紫外与真空紫外超短脉冲的产生及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外超短脉冲激光具有波长短、单光子能量高以及高时间分辨率等特性,在精细微纳加工、超快强场光学、光频标测量学、飞秒化学以及超快泵浦探测等方面具有相当广泛的应用前景。直接利用受激辐射获得紫外超短脉冲是相当困难的,因此利用非线性频率转换技术,将红外或可见光波段的超短脉冲转换到紫外波段是目前获得紫外超短脉冲最快捷有效的方式。
     本论文围绕紫外与真空紫外飞秒脉冲的产生及应用展开。首先以商售的钛宝石激光器为种子源,利用级联频率上转换技术,在不同的固体介质与气体介质中实现了深紫外、真空紫外以及极紫外波段的超短脉冲输出。主要包括:
     1.使用10Hz的钛宝石激光器为种子源,利用BBO晶体倍频-补偿-和频的方案,实现了1.6mJ的267nm紫外超短脉冲输出,紫外脉冲宽度为190fs,红外-紫外转换效率高达7%。
     2.采用紫外倍频晶体KBBF将钛宝石激光器的二倍频光直接进行频率上转换到200nm紫外波段,获得单脉冲能量高达0.1mJ的紫外超短脉冲,并且为了补偿在倍频过程中由晶体引入的脉冲展宽,利用一对熔融石英棱镜对其进行色散补偿,最终获得了780fs的超短紫外脉冲输出。
     3.使用钛宝石激光器的二倍频光与三倍频光作为驱动源,惰性气体作为非线性介质,利用其在强聚焦下的非线性效应,最终获得了单脉冲能量为6.4μJ的133nm真空紫外超短脉冲,单脉冲能量分别为251nJ,199nJ的89nm与79nm波段的极紫外超短脉冲。
     相比较于固体激光系统,光纤激光系统具有结构紧凑、泵浦阈值低、稳定性好等特点,是获得高功率高重复频率的紫外超短脉冲激光的稳定可靠的驱动源。本论文围绕紫外飞秒光纤激光系统进行了一系列的研究,以自行搭建的二极管泵浦的Yb:YAG陶瓷激光器为振荡源,采用主振荡功率放大与啁啾脉冲放大结合的方式,搭建了级联大模场光子晶体光纤放大系统,获得了重复频率为103MHz,输出功率为300W的1030nm红外激光,并利用BBO晶体对其进行四倍频获得了高功率258nm紫外超短脉冲激光输出。
     论文中针对紫外超短脉冲做了一系列初步应用。利用钛宝石激光器的三倍频267nm,研究了其在空气中的成丝效应,以及在双光丝干涉形成的等离子体光栅效应。除此之外,利用红外与紫外双色场下的荧光增强原理,研究了混合气体中的复合解离等现象。
     除此之外,论文中还探索了其他新型材料紫外脉冲驱动源,如具有宽调谐范围的Yb:YSO激光器,为可调谐紫外激光光源的实现提供了稳定可靠的基频光源。利用非线性偏振旋转锁模原理搭建了超短脉冲输出的掺铒光纤激光器与掺镱光纤激光器,为全光纤化的紫外超短脉冲激光系统的实现提供了驱动源。
Ultraviolet (UV) ultrashort pulses, which combine the characters of short wavelengths, high photon energy as well as high time resolution, have a wide spread applications in many areas, such as precision nano-machining, strong field optics, optical frequency measurements, femtosecond chemistry and ultrafast pump and probe techniques. However, since it is difficult to obtain the UV ultrashort pulses directly through the stimulated radiation, the most efficient and effective way is frequency up-conversion, which is converting infrared and visible ultrashort pulses to UV wavelength.
     In this dissertation, the work focused on the UV and vacuum ultraviolet (VUV) generation as well as some primary application of the UV ultrashort applications. In the beginning of the work, the frequency up-conversion was based on a commercial Ti: sapphire laser, and the deep ultraviolet (DUV), VUV and extreme ultraviolet (XUV) ultrashort pulses were obtained using different solid state mediums and gas mediums:
     1. BBO crystals were used in a frequency doubling-compensation-tripling scheme, and with this method, the267nm UV pulses with the output power of1.6mJ, which had a repetition rate of10Hz and pulse duration of190fs were obtained, the corresponding conversion efficiency was7%.
     2. The ultrashort pulses at200nm were obtained in a frequency doubling process with a KBBF crystal, in which the injecting seed-pulse was the second harmonic of the10Hz Ti:sapphire laser. The DUV pulse energy achieved0.1mJ, and the system used a pair of prisms to compensate the dispersion introduced by the upconversion crystals, thus the duration of the200nm pulses was shortened to780fs.
     3. The second harmonic and third harmonic of a10Hz Ti:sapphire laser were focused onto an argon target under a gas jet in a vacuum cell to achieve relatively high beam intensity, and the133-nm VUV pulses,89-nm and79-nm XUV pulses were generated within the laser-argon interaction area, with the pulse energy of6.4μJ,251nJ, and199nJ, respectively.
     Compared to solid state laser systems, the fiber laser system with a compact structure, low pumping threshold, good stability as well as perfect beam quality, was the robust and reliable driving source for the high repetition and high power UV pulses generation. The power amplification was essential for the generation of UV pulses, since the up-conversion efficiency was relatively low. The dissertation demonstrated a master-oscillator amplifier system combing with the chirped pulse amplification and cascade amplification, and built a multi-stage photonic crystal fiber amplifier to achieve300W output pwer with seeding pulses from an Yb: YAG ceramic oscillator with a repetition rate of103MHz. Part of the infrared output was upcon verted to258nm with two BBO crystals. The maximum ultraviolet output reached1.6W.
     The dissertation also demonstrated some applications of the UV pulses. The filamentary propagation of the intense267nm ultrashort pulse was studied, as well as filamentary plasma gratings formed by the noncollinear interaction of synchronized filaments. Beyond that, collisions of nitrogen and argon gas mixture with energetic electrons accelerated by Bragg incident intense infrared femtosecond laser pulses in ultraviolet filamentary plasma gratings were also investigated.
     In addition, new ultraviolet pulse driving sources were explored in the dissertation, such as tunable Yb:YSO laser which had a wide tuning range of110nm, providing the possibility of the tunable ultraviolet laser. The erbium-doped fiber laser (EDFL) as well as the ytterbium-doped fiber laser (YDFL) were built with the nonlinear polarization rotation method, providing the driving source for the all fiber UV-pulse generation system.
引文
1. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt Lett 16, 42-44 (1991).
    2. M. R. Albert, and K. G. Ostheimer, "The evolution of current medical and popular attitudes toward ultraviolet light exposure: part 1," J Am Acad Dermatol 47,930-937 (2002).
    3. M. R. Albert, and K. G. Ostheimer, "The evolution of current medical and popular attitudes toward ultraviolet light exposure: part 2," J Am Acad Dermatol 48,909-918(2003).
    4. M. R. Albert, and K. G. Ostheimer, "The evolution of current medical and popular attitudes toward ultraviolet light exposure: part 3," J Am Acad Dermatol 49,1096-1106(2003).
    5. S. Schechter, "Security that is meant to be skin deep using ultraviolet micropigmentation to store emergency-access keys for implantable medical devices," (2010).
    6. R. Kassem, N. Yarom, A. Scope, M. Babaev, H. Trau, and F. Pavlotzky, "Treatment of erosive oral lichen planus with local ultraviolet B phototherapy," J Am Acad Dermatol 66,761-766 (2012).
    7. R. Stern, S. Zierler, and J. Parrish, "Skin carcinoma in patients with psoriasis treated with topical tar and artificial ultraviolet radiation," The Lancet 315,732-735 (1980).
    8. G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, "High-performance (Al, Ga) N-based solar-blind ultraviolet pin detectors on laterally epitaxially overgrown GaN," Appl Phys Lett 75,247-249 (1999).
    9. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks," in SPIE(2004), p.245.
    10. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, "Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links," Opt Lett 33, 1860-1862(2008).
    11. G. A. Shaw, and M. L. Nischan, "Short-range NLOS ultraviolet communication testbed and measurements," in Aerospace/Defense Sensing, Simulation, and Controls (International Society for Optics and Photonics, 2001), pp.31-40.
    12. G. A. Shaw, A. M. Siegel, J. Model, and D. Greisokh, "Recent progress in short-range ultraviolet communication," in Defense and Security (International Society for Optics and Photonics, 2005), pp.214-225.
    13. V. M. Borisov, O. B. Khristoforov, Y. B. Kirykhin, A. Y. Vinokhodov, A. I. Demin, and A. V. Dem'Yanov, "Theoretical and experimental investigations of the 1-kW XeCl laser with UV pre-ionization," in Photonics West'97 (International Society for Optics and Photonics, 1997), pp.94-104.
    14. V. S. Skakun, M. I. Lomaev, V. F. Tarasenko, and D. V. Shitts, "KrCl and XeCl exciplex glow discharge lamps with an output power of~1.5 kW," Tech Phys Lett+28,899-901 (2002).
    15. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, "New nonlinear-optical crystal:LiB3O5," JOS A B 6, 616-621 (1989).
    16. C. Chen, B. Wu, G. You, A. Jiang, and Y. Huang, "High-efficiency and wide-band single-harmonic-generation properties of the new crystal beta-BaB2O4 (A)," Journal of the Optical Society of America B Optical Physics 1,434 (1984).
    17. Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. Chen, "CSB3O5:A new nonlinear optical crystal," Appl Phys Lett 62,2614-2615 (1993).
    18. B. Wu, D. Tang, N. Ye, and C. Chen, "Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal," Opt Mater 5, 105-109 (1996).
    19. Z. Lin, Z. Wang, C. Chen, S. K. Chen, and M. Lee, "Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal," Chem Phys Lett 367, 523-527 (2003).
    20. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, "New nonlinear optical crystal:cesium lithium borate," Appl Phys Lett 67, 1818-1820 (1995).
    21. Z. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, "A new nonlinear optical crystal-BaAlBO3F2 (BABF)," Japanese journal of applied physics 41, L1131 (2002).
    22. Z. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, "Growth of a new nonlinear optical crystal-BaAlBO3F2," J Cryst Growth 260,287-290 (2004).
    23. Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, "High-power fourth-and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10," Opt Lett 21,1348-1350(1996).
    24. J. Knittel, and A. H. Kung, "39.5% conversion of low-power Q-switched Nd:YAG laser radiation to 266 nm by use of a resonant ring cavity," Opt Lett 22, 366-368 (1997).
    25. T. Kojima, S. Konno, S. Fujikawa, K. Yasui, K. Yoshizawa, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, "20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser," Opt Lett 25, 58-60 (2000).
    26. D. Rajesh, M. Yoshimura, T. Eiro, Y. Mori, T. Sasaki, R. Jayavel, T. Kamimura, T. Katsura, T. Kojima, and J. Nishimae, "UV laser-induced damage tolerance measurements of CSB3O5 crystals and its application for UV light generation," Opt Mater 31,461-463 (2008).
    27. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, "Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device," Opt Express 17, 8696-8703 (2009).
    28. X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, "High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices," Opt Commun 285,4519-4522 (2012).
    29. S. Lazare, and V. Granier, "Ultraviolet laser photoablation of polymers:a review and recent results," Laser Chem 10,25-40 (1989).
    30. M. Karas, A. Ingendoh, U. Bahr, and F. Hillenkamp, "Ultraviolet-laser desorption/ionization mass spectrometry of femtomolar amounts of large proteins," Biological Mass Spectrometry 18,841-843 (1989).
    31. R. Srinivasan, B. Braren, and R. W. Dreyfus, "Ultraviolet laser ablation of polyimide films," J Appl Phys 61,372-376 (1987).
    32. D. J. Ehrlich, R. M. Osgood Jr, and T. F. Deutsch, "Photodeposition of metal films with ultraviolet laser light," Journal of Vacuum Science & Technology 21,23-32 (1982).
    33. R. C. Beavis, B. T. Chait, and K. G. Standing, "Factors affecting the ultraviolet laser desorption of proteins," Rapid Commun Mass Sp 3,233-237 (1989).
    34. C. Ng, "Vacuum Ultraviolet Laser Probe of Chemical Dynamics of Aerospace Relevance," (CALIFORNIA UNIV DAVIS DEPT OF CHEMISTRY, 2012).
    35. Y. Shen, "The principles of nonlinear optics," New York, Wiley-Interscience, 1984,575 p.1(1984).
    36. G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer-Verlag,1991).
    37. J. D. Bierlein, and C. B. Arweiler, "Electro-optic and dielectric properties of KTiOPO4," Appl Phys Lett 49,917-919 (1986).
    38. C. J. Van der Poel, J. D. Bierlein, J. B. Brown, and S. Colak, "Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides," Appl Phys Lett 57, 2074-2076 (1990).
    39. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, "First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl Phys Lett 62,435-436 (1993).
    40. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3," Appl Phys Lett 41,607-608 (1982).
    41. T. Kanai, T. Kanda, T. Togashi, T. Sekikawa, S. Watanabe, C. Chen, C. Zhang, Z. Xu, and J. Wang, "Generation of vacuum ultraviolet light and measurement of phase matching angles in KBBF crystal," in Conference on Lasers and Electro-Optics (Optical Society of America, 2003), p. M1.
    42. C. Chen, S. Watanabe, Z. Xu, and J. Wang, "Recent advances of deep and vacuum-UV harmonic generation with new borate crystals," in Conference on Lasers and Electro-Optics(Optical Society of America, 2003), p. T3.
    43. H. Zhang, G. Wang, L. Guo, A. Geng, Y. Bo, D. Cui, Z. Xu, R. Li, Y. Zhu, and X. Wang, "175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal," Applied Physics B 93,323-326 (2008).
    44.刘丽娟,陈创天,”新型深紫外非线性光学晶体KBe2BO3F2族的研究进展,”中国材料进展,16-20(2010).
    45. C. Chen, J. Lu, T. Togashi, T. Suganuma, T. Sekikawa, S. Watanabe, Z. Xu, and J. Wang, "Second-harmonic generation from a KBe2BO3F2 crystal in the deep ultraviolet," Opt Lett 27, 637-639 (2002).
    46.陈创天,许祖彦,"KBBF晶体的棱镜耦合技术和深紫外谐波输出,”人工晶体学报31,224-227(2002).
    47.陈创天,林哲帅,王志中,”紫外,深紫外非线性光学晶体的最新进展,”第五届中国功能材料及其应用学术会议论文集Ⅰ(2004).
    48. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, "Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser," JOSA B 21,370-375 (2004).
    49. P. Balcou, C. Cornaggia, A. Gomes, L. A. Lompre, and A. L'Huillier, "Optimizing high-order harmonic generation in strong fields," Journal of Physics B:Atomic, Molecular and Optical Physics 25,4467 (1992).
    50. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, "Generation of an extreme ultraviolet supercontinuum in a two-color laser field," Phys Rev Lett 98,203901 (2007).
    51. G. Tempea, M. Geissler, M. Schnurer, and T. Brabec, "Self-phase-matched high harmonic generation," Phys Rev Lett 84,4329 (2000).
    52. T. Popmintchev, M. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum," Proceedings of the National Academy of Sciences 106,10516-10521 (2009).
    53. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, "Generation of broadband VUV light using third-order cascaded processes," Phys Rev Lett 87,13601 (2001).
    54. M. Beutler, M. Ghotbi, F. Noack, and I. V. Hertel, "Generation of sub-50-fs vacuum ultraviolet pulses by four-wave mixing in argon," Opt Lett 35,1491-1493 (2010).
    55. M. Beutler, M. Ghotbi, and F. Noack, "Generation of intense sub-20-fs vacuum ultraviolet pulses compressed by material dispersion," Opt Lett 36,3726-3728 (2011).
    56. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, "In-line digital holographic interferometry," Appl Optics 37,6262-6269 (1998).
    57. U. Schnars, and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl Optics 33,179-181 (1994).
    58. U. Schnars, and W. P. Juptner, "Digital recording and numerical reconstruction of holograms," Measurement science and technology 13, R85 (2002).
    59. A. Couairon, and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Physics reports 441,47-189 (2007).
    60. E. R. Peck, and D. J. FIISIER, "Dispersion of argon," JOSA 54,1362-1364 (1964).
    61. S. E. Hatch, W. F. Parsons, and R. J. Weagley, "Hot-pressed polycrystalline CaF2: Dy2+ Laser," Appl Phys Lett 5,153-154 (1964).
    62. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers," J Am Ceram Soc 78,1033-1040 (1995).
    63. K. Takaichi, H. Yagi, J. E. A. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, "Yb3+-doped Y3Al5O12 ceramics-A new solid-state laser material," physica status solidi (a) 200, R5-R7 (2003).
    64. Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, "Laser-diode pumped 40-W Yb:YAG ceramic laser," Opt Express 17, 17734-17738 (2009).
    65. B. Zhou, Z. Wei, Y. Zou, Y. Zhang, X. Zhong, G. L. Bourdet, and J. Wang, "High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser," Opt Lett 35, 288-290(2010).
    66. D. Luo, J. Zhang, C. Xu, X. Qin, D. Tang, and J. Ma, "Fabrication and laser properties of transparent Yb:YAG ceramics," Opt Mater 34, 936-939 (2012).
    67. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt Lett 19, 2149-2151 (1994).
    68. A. Galvanauskas, M. Cheng, B. Hou, and K. Liao, "High peak power pulse amplification in large-core Yb-doped fiber amplifiers," Selected Topics in Quantum Electronics, IEEE Journal of 13,559-566 (2007).
    69. Y. E. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt Express 12,6088-6092 (2004).
    70. J. Limpert, A. Liem, H. Zellmer, and A. Tunnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron Lett 39,645-647 (2003).
    71. C. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, and A. Galvanauskas, "810 W continuous-wave and single-transverse-mode fibre laser using 20 μm core Yb-doped double-clad fibre," Electron Lett 40,1471-1472 (2004).
    72. F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "131 W 220 fs fiber laser system," Opt Lett 30,2754-2756 (2005).
    73. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "100-W average-power, high-energy nanosecond fiber amplifier," Applied Physics B 75,477-479 (2002).
    74. T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, "A 325-W-average-power fiber CPA system delivering sub-400 fs pulses," Selected Topics in Quantum Electronics, IEEE Journal of 15,187-190 (2009).
    75. Q. Luo, S. A. Hosseini, B. Ferland, and S. L. Chin, "Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses," Opt Commun 233,411-416 (2004).
    76. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt Lett 20,73-75 (1995).
    77. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, "Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses," Phys Rev Lett 89,143901 (2002).
    78. L. Berge, S. Skupin, G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, "Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air," Phys Rev E 71,16602(2005).
    79. A. Houard, Y. Liu, B. Prade, V. Tikhonchuk, and A. Mysyrowicz, "Strong enhancement of terahertz radiation from laser filaments in air by a static electric field," Phys Rev Lett 100 (2008).
    80. S. Tzortzakis, G. Mechain, G. Patalano, Y. Andre, B. Prade, M. Franco, A. Mysyrowicz, J. Munier, M. Gheudin, and G. Beaudin, "Coherent subterahertz radiation from femtosecond infrared filaments in air," Opt Lett 27, 1944-1946 (2002).
    81. E. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air," Opt Lett 21,62-64(1996).
    82. D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, "Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses," Phys Rev Lett 96,193901 (2006).
    83. M. Kolesik, and J. V. Moloney, "Self-healing femtosecond light filaments," Opt Lett 29,590-592 (2004).
    84. F. Theberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, "Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing," Phys Rev E 74,36406 (2006).
    85. H. Yang, J. Zhang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, and Z. Sheng, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys Rev E 66,16406 (2002).
    86. M. Leibscher, I. Averbukh, and H. Rabitz, "Molecular alignment by trains of short laser pulses.," Phys Rev Lett 90, 213001 (2003).
    87. H. Cai, J. Wu, Y. Peng, and H. Zeng, "Comparison study of supercontinuum generation by molecular alignment of N2 and O2," Opt Express 17, 5822-5828 (2009).
    88. J. Wu, H. Cai, Y. Peng, Y. Tong, A. Couairon, and H. Zeng, "Control of femtosecond filamentation by field-free revivals of molecular alignment," Laser Phys 19,1759-1768(2009).
    89. Q. Luo, W. Liu, and S. L. Chin, "Lasing action in air induced by ultra-fast laser filamentation," Applied Physics B 76,337-340 (2003).
    90. Y. Petit, S. Henin, J. Kasparian, and J. Wolf, "Production of ozone and nitrogen oxides by laser filamentation," Appl Phys Lett 97,21108 (2010).
    91. A. Couairon, and L. Berge, "Light filaments in air for ultraviolet and infrared wavelengths," Phys Rev Lett 88,135003 (2002).
    92. J. Schwarz, P. Rambo, J. Diels, M. Kolesik, E. M. Wright, and J. V. Moloney, "Ultraviolet filamentation in air," Opt Commun 180,383-390 (2000).
    93. J. Schwarz, and J. Diels, "Analytical solution for uv filaments," Phys Rev A 65, 13806(2002).
    94. S. Tzortzakis, D. G. Papazoglou, and I. Zergioti, "Long-range filamentary propagation of subpicosecond ultraviolet laser pulses in fused silica," Opt Lett 31, 796-798 (2006).
    95. T. Xi, X. Lu, and J. Zhang, "Interaction of light filaments generated by femtosecond laser pulses in air," Phys Rev Lett 96,25003 (2006).
    96. A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, "Propagation of twin laser pulses in air and concatenation of plasma strings produced by femtosecond infrared filaments," Opt Commun 225, 177-192(2003).
    97. H. Wu, T. Yang, Y. Wang, and L. Ding, "Background-free third-order harmonic generation induced by dynamic gratings in dual filaments," JOSA B 26, 645-649 (2009).
    98. X. Yang, J. Wu, Y. Tong, Z. Xu, and H. Zeng, "Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air," Appl Phys Lett 97,71108 (2010).
    99. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications," Appl Phys Lett 94,251104 (2009).
    100. X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, and H. Zeng, "Plasma waveguide array induced by filament interaction," Opt Lett 34,3806-3808 (2009).
    101. A. C. Bernstein, M. McCormick, G. M. Dyer, J. C. Sanders, and T. Ditmire, "Two-beam coupling between filament-forming beams in air," Phys Rev Lett 102, 123902 (2009).
    102. X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, and H. Zeng, "Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air," Appl Phys Lett 95,111103 (2009).
    103. A. Jarnac, M. Durand, Y. Liu, B. Prade, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, "Study of laser induced plasma grating dynamics in gases," Opt Commun 312,35-42 (2014).
    104. C. Thaury, F. Quere, J. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. D Oliveira, and P. Audebert, "Plasma mirrors for ultrahigh-intensity optics," Nature Physics 3,424-429 (2007).
    105. A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, "Impact-ionization cooling in laser-induced plasma filaments," Phys Rev Lett 102,155004 (2009).
    106. M. N. Rolin, S. I. Shabunya, J. C. Rostaing, and J. M. Perrin, "Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure," Plasma Sources Science and Technology 16,480 (2007).
    107. Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, "Cross sections for collisions of electrons and photons with nitrogen molecules," J Phys Chem Ref Data 15,985-1010(1986).
    108. V. Puech, and L. Torchin, "Collision cross sections and electron swarm parameters in argon," Journal of Physics D:Applied Physics 19,2309 (1986).
    109. M. N. Shneider, A. Baltuska, and A. M. Zheltikov, "Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization," J Appl Phys 110, 83112 (2011).
    110. E. Snitzer, "Optical maser action of Nd+3 in a barium crown glass," Phys Rev Lett 7,444(1961).
    111. J. Stone, and C. A. Burrus, "Neodymium-doped silica lasers in end-pumped fiber geometry," Appl Phys Lett 23,388-389 (1973).
    112. W. C. Swann, and N. R. Newbury, "Frequency-resolved coherent lidar using a femtosecond fiber laser," Opt Lett 31,826-828 (2006).
    113. W. F. Krukpe, "New laser materials for diode pumped solid state lasers," Current Opinion in Solid State and Materials Science 4, 197-201 (1999).
    114. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications," Quantum Electronics, IEEE Journal of 29, 1179-1191 (1993).
    115. M. E. Fermann, M. L. Stock, M. J. Andrejco, and Y. Silberberg, "Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber," Opt Lett 18,894-896 (1993).
    116. Y. Gu, L. Zhan, D. Deng, Y. Wang, and Y. Xia, "Supercontinuum generation in short dispersion-shifted fiber by a femtosecond fiber laser," Laser Phys 20,1459-1462(2010).
    117. A. V. Andrianov, S. V. Muraviev, A. V. Kim, and A. A. Sysoliatin, "DDF-based all-fiber optical source of femtosecond pulses smoothly tuned in the telecommunication range," Laser Phys 17,1296-1302 (2007).
    118. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," JOSA B 10,1185-1190 (1993).
    119. J. Limpert, T. Schreiber, T. Clausnitzer, K. ZolIner, H. Fuchs, E. Kley, H. Zellmer, and A. Tunnermann, "High-power femtosecond Yb-doped fiber amplifier," Opt Express 10,628-638 (2002).
    120. O. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, "Generation of 50-fs,5-nJ pulses at 1.03 μn from a wave-breaking-free fiber laser," Opt Lett 28, 1365-1367(2003).
    121. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys Rev A 77,23814 (2008).
    122. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl Phys Lett 64,149-151 (1994).
    123. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment," Quantum Electronics, IEEE Journal of 31,591-598 (1995).
    124. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt Lett 18,1080-1082 (1993).
    125. C. R. Doerr, H. A. Haus, E. P. Ippen, L. E. Nelson, and K. R. Tamura, "Stretched-pulse fiber laser," (Google Patents, 1997).
    126. K. Tamura, E. P. Ippen, and H. A. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl Phys Lett 67, 158-160 (1995).
    127. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys Rev Lett 92,213902 (2004).
    128. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, "Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients," Phys Rev Lett 90,113902 (2003).
    129. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys Rev Lett 84,6010 (2000).
    130. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," JOSA B 19,461-469(2002).
    131. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, "Self-similarity in ultrafast nonlinear optics," Nature Physics 3,597-603 (2007).
    132. A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," JOSA B 25,140-148 (2008).
    133. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, "Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," JOSA B 24,1803-1806 (2007).
    134. Q. Hao, W. Li, E. Wu, and H. Zeng, "Diode-Pumped Rational Harmonic Mode-Locked Yb:GSO Laser," Quantum Electronics, IEEE Journal of 45,86-89 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700