett.,
     1995, 10:131~140
    [14] D. E. Spence, P. N. Kean, and W. Sibbett, 60-fsec pulse generation from a s elf
     - 52 -
    
    
    天津大学硕士学位论文 参考文献
     mode-locked Ti:sapphire laser, Opt. Lett., 1991, 16:42~42
    [15] C. P. Huang, M. T. Asaki, S. Backus, M. M. Murname and H. C. Kapteyn, 17-fs
     pulses from a self-mode-locked Ti:sapphire laser, Opt. Lett., 1992,
     17:1289~1294
    [16] J. P. Zhou, G. Taft, C. P. Huang, M. M. Murname and H. C. Kapteyn, pulse
     evolution in a broad-bandwidth Ti:sapphire laser, Opt. Lett., 1994, 19:1149~1154
    [17] A. Stingl, C. Spielmann and F. Krausz, Generation of 11-fs pulses from a
     Ti:sapphire laser without the use of prisms, Opt. Lett., 1994, 19:204~210
    [18] A. Stingl, M. Lenzner, C. Spielmann and F. Krausz, Sub-10fs
     mirror-dispersion-controlled Ti:sapphire laser, Opt. Lett., 1995, 20:602~609
    [19] M. Nisoli, S. De. Silvestri, O. Svelto et al., Compression of high-energy laser
     pulses below 5 fs, Opt. Lett., 1997, 22:522~531
    [20] U. Morger, F. X. Kartner, S. H. Cho, Y. Chen, et al., Sub-two-circle pulse from a
     Kerr-lens mode-locked Ti:sapphire laser, Opt. Lett., 1999, 24:411~417
    [21] T. Beddard, W. Sibbett, D. T. Reid, et al., High-average-power, 1-MW
     peak-power self-mode-locked Ti:sapphire oscillator, Opt. Lett., 1999,
     24:163~169
    [22] 张伟力,K. S. Wong, 邢歧荣 等,全固化飞秒激光器研究进展,光电子? 激
     光,1999, 10:282~285
    [23] P. M. Mellish, P. M. W. French, J. R. Taylor, et al., All-solid-state femtosecond
     diode-pumped Cr:LiSAF laser, Electron. Lett., 1994, 30:223~224
    [24] I. T. Sorokina, E.Sorokin, et al., 14-fs pulse generation in Kerr-lens mode-locked
     prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency
     shift, Opt. Lett., 1997, 30:1716~1718
    [25] V. P. Yanovsky, F. W. Wise, et al., Kerr-lens mode-locked Cr:LiSGaF laser, Opt.
     Lett., 1995, 20:1304~1306
    [26] W. Zhang, Q. Wang, et al., Operation of a Kerr-lens mode-locked Cr:LiSGaF
     laser, Chin. Phys. Lett., 1998, 15:718~720
    [27] 张伟力,戴建明,张丽哲 等,激光二极管抽运的全固化、自启动 Cr:LiSGaF
     自锁模激光器,光学学报,2000, 20:575~579
    [28] D. Kopf, F. X. Kartner, et al., Diode-pumped mode-locked Nd:glass with an
     antiresonant Fabry-Perot saturable absorbers, Opt. Lett., 1995, 23:1169~1171
    [29] C. H?nninger, G. Zhang, et al., Femtosecond Yb:YAG laser using semiconductor
     saturable absorbers, Opt. Lett., 1995, 20:2402~2404
    [30] C. H?nninger, F. M. Genoud, et al., Efficient and tunable diode-pimped
     femtosecond Yb:glass lasers, Opt. Lett., 1998, 23:126~128
    [31] Y. P. Tong, P. M. W. French, et al., All-solid-state femtosecond source in the near
     - 53 -
    
    
    天津大学硕士学位论文 参考文献
     infrared, Opt. Commun., 1997, 136:235~238
    [32] Y. Ishida, K. Naganuma, Compact diode-pumped all-solid-state femtosecond
     Cr4+:YAG laser, Opt. Lett., 1996, 21:51~53
    [33] M. E. Ferman, M. Hofer, et al., Femtosecond fiber laser, Electron. Lett., 1990,
     26:1737~1738
    [34] D. J. Jones, H. A. Haus, E. P. Ippen, Subpicosecond solitons in an actively
     mode-locked fiber laser, Opt. Lett., 1996, 21:1818~1820]
    [35] D. J. Richardson, R. P. Chamberlain, et al., Experimental demonstration of 100
     GHz dark soliton generation and propagation using a dispersion decreasing fiber,
     Electron. Lett., 1994, 30:1326~1327
    [36] Y. Y. Fan, R. L. Byer, Modeling and CW operation of quasi-three-level 946 nm
     Nd:YAG laser, IEEE J. Quantum Electron, 1987, QE-23:605~612
    [37] 刘晔,李港,陈檬等,LD 泵浦准三能级系统的理论分析及试验优化设计,
     激光杂志,2000, 21:9~10
    [38] H. W. Mocker and R. J. Collins, Mode competition and self-locking effects in a
     Q-switched ruby laser, Appl. Phys. Lett., 1965, 7:270~273
    [39] A. J. DeMaria, D. A. Stetser, and H. Heynau, Self mode-locking of lasers with
     saturable absorbers, Appl. Phys. Lett., 1966, 8:174~176,.
    [40] P. W. Smith, Mode-locking of lasers, Proc. IEEE, 1970, 58:1342~1357
    [41] H. A. Haus, Parameter ranges for CW passive modelocking, IEEE J. Quantum
     Electron., 1976, QE-12:169~176
    [42] U. Keller, D. A. B. Miller, G. D. Boyd, et al., Solid-state low-loss intracavity
     saturable absorber for Nd:YLF lasers: An antiresonant semiconductor
     Fabry–Perot saturable absorber,Opt. Lett., 1992, 17:505~507
    [43] U. Keller, T. H. Chiu, and J. F. Ferguson, Self-starting Femtosecond
     mode-locked Nd:glass laser using intracavity saturable absorbers, Opt. Lett.,
     1993, 18:1077~1079
    [44] U. Keller, Ultrafast all-solid-state laser technology, Appl. Phys. B, 1994,
     58:347~363
    [45] L. R. Brovelli, U. Keller, and T. H. Chiu, Design and operation ofantiresonant
     Fabry–Perot saturable semiconductor absorbers for modelocked solid-state lasers,
     J. Opt. Soc. Amer. B, 1995, 12:311~322
    [46] F. X. K¨artner, L. R. Brovelli, D. Kopf, et al., Control of solid-state laser
     dynamics by semiconductor devices, Opt. Eng., 1995, 34:2024~2036
    [47] T. B. Norris, W. Sha, W. J. Schaff, et al., Transient absorption of
     low-temperature molecular-beamepitaxy grown GaAs, Picosecond Electronics
     and Optoelectronics, T. C. L. Sollner and J. Shah, Eds. Washington, DC: Opt.
     - 54 -
    
    
    天津大学硕士学位论文 参考文献
     Soc. Amer., 1991, 9: 44~247.
    [48] U. Siegner, R. Fluck, G. Zhang, et al., Ultrafast high-intensity nonlinear
     absorption dynamics in low-temperature grown gallium arsenide, Appl. Phys.
     Lett., 1996, 69:2566~2568
    [49] H. A. Haus, Theory of mode locking with a slow saturable absorber, IEEE J.
     Quantum Electron., 1975, 11:736~746
    [50] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Structures for additive pulse
     modelocking, J. Opt. Soc. Amer. B, 1991, 8:2068~2076
    [51] F. X. K¨artner and U. Keller, Stabilization of soliton-like pulses with a slow
     saturable absorber, Opt. Lett., 1995, 20:16~18
    [52] I. D. Jung, F. X. K¨artner, L. R. Brovelli, et al., Experimental verification of
     soliton modelocking using only a slowsaturable absorber, Opt. Lett., 1995,
     20:1892~1894
    [53] F. Salin, J. Squier, and M. Pich′e, Modelocking of Ti:Sapphire lasers and
     self-focusing: A Gaussian approximation, Opt. Lett. 1991, 16:1674~1676
    [54] I. P. Christov, H. C. Kapteyn, M. M. Murnane, et al., Space-time focusing of
     femtosecond pulses in a Ti:sapphire laser, Opt. Lett., 1995, 20:309~311
    [55] S. T. Cundiff, W. H. Knox, E. P. Ippen, et al., Frequencydependent mode size in
     broadband Kerr-lens mode locking, Opt. Lett., 1996, 21:662~664
    [56] G. Cerullo, S. De Silvestri, V. Magni, et al., Resonators for Kerr-lens
     mode-locked femtosecond Ti:sapphire lasers, Opt. Lett., 1994, 19:807~809
    [57] G. Cerullo, S. De Silvestri, and V. Magni, Self-starting Kerr lens modelocking of
     a Ti:Sapphire laser, Opt. Lett., 1994, 19:1040~1042
    [58] F. X. K¨artner, D. Kopf, and U. Keller, Solitary pulse stabilization and shortening
     in actively mode-locked lasers, J. Opt. Soc. Amer. B, 1995, 12:486~496
    [59] J. Aus der Au, D. Kopf, F. Morier-Genoud, et al., 60 fs pulses from a
     diode-pumped Nd:glass laser, Opt. Lett., 1997, 22:307~309
    [60] C. H?nninger, R. Paschotta, M. Graf, et al., Ultrafast ytterbium-doped bulk lasers
     and laser amplifiers, Appl. Phys. B, 1999, 69:3-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700