内电光调制氦氖气体激光器的研制及其在腔衰荡损耗测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氦氖气体激光具有优质的光学质量,其单色性好、线宽窄、发散角小、频率稳定性高、功率稳定度好。调制后的氦氖气体激光,广泛地应用在光学测量、光学传感以及光学研究等领域。外电光调制是氦氖激光普遍采用的一种调制方式,但由于调制装置的核心器件——电光晶体的半波电压很高,因此外电光调制的调制深度不大,调制效率不高。半导体激光调制方便,但相比氦氖气体激光而言,它的光束质量较差,稳定性不够好,从而限制了其在很多场合的应用。如果能将两者的优点结合起来,研制出调制效率高、调制深度大、调制方便并且光束质量好的氦氖气体激光器,可以对调制激光器的应用产生一定的促进作用。一个有代表性的例子是调制氦氖气体激光器用于腔衰荡测量时,内调制方式的调制电压远远小于外调制方式。本文从结构方案、器件选择、调制理论、配置优化等方面对内电光调制氦氖气体激光器进行了较为系统的研究,并且成功地构建了一套基于内调制氦氖气体激光器的腔衰荡损耗测量系统。本文的主要内容和结论如下:
     1.设计了一种由BBO(β-BaB2BO4)电光晶体、布儒斯特窗和微晶玻璃激光器构成的内电光调制氦氖气体激光器。通过对综合性能的比较,结合实际应用的需求,选择了合适的内调制激光器器件和设计方案。对激光的内电光调制原理进行了分析,理论上证实了内调制方法调制效率高、调制深度大。
     2.系统研究了影响内调制氦氖气体激光器调制效率的各种因素,包括布儒斯特窗个数、调制元件在腔内的位置分布、晶体安装方位角等等。通过理论和实验研究,发现晶体光轴相对激光器腔轴的倾斜会对激光的调制效率造成非常大的影响。以激光的关断电压为例,仅仅几分的倾斜角,就可能导致激光的关断电压由几百伏变成数千伏。理论上给出了激光调制达到预定指标所允许的晶体安装误差裕量。通过分析,最终得到了内调制激光器的最佳结构配置方案:布儒斯特窗数目为1个;晶体光轴与激光器腔轴平行;激光在布儒斯特窗上的入射面平行于晶体的x轴或y轴。对于同一种电光晶体,在最佳配置状态下,内调制激光器的关断电压仅仅约为外调制方式的1/25。
     3.通过氦氖气体激光器的速率方程,仿真了激光开启和关断的瞬态变化过程,发现内调制氦氖气体激光器的关断时间比电光效应的弛豫时间长,一般为10ns以上。发现并在实验上印证了激光关断时,内调制激光器对加载在晶体上的电压振荡具有抑制作用,即关断电压的振荡对激光关断光强波形影响不大。当内调制激光器用于腔衰荡损耗测量时,抑制效应大大降低了对晶体施加电压的设计要求。
     4.根据理论和实验分析得出的结论,优化了调制激光器系统的设计参数,结合实际的工程技术经验,设计了一种便于晶体安装调整、激光输出稳定的一体化内电光调制氦氖气体激光器。
     5.对激光外调制腔衰荡损耗测量系统进行了初步的研究。激光外调制腔衰荡测量的一个技术瓶颈为电光晶体上施加电压信号的设计。根据电压信号的要求,找到了一种电压幅度为数千伏、上升沿或下降沿达纳秒量级的快沿高压波形发生器设计方案,并利用Pspice进行了仿真分析。对容易造成电路工作失效的原因进行了剖析,并提出了解决方案。
     6.采用内电光调制氦氖气体激光器设计了一套腔衰荡损耗测量系统。对系统的各个组成部分进行了详细的介绍说明。分析了光电探测器带宽对测量结果造成的影响。设计了测量系统的外围工作电路,并对其性能进行了测试。构建了直腔和折叠腔两种无源腔结构,对腔的损耗进行了测量。测量结果与半导体激光器的测量结果做了对比,两者的测量结果很接近,且氦氖激光的测量结果方差更小。测量得到了其中一个高反膜损耗为77.423ppm,对应的反射率为99.99225%。
He-Ne gas laser has an excellent optical quality for its high monochromaticity,narrow linewidth, small diverging angle, good frequency stability and high intensitystability. After being modulated, it is used extensively in the field of opticalmeasurement, optical sensing and optical research etc.. External electro-optical (EO)modulation is generally employed for He-Ne gas laser. Unfortunately, due to the highhalf-wave voltage of EO crystal which is the critical element in a modulation system,external EO modulation has the disadvantage of limited modulation depth and lowmodulation efficiency. Semiconductor laser can be modulated easily, but compared withHe-Ne gas laser, its optical quality and stability is relatively bad, which limits itsapplication. Combining the merits of He-Ne gas laser and semiconductor laser, aninternal modulated He-Ne gas laser with deep modulation depth, high modulationefficiency, easy modulation method and excellent optical quality, would account for theapplication of modulation laser. One typical of such applications is the cavity ring downmeasurement, in which the modulation voltage of internal EO modulation technique ismuch lower than that of the external modulation method. In this paper, an internal EOmodulation He-Ne laser is proposed and investigated systematically, including thestructural scheme, the elements choice, the modulation theory, the optimal configurationand so on. And a cavity ring down loss measurement system is established based onsuch an internal modulation He-Ne gas laser. The main contents and results of thispaper are listed as follows:
     1. An internal EO modulation He-Ne gas laser is designed with BBO (β-BaB2BO4)EO crystal, Brewster window and laser constructed with Zerodur crystallite glass.Suitable modulation elements and design scheme are selected according to theirperformance and the application requirement. The internal EO modulation theory ofHe-Ne laser is deduced, which confirms the high modulation efficiency and deepmodulation depth of the internal modulation technique.
     2. All factors that influence the modulation efficiency of internal modulation laserare analyzed systematically, including the number of Brewster window, distribution ofmodulation elements and orientation of EO crystal. Through experimental andtheoretical investigation, we found that the tilt of EO crystal with respect to cavity axisof laser has a significant influence on modulation efficiency. Take switching-off voltageof laser beam as an example, only several minutes of tilt angle may cause theswitching-off voltage change from hundreds of volts to thousands of volts. Thepermitted mounting error of the EO crystal for certain modulation requirement could beevaluated by the theoretical analysis. In the end, an optimal configuration of the internalmodulation laser is obtained, namely, the number of Brewster window is one, the optical axis of the EO crystal is in parallel to the cavity axis of laser resonance, and theincidence plane of Brewster window is in parallel or perpendicular to the x axis of theEO crystal. For a certain EO crystal, it is validated that the switching-off voltage of theinternal modulation method is only~1/25of the external modulation method.
     3. By employing the rate equation of He-Ne gas laser, the transition of turn-on andturn-off of the laser light is simulated. It is found that the switching-off time of theHe-Ne laser, which is generally longer than10ns, is much longer than the relaxationtime of EO effect. Besides, it is discovered and validated by experiments that internalmodulation laser could reduce the influence of ringing effect of voltage applied on EOcrystal on switching-off light signal. When the internal modulation laser is used incavity ring down loss measurement, this effect could greatly reduce the requirement ofthe voltage signal applied on EO crystal.
     4. Based on the conclusion of theoretical and experimental analysis, the designparameters of internal modulation He-Ne gas laser are optimized. And according to theengineering experience, an integration internal modulation He-Ne gas laser is designedwith convenient mounting structure for EO crystal and stable output laser beam.
     5. The cavity ring down loss measurement system with external modulation laser isstudied preliminarily. It is known that a bottleneck of this technique is the requirementof the voltage applied on EO crystal. A scheme of high voltage generator is found toaccommodate the requirement with amplitude of thousands of volts and rise or fall timeof nanosecond. In addition, it has been studied by PSpice simulation. The reason for theeasy-fault of such a circuit is analyzed, and a solution has been put forward.
     6. A cavity ring down loss measurement system with internal modulation He-Negas laser is built. The constituent part of the system is introduced in detail. Especially,the influence of the bandwidth of the photodetector on loss measurement result isanalyzed. The working circuit of the system is designed and tested to ensure the properoperation of the system. Two passive resonant cavities, namely, a linear cavity and afold cavity are constructed, and their cavity losses are measured respectively. Comparedwith the results that measured by a semiconductor laser, it is found that the two resultsare close to each other. In addition, the variances of the results measured with He-Nelaser are smaller. The loss of one film is measured as77.423ppm, which corresponds toa reflectivity of99.99225%.
引文
[1]叶声华.激光在精密计量中的应用[M].北京:机械工业出版社,1980.
    [2] T. M. Niebauer, James E. Faller, H. M. Godwin et al.. Frequency stabilitymeasurements on polarization-stabilized He-Ne lasers [J]. Appl. Opt.,1988,27(7):1285~1289.
    [3] Jean Marie Chartier, Jacques Labot, Glenn Sasagawa et al.. A portable iodinestabilized He-Ne laser and its use in an absolute gravimeter [J]. IEEETransactions instrument measurement,1993,42(2):420~422.
    [4]梁晶.用于绝对距离测量的He-Ne激光多波长干涉仪的研究[D].长沙:国防科学技术大学研究生院,2010.
    [5]曾庆化.环形激光陀螺的最新发展[J].传感器技术,2004,23(11):1~3.
    [6]田海峰,王登顺.激光陀螺快速寻北仪的研究[J].中国惯性技术学报,2004,12(5):9~12.
    [7] F. Aronowitz. Loss lock-in in the ring laser [J]. Journal of Applied Physics,1970,41(6):2453~2456.
    [8] D. Z. Anderson, J. C. Frisch and C. S. Masser. Mirror reflectometer based onoptical cavity decay time [J]. Applied Optics,1984,23(8):1238~1245.
    [9] G. Rempe, R. J. Thompson, and H. J. Kimble. Measurement of ultralow losses inan optical interferometer [J]. Opt. Lett.,1992,17:363~365.
    [10][苏]巴特拉柯夫.激光测量系统[M].北京:电子工业出版社,1989.
    [11] J. J. Scherer, J. B. Paul, A. O'Keefe et al.. Cavity Ringdown Laser AbsorptionSpectroscopy-history, development, and application to pulsed molecular beams[J]. Chem. Rev.,1997,97(1):25~51.
    [12] D. W. Martyn, M. N. Stuart, J. O. E. Andrew et al.. Cavity ring-downspectroscopy [J]. J. Chem. Soc.,1998,94(3):337~351.
    [13] G. Berden, R. Peeters and G. Meijer. Cavity ring-down spectroscopy:experimental schemes and applications [J]. Int. Rev. Phys. Chem.,2000,19(4):565~607.
    [14] Barbara A. Paldus and Alexander A.Kachanov. An historical overview of cavityenhanced methods [J]. Can. J. Phys.2005,83:975~999.
    [15] A. D. Rugari and P. E. Nordborg. Laser experiments involving in-cavitymodulation with electro-optic crystals [J]. Proc. IEEE (Correspondence),1964,52:852.
    [16] I. P. Kaminow. Microwave Modulation of the Electro-Optic Effect in KH2PO4[J].Phys. Rev. Letters.,1961,6:528~530.
    [17] W. W. Rigrod and I. P. Kaminow. Wide-band microwave light modulation [C].Proc. IEEE,1963,51:137~140.
    [18] C. J. Peters. Gigacycle bandwidth coherent light traveling-wave phasemodulator[C]. Proc. IEEE1963,51:147~153.
    [19] E. I. Gordon and J. D. Rigden. The Fabry-Perot electrooptic modulator. BellSystem Tech. J.,1963,42:155~179.
    [20] K. Gürs and R. Müller. Internal modulation of optical masers [C]. Proceedings ofthe Symposium on Optical Masers, New York: Polytechnic Press,1963,243~252.
    [21] G. Grau and D. Rosenberger. Low-power microwave modulation of a0.63μHe-Ne laser [J]. Phys. Letters,1963,6:129~131.
    [22] M. DiDomenico. Small-signal analysis of internal (coupling-type) modulation oflasers [J]. J. Appl. Phys.,1964,35:2780~2876.
    [23] T. Uchida. Direct Modulation of Gas Lasers [J]. IEEE J. Quantum Electron.,1965,1(8):336~343.
    [24]蓝信钜.激光技术[M].科学出版社,2009.
    [25]刘艳,朱林泉.激光调制技术在激光显示中的应用比较[J].红外,2007,28(3):36~40.
    [26] T. A. Ramadan, M. Levy, and R. M. Osgood. Electro-optic modulation incrystal-ion-sliced z-cut LiNbO3thin films [J]. Appl. Phys. Lett.,2000,76:1407~1409.
    [27] R. Degl’Innocenti, A. Majkic, P. Vorburger, G. Poberaj, and P. Günter.Ultraviolet electro-optic amplitude modulation in β-BaB2O4waveguides [J].Appl. Phys. Lett.,2007,91:051105-1~051105-3.
    [28] E. J. Schiel and J. J. Bolmarci. Direct Modulation of a He-Ne Gas Laser [C].Proceedings of the IEEE,1963,940~941.
    [29]刘力,易国光,湛正君.He-Ne激光器的内调制原理[J],湖南师院学报,1984,1:27~32.
    [30] J P Taché. Intracavity skew-Brewster-angle plates as a calibrated attenuator forgas laser [J]. J. Phys. D: Appl. Phys.,1986,19:943~956.
    [31] B. S. Patel, Shiv Charan, A. Mallik and Prem Swarup. Determination of He-Nelaser parameters using an intra-cavity rotatable reflector [J]. J. Phys. D: Appl.Phys.,1974,7: L40~L44.
    [32] J. A. Dobrowolski. On the use of a skew Brewster angle attenuator within a lasercavity [J]. J. Phys. E: Sci. Instrum.,1969,2:429~431.
    [33] B. S. Patel, A. Mallik and Shiv Charan. Brewster window losses in6328He-Ne lasers [J]. J. Phys. E: Sci. Instrum.,1973,6:1014~1016.
    [34] T. Uchida. A laser communication system with video modulation anddemodulation [C]. Internal’l Conf. on Microwaves, Circuit Theory andInformation Theory (Tokyo), M12-8, September1964.
    [35] R. Targ, G. A. Massey, and S. E. Harris. Laser frequency translation by means ofelectro-optic coupling control [C]. Proc. IEEE (Correspondence),1964,52:1247~1248.
    [36] L. E. Hargrove, R. L. Fork, and M. A. Pollack. Locking of He-Ne laser modesinduced by synchronous intranavity modulation [J]. Appl. Phys. Letters,1964,5:4~5.
    [37] S. E. Harris and R. Targ. FM oscillation of the He-Ne laser [J]. Appl. Phys.Letters,1964,5:202~204.
    [38]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984.
    [39]肖光忠,基于Y型正交偏振激光器的激光加速度计初步研究[D].长沙:国防科学技术大学研究院,2011.
    [40]陈星,光腔衰荡法极高反射率测量技术[D].长沙:国防科学技术大学研究院,2007.
    [41] A. Kastler. Transmission of light pulse through a Fabry-Perot interferometer [J].1974,5:133~139.
    [42] J. M. Herbelin, J. A. McKay, M. A. Kwok et al.. Sensitive measurement of photolifetime and true reflectances in an optical cavity by a phase-shift method [J].Appl. Opt.,1980,19(1):144~147.
    [43] P. Elleaume, M. Velghe, M. Billardon, and J. M. Ortega. Diagnostic techniquesand UV-induced degradation of the mirrors used in the Orsay storage ringfree-electron laser [J]. Appl. Opt.,1985,24:2762~2770.
    [44] A. O'Keefe and D. A. G. Deacon. Cavity ring-down optical spectrometer forabsorption measurements using pulsed laser sources [J]. Rev. Sci. Instrum.,1988,59(12):2544~2551.
    [45] Michael M. Flemmer and Jason E. Ham. Cavity ring-down spectroscopy with anautomated control feedback system for investigating nitrate radical surfacechemistry reactions [J]. Rev. Sci. Instrum.,2012,83:085103.
    [46] S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von derGeest, L. Pancheri, D. Stoppa, and C. F. Kaminski. Development of BroadbandCavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes[J]. Anal. Chem.,2012,84:5489~5493.
    [47] Zhechao Qu, Chunming Gao, Yanling Han, Xiaosong Du, Bincheng Li. Detectionof chemical warfare agents based on quantum cascade laser cavity ring-downspectroscopy [J]. Chin. Opt. Lett.,2012,10:050102-1~05102-3.
    [48] R. Engeln, G. Helden, G. Berden et al.. Phase shift cavity ring down absorptionspectroscopy [J]. Chem. Phys. Lett.,1996,262:105~109.
    [49] http://www.LGRinc.com.
    [50]戴东旭,孙福革,康路等.高重复频率实时采集的光腔衰荡光谱[J].化学物理学报,1997,10(6):481~486.
    [51]孙福革等.用光腔衰荡光谱方法准确测量高反镜的反射率[J].中国激光,1999,26(1):35~38
    [52]盛新志,孙福革,白吉玲等.复合衰荡光腔技术精确检测COIL腔镜高反射率[J].强激光与粒子束,1998,10(2):199~202.
    [53]赵宏太,柳晓军,曹俊文等. Ba原子6s6p1P1-6s6s1S0跃迁的光腔衰荡光谱[J].物理学报,2001,50(7):1274~1278.
    [54]易亨瑜,吕百达,胡晓阳等.腔长失调对光腔衰荡法测量精度的影响[J].强激光与粒子束,2004,16(8):993~996.
    [55]易亨瑜.衰荡腔失调下的波形仿真[J].中国激光,2006,33(3):399~404.
    [56]易亨瑜,吕百达,彭勇等.探测器孔径大小对衰荡腔测量精度的影响[J].激光技术,2004,283:231~236.
    [57]易亨瑜,吕百达,张凯等.探测器性能对光腔衰荡法测量结果的影响[J].中国激光,2005,327:997~1000.
    [58]孙宏波,熊胜明,高丽峰等.基于光腔衰荡的反射率测量技术的研究[J].光学仪器,2004,26(2):1741~177.
    [59]任钢,蔡邦维,熊胜明等.COIL腔镜高反射率精密测量系统的可靠性分析[J].强激光与粒子束,2004,16(11):1392~1396.
    [60]蒋跃.谐振腔极低损耗的测量研究[J].中国激光,1996,23(11):986~990.
    [61]梁永辉.极高反射率测量仪[D].长沙:国防科学技术大学研究院,2001.
    [62]张雪飞.极高反射率测量仪工程化研究讨论[D].长沙:国防科学技术大学研究院,2005.
    [63]王春梅,李炯,龚天林等.腔衰荡光谱技术测量O2禁戒跃迁绝对吸收截面[J].光学学报,2007,27(11):2087~2090.
    [64]龚元,李斌成.连续激光光腔衰荡法精确测量高反射率[J].中国激光,2006,33(9):1247~1250.
    [65]谭中奇.基于高品质光学无源腔的新型激光吸收光谱技术研究与应用[D].长沙:国防科学技术大学研究生院,2009.
    [66]谭中奇,龙兴武.模式失配对连续波腔衰荡技术测量的影响[J].中国激光,2007,34(7).962~966.
    [67]谭中奇,龙兴武,张斌.探测器的响应特性及对连续波腔衰荡技术测量的影响[J].中国激光,2009,36(4):959~963.
    [68] Zhongqi Tan, Xingwu Long et al.. The spectral ripple effect in continuous-wavefold-type cavity ring down spectroscopy [J]. JOSA B,2010,27(12):2727~2730.
    [69] G. D. Goodno, Z. Guo, R. J. D. Miller, I. J. Miller, J. W. Montgomery, S. R.Adhav, and R. S. Adhav. Investigation of β-BaB2O4as a Q switch for highpower applications [J]. Appl. Phys. Lett.1995,66(13):1575~1577.
    [70]尹鑫,刘耀岗,程瑞平. β-BBO晶体的电光性能[J].应用激光.1995,15:257.
    [71] C. Chen, B. Wu, A. Jiang, and G. You. A new type ultraviolet SHG crystalβ-BaB2B O4[J]. Sci. Sin. Ser. B,1985,28:235~243.
    [72] D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin. Optical,
    mechanical and thermal properties of barium borate [J]. J. Appl. Phys.,1987,62:1968~1983.
    [73] C. Chen, Y. X. Fan, R. C. Eckardt, and R. L. Byer. Recent developments in
    barium borate [J]. Proc. SPIE,1987,684:12~19.
    [74] H. Nakatani, W. Bosenberg, L. K. Cheng, and C. L. Tang. Linear electroopticeffect in barium metaborate [J]. Appl. Phys. Lett.,1988,52:1288~1290.
    [75] Detlef Nickel, Christian Stolzenburg, Angelika Beyertt, and Adolf Giesen.200kHz electro-optic switch for ultrafast laser systems [J]. Rev. Sci. Instrum.,2005,76:033111-1~033111-7.
    [76]祁海峰.硅酸镓镧晶体光电性能及应用研究[D].山东:山东大学,2005.
    [77]尹鑫,王继扬,张少军. La3Ga5SiO14晶体电光开关的研究[J].中国激光.2004(31):29~32.
    [78] Zhaobing Tian, Shaojun Zhang, Xin Yin, Shichen Li. Voltage-decreasedelectro-optical Q-switch of La3Ga5SiO14crystal [J]. Optics Communications,2006,259:793~795.
    [79]祁海峰.硅酸镓镧晶体光电性能及应用研究[D].济南:山东大学,2005.
    [80] Y. Xin, Z. Shaojun, and W. Jiyang. A type of electro-optic Q-switch designed byusing optically active crystal [J]. Appl. Phys. B.,2005,80:517~520.
    [81]王与烨. KTP晶体电光效应及非线性光学频率变换技术的研究[D].天津:天津大学,2006.
    [82] J. D. Bierlein and C. B. Arweiler. Electro-optic and dielectric properties ofKTiOPO4[J]. Applied Physics Letters,1986,49(15):917~919.
    [83] J. D. Bierlein and H. Vanherzeele. Potassium titanyl phosphate: properties andnew applications [J]. Journal of Optical Society of America B,1989,6(4):622~633.
    [84]沈德忠,陈建荣. KTP晶体与器件的研究进展及市场展望[J].新材料产业.2007,10:67~71.
    [85] X. D. Wang, P. Basseras, R. J. Dwayne Miller, and H. Vanherzeele. Investigationof KTiOPO4as an electro-optic amplitude modulator [J]. Appl. Phys. Lett.,1991,59(5):519~521.
    [86] C. A. Ebbers, S. P. Velsko, High average power KTiOPO4electro-optic Q-switch[J]. Appl. Phys. Lett.,1995,67(5):593~595.
    [87]董磊.磷酸钛氧铷电光调Q激光器的特性研究[D].济南:山东大学,2007.
    [88] BBO Pockels Cells. http://www.lambdaphoto.co.uk/pdfs/InradBBOPockelsCell.PDF.
    [89]李世忱,倪文俊,杨天新,王冬梅,黄超,随展,李明中. KTP(KTiPO4)晶体电光开关研究[J].光电子·激光.1999,2:1~10.
    [90]杨天新,倪文俊,李世忱. MOSFET驱动的单脉冲选择器[J].强激光与粒子束.1999,11:555~559.
    [91] E. Lebiush, R. Lavi, Y. Tzuk et al. High repetition rate end-pumped electro-opticRTP Q-switch Nd:YVO4laser [C]. Proc. CLEO Europe2000:1.
    [92]赵佳,董磊,卓壮等.高重复率RTP电光调Q Nd:YAG激光特性研究[J].红外与激光工程.2008,37(4):647~650.
    [93]刘晓峰,高彦伟,黄永宗,孙年春. RTP晶体的调Q特性研究[J].光学与光电技术.2008,6(1):15~17.
    [94]朱小磊,唐昊,李小莉,王君涛.高重复频率电光调Q全固态激光器研究进展[J].红外与激光工程.2009,36(7):1655~1659.
    [95]王继扬,尹鑫,张少军等.硅酸镓镧单晶的生长、性质及电光应用的研究[J].物理学进展,2007,27(9):344~360.
    [96] M. Roth, M. Tseitlin, and N. Angert. Oxide Crystals for Electro-OpticQ-Switching of Lasers [J]. Glass Physics and Chemistry.,2005,31:86~95.
    [97] D. Malacara, A. Morales, and I. Rizo. Losses in Brewster Angle Windows ofHe-Ne Lasers due to Mechanical Stresses [J]. Applied Optics.,1971,10(8):1984~1985.
    [98] J. C. A. Chastang. Polarization Problems of Parallel Plate Lasers [J]. IBM J. RES.DEVELOP,1979,23(2):132~139.
    [99]张斌,龙兴武,刘贱平,赵洪常,刘军.微晶玻璃腔体一体化兰姆凹陷稳频He-Ne激光器(Ⅰ):结构与工艺[J].光学学报.2011,31(8):1~4.
    [100]张斌,龙兴武,刘贱平,赵洪常,刘军.新型高性能微晶玻璃折叠腔线偏振He-Ne激光器[J].红外与激光工程.2012,41(6):1448~1452.
    [101]朱京平.光电子技术基础[M].北京:科学出版社,2009.
    [102] N. M. Kroll, P. L. Morton, and M. N. Rosenbluth. Free-electron lasers withvariable parameter wigglers [J]. IEEE J. Quant. Electron.,1981, QE-17,1436~1468.
    [103] E. T.Scharlemann, A. M. Sessler, and J. S. Wurtele. Optical Guiding in aFree-Electron Laser [J]. Phys. Rev. Lett.,1985,54:1925~1928.
    [104] S. Y. Cai, A. Bhattacharjee, and T. C. Marshall. Optical guiding in a Ramanfree-electron laser [J]. IEEE J. Quant. Electron.,1987,23:1651~1656.
    [105] L. Bohaty and J. Liebertz. Electro-optic and electrostrictive properties of thelow-temperature phase of barium metaborate BaB2O4[J]. Zeitschrift fürKristallographie,1990,192:91~95.
    [106] P. Ney, A. Maillard, K. Polga′r, and M. D. Fontana. Accurate interferometricmethod for the measurement of electro-optic coefficients: application to a singleβ-barium borate crystal [J]. J. Opt. Soc.Am. B.,2000,17(7):1158~1165.
    [107] R. DANDLIKER. Eigenstates of Polarization in Optical Resonators with PartialPolarizers [J]. J. Opt. Soc. Am.,1968,58(8):1062~1069.
    [108] A. Gerrard, and J. M. Burch. matrices in polarization optics and propagation oflight through crystals [M]. In Introduction to matrix methods in optics, London:Willey,1975.
    [109] R. C. Jones. A New Calculus for the Treatment of Optical Systems [J]. J. Opt.Soc. Am.,1941,31:488~503.
    [110] J. Junghans, M. Keller, and H. Weber. Laser Resonators with PolarizingElements-Eigenstates and Eigenvalues of Polarization [J]. Appl. Optics.,1974,13(12):2793~2798.
    [111]季家镕.高等光学教程.北京:科学出版社,2007.
    [112] S. A. Furman and A. V. Tikhonravov. Basis of optics of multilayer systems [M].Singapore: Fong&Sons Printers Pte. Ltd.,1992.
    [113]杨乐平,李海涛. LabVIEW高级程序设计[M].北京:清华大学出版社,2003.
    [114] M. Born and E. Wolf. Principles of Optics [M]. London: Pergamon Press Ltd,1999.
    [115] R. Sundar, K. Ranganathan, Jogy George, S. M. Oak. Experimental analysis ofthe effects of orientation and location of the Pockels cell in an Nd:YAG laserresonator [J]. Optics&Laser Technology,2009,41:705~709.
    [116] Xianwang Feng, Xingwu Long, and Zhongqi Tan. Analysis of the configurationof the modulation elements in an intracavity modulation laser[C]. SPIE,2012.
    [117] Xianwang Feng, Xingwu Long, and Zhongqi Tan. Influence of the tilt ofelectro-optical crystal in an intracavity modulation laser on the light intensity [J].Optics&Laser Technology,2012,44:1207~1213.
    [118]李家泽,朱宝亮,魏光辉.晶体光学[M].北京:北京理工大学出版社,1989.
    [119]周炳琨,高以智,陈倜嵘等.激光原理(第四版)[M].北京:国防工业出版社,2000.
    [120]李适民,黄维玲.激光器件原理与设计[M].北京:国防工业出版社,2005.
    [121]周光宽,葛国库,周亚辉.激光器件[M].西安:西安电子工业出版社,2011.
    [122] W. Koechner, Solid-State Laser Engineering[M], Heidelberg: Springer-Verlag,1999.
    [123] William T. Silfvast. Lasers [M]. In Handbook of Optics. Florida: McGraw-Hill,2001.
    [124] R. W. Hellwarth. Advances in Quantum Electronics [M]. New York: ColumbiaPress,1961.
    [125] T. Li. Mode selection in an aperture-limited concentric maser interferometer[J].Bell Syst. Tech.,1963,42:2609~2620.
    [126] Boaz Lissak. Transverse pattern modifcations in a stable apertured laserresonator [J]. Applied Optics,29(6):767~771.
    [127] K. Ait-Ameur. Influence of the longitudinal position of an aperture inside acavity on the transverse mode discrimination [J]. Appl. Opt.,1993,32(36):7366~7372.
    [128] D. Romanini and K. K. Lehmann. Ring-down cavity absorption spectroscopy ofthe very weak HCN overtone bands with six, seven, and eight stretching quanta[J]. J. Chem. Phys.,1993,99:6287~6301.
    [129] G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke.Coherent cavity ring down spectroscopy [J]. Chem. Phys. Lett.,1994,217:112~116.
    [130] M. Born and E. Wolf. Principles of Modern Optics [M]. New York: Pergamon,1980.
    [131] K. Yan, E. J. M. van Heesch, A. J. M. Pemen et al., A High-Voltage PulseGenerator for Corona Plasma Generation [J]. Trans. Ind. Appl.,2002,38(3):866~872.
    [132] L. Pécastaing, J. Paillol, T. Reess, A. Gibert, and P. Domens. Very FastRise-Time Short-Pulse High-Voltage Generator [J]. IEEE Trans. Plasma Sci.,2006,34:1822~1831.
    [133] J. A. Chakera, P. A.Naik, S. R. Kumnhare, P. D. Gupta. A variable nanosecondpulse duration laser pulse slicer based on high voltage avalanchet ransistor switch[J]. Journal of Indian Institute of Science,1996,76:273~274.
    [134] S. J. Davis, J. E.Murray, D. C. Down et al. High performance avalanchetransistor switch for external pulse selection at1.06μm [J]. Appl. Opt.,1978,17:3184~3186.
    [135] B. Curtin, J. A. Miehe, Sipp B et al. Sweep devices for picosendimage-converter streak cameras [J]. Rev. Sci. Instrum.,1980,51:103~110.
    [136] T. P. Rutten, N.Wild, and P. J. Veitch. Fast rise time, long pulse width, kilohertzrepetition rate Q-switch driver [J]. Rev. Sci. Instrum.,2007,78:073108-1~03108-2.
    [137] R. J. Baker and B. P. Johnson. Stacking power MOSFETs for use in high speedinstrumentation [J]. Rev. Sci. Instrum.,1992,63:5799~5801.
    [138] R. J. Baker and B. P. Johnson. Series operation of power MOSFETs forhigh-speed, high-voltage switching applications [J]. Rev. Sci. Instrum.,1993,64:1655~1656.
    [139] R. J. Baker and S. T. Ward. Designing nanosecond high voltage pulsegenerators using power MOSFETs [J]. Electron. Lett.,1994,30:1634~1635.
    [140] S. A. Riley, S. May, and M. P. Augustine. High-voltage pulse switchinghardware for electro-optic studies of conducting aqueous solutions [J]. Rev. Sci.Instrum.,2002,73:3080~3084.
    [141] R. Sundararajan, J. Shao, J. Gonzales, E. Soundarajan, J. Gonzales, and A.Chaney. Performance of Solid-State High-Voltage Pulsers for BiologicalApplications-A Preliminary Study [J]. IEEE Trans. Plasma Sci.,2004,32:2017~2025.
    [142] H. L. Hess, and R. J. Baker. Transformerless Capacitive Coupling of GateSignals for Series Operation of Power MOS Devices [J]. IEEE Trans. PowerElectron.,2000,15:923~930.
    [143] J. R. Grenier, S. H. Jayaram, M. Kazerani, W. Haifeng, and M.W. Griffiths.MOSFET-Based Pulse Power Supply for Bacterial Transformation [J]. IEEETrans. Ind. Appl.,2008,44:25~31.
    [144] Thomas E. McEwan. High voltage MOSFET switching circuit [P]. U. S. Patent,5332938. Jul.26,1994.
    [145] E. J. Mentze, H. L. Hess, K. M. Buck, and T. G.Windley. A ScalableHigh-Voltage Output Driver for Low-Voltage CMOS Technologies [J]. IEEETrans. Very Large Scale Integr.(VLSI) Syst.,2006,14:1347~1353.
    [146]王欣.场效应管高压宽脉宽双快沿脉冲源技术研究[D].绵阳:中国工程物理研究院,2005.
    [147] Xian-wang Feng, Xing-wu Long, and Zhong-qi Tan. Nanosecond square highvoltage pulse generator for electro-optic switch [J]. Rev. Sci. Instrum.,2011,82:075102-1~075102-4
    [148]李小平,高速PCB的信号完整性、电源完整性和电磁兼容性研究[D].成都:四川大学,2005.
    [149] L. B. Gravelle, P. F.Wilson. EMI/EMC in Printed Circuit Boards-A LiteratureReview [J]. IEEE Trans. on Electromagnetic Compatibility,1992,34(2):109~116.
    [150](美)凯瑟著.电磁兼容原理[M].北京:科学出版社,1980.
    [151]赖祖武著.电磁干扰防护与电磁兼容[M].北京:原子能出版社,1993.
    [152]李健,刘杰.高反射率浏量中的模式匹配与谐振腔的设计[J].山东师范大学学报(自然科学版).1996,11:20~23.
    [153]赵宏太.光腔衰荡光谱测量技术及在原子束吸收光谱中的应用[D].合肥:中科院安徽光机所,2001.
    [154]裴世鑫.腔增强吸收光谱技术与应用研究[D].合肥:中国科学院合肥物质科学研究院,2005.
    [155] H. R. Barry, L. Corner, G Hancock, R. Peverall, and G. A. D. Ritchie.Cavity-enhanced absorption spectroscopy of methane at1.73μm [J]. ChemicalPhysics Leters,2001,333:285~289.
    [156] B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N.Zare. Cavity-locked ringdown spectroscopy [J]. Journal of Applied Physics,1998,83:3991~3997.
    [157]王利,陈鑫彬,王占山等.数据拟合点的截取对光腔衰荡法测量反射率的影响[J].红外与激光工程,2008,37(5):871~873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700