复发性鼻息肉分子标志物筛选及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用功能分类基因芯片技术研究复发性鼻息肉组织的相关基因,并探讨其在鼻息肉发病和复发中的作用。
     方法:分别抽提检测10例鼻息肉组织、10例复发性鼻息肉组织、10例慢性鼻窦炎组织和10例正常鼻黏膜组织的总RNA,合成cDNA,在标准96孔PCR反应仪中进行实时定量PCR实验,用扫描仪扫描芯片荧光信号,用2-△△Ct计算JAK-STAT信号通路、MAPK信号通路和NF-κB信号通路中实验组与对照组对应基因的表达差异。为了验证这些发现的可重复性,同时也为了检验我们建立的实验体系的可靠性,我们严格按照第一次实验的设计,重复进行了第二次实验。
     结果:两次实验共得出与正常对照组比较上调2倍以上的差异基因14个,其中JAK-STAT信号通路9个、MAPK信号通路2个,NF-κB信号通路3个。在差异表达的基因中,主要包括信号转录与转导激活因子、转录因子、细胞因子信号转导抑制因子、表皮生长因子相关因子、细胞周期调节因子、补体因子等。其中可能反映鼻息肉复发状态的基因7个;可能反映鼻息肉状态的基因4个;可能反映鼻黏膜炎症状态的基因1个。
     结论:用功能分类基因芯片筛选鼻息肉、复发性鼻息肉、慢性鼻窦炎和正常鼻黏膜组织间存在的差异基因是可行的,这将为寻找鼻息肉分类和预后评估的客观实验室指标提供新的方法。
     目的:检测细胞周期蛋白D1(Cyclin D1)和抑瘤素M(Oncostatin M, OSM)蛋白在复发性鼻息肉、鼻息肉、慢性鼻窦炎及正常中鼻甲黏膜组织中的表达程度的差异,探讨其在复发性鼻息肉发病机制中的作用。
     方法:采用蛋白质印迹法分别检测6例复发性鼻息肉、6例鼻息肉、6例慢性鼻窦炎及6例正常中鼻甲黏膜组织中Cyclin D1和OSM的蛋白表达;免疫组织化学技术检测6例复发性鼻息肉、6例鼻息肉、6例慢性鼻窦炎及6例正常中鼻甲黏膜组织中Cyclin D1蛋白的表达及定位,并比较表达程度的差异。
     结果:(1)免疫组化显示Cyclin D1蛋白在复发性鼻息肉、鼻息肉、慢性鼻窦炎及正常中鼻甲黏膜组织中均有表达,Cyclin D1蛋白主要位于鼻黏膜上皮细胞和腺上皮细胞的细胞核,黄色或棕黄色染色为阳性。蛋白质印迹显示Cyclin D1蛋白和OSM蛋白在复发性鼻息肉、鼻息肉及慢性鼻窦炎组织中的表达均高于正常中鼻甲黏膜组织。(2)复发性鼻息肉组织中Cyclin D1和OSM蛋白表达水平高于鼻息肉、慢性鼻窦炎及中鼻甲组织,差异有统计学意义(P值均<0.05)。
     结论:Cyclin D1和OSM在复发性鼻息肉组织中表达增高,提示它们可能在鼻息肉的复发中起着重要的作用,可作为检测鼻息肉复发的候选指标。
Chapter 1
     The study of the biomarkers in JAK-STAT, NF-κB and MAPK signaling pathway of the recurrent nasal polyps tissues with functional gene chips technique
     Objective:To detect the differentially expressed genes in the signaling pathway of JAK-STAT, NF-κB and MAPK in the recurrent nasal polpys through functional gene chips technique and evaluate the significance of these detected genes in the pathogenesis and recurrence of nasal polyps.
     Methods:The cDNAs were synthesized from total RNA which were extracted from 4 groups (10 cases respectively) including nasal polyps, recurrent nasal polyps, chronic sinusitis and normal nasal mucosa subjects. The cDNA were then taken into standard 96-well PCR equipment for real time PCR. The fluorescence signals of gene chip were obtained through a scanner. The expression difference of compared genes between experimental and normal groups in singaling pathway of JAK-STAT,MAPK and NF-κB was calculated by 2-ΔΔCt. These experiment processes were repeated strictly accorded to the experiment design to assure the stability and reliability of the final data.
     Results:There were 14 differentially expressed genes which were up-regulated up to more than 2-fold compared with the normal group, including 9 genes in JAK-STAT signaling pathway,2 genes in MAPK signaling pathway and 3 genes in NF-κB signaling pathway. These differentially expressed genes were singal transduction and transcription activation factor, transcription factor, cytokine transduction inhibition factor, epidermal growth associated factor, cell cycle regulation factor and complement factor, etc. Among the 14 candidates, there are seven genes whose upregulation may specially reflects the recurrent status of the nasal polyps, four genes for the status of nasal polpys and one for the inflammation status of nasal mucosa.
     Conclusions:It is feasible to screening the differentially expressed genes among the nasal polyps, recurrent nasal polyp, chronic sinusitis and normal nasal mucosa by means of functional classification gene chip technique. It will provide a new method in development of the objective experimental indicator for the classification and prognosis evaluation of nasal polyps.
     Chapter 2
     The expression and significance of Cyclin D1 and Oncostatin M in the recurrent nasal polyps
     Objective:To detect the expressions of Cyclin D1 and Oncostatin M proteins in recurrent nasal polyps, nasal polyps, chronic sinusitis and normal nasal mucosa so as to study their roles in the pathogenesis of the recurrent nasal polyps.
     Methods:The protein expression of Cyclin D1 and Oncostatin M were detected by Western blotting in recurrent nasal polyps, nasal polyps, chronic sinusitis and normal nasal mucosa cases (6 cases for each group). The expression and localization of Cyclin D1 were immunohistochemi-cally observed in the above four groups.
     Results:(1) Cyclin D1 protein was expressed in all of the specimen of the four groups, and predominantly stained in the nuclei of both epithelial cells of nasal mucosa and the underlying gland cells. The positive staining was yellow or claybank. By western blotting the expressions of Cyclin D1 protein and OSM protein in the recurrent nasal polyps, nasal polyps and chronic sinusitis were higher than that in normal middle turbinate mucosa. (2) The protein expressions of OSM and Cyclin D1 in the recurrent nasal polyps were significantly higher than that in other groups (p<0.05).
     Conclusions:The expressions of Cyclin D1 and OSM were up-regulated in the tissue of recurrent nasal polyps, which indicate that they may play the important roles in the development of recurrent nasal polyps, and may be utilized as the candidate biomarkers for detecting the susceptibility of recurrent nasal polyps.
引文
[1]Kirtsreesakul V. Update on nasal polyps:etiopathogenesis[J]. Med Assoc Thai, 2005,88(12):1966-1972.
    [2]Bateman N D, Fahy C, Woolford TJ. Nasal polyps:still more questions than answers[J]. Laryngol Otol,2003,117(1):1-9.
    [3]Pawliczak R, Lewandowska-Polak A, Kowalski ML. Pathogenesis of nasal polyps: an update[J]. Curr Allergy Asthma Rep,2005,5(6):463-471.
    [4]孙虹.慢性鼻-鼻窦炎的定义及其分类和治疗.见:本刊编辑部.鼻科专题论坛[J].中华耳鼻咽喉头颈外科杂志,2005,40(10):734-735.
    [5]姜舒,董震,朱冬冬,等.缺氧对鼻息肉上皮细胞表达血管内皮生长因子的影响[J].中华耳鼻咽喉科杂志,2002,32(1):34-37.
    [6]Hirschberg A, Jokuti A, Darvas Z, et al. The pathogenesis of nasal polyposis by immunoglobin E and interleukin5 is completed by transforming growth factor-betal[J]. Laryngoscope,2003,113(1):120-124.
    [7]Hess A, Bloch W, Rocker J, et al. Detection of nitric oxide synthases in physiological and pathophysiological processes of the nasal mucosa[J]. HNO,2000, 48(7):489-495.
    [8]Danielsen A, Tynning T, Brokstad KA, et al. Interleukin 5, IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum[J]. 2006,263(3):282-289.
    [9]周兵,李华斌,韩德民,等.黏附分子-1对鼻息肉中嗜酸性粒细胞聚集及临床预后的意义[J].临床耳鼻咽喉科杂志,2004,18(2):72-73.
    [10]Eweiss A, Dogheim Y, Hassab M, et al. VCAM-1 and eosinophilia in diffuse sino-nasal polyps[J].,2008,266(3):377-383.
    [11]张志钢,郑亿庆.嗜酸性粒细胞与鼻息肉术后复发和预后的初步探讨[J].中国耳鼻咽喉颅底外科杂志,2004,10(5):300-301.
    [12]Kisseleva T, Bhattacharya S, Braunstein J et al.Signaling through the JAK/-STAT pathway, recent advances and future challenges [J]. Gene,2002,285(1):1-24.
    [13]Dent P, Yacoub A, Fisher PB, et al. MAPK pathways in radiation responses[J]. Ontogeny,2003,22(37):5885-5896.
    [14]Digicaylioglu M, Lipton S, Erythropoietin-mediated neuroprotection involves cross-talk between JAK2 and NF-KB signaling cascades[J]. Nature.2001,412(6847): 641-647.
    [15]王天生,孙虹,陈江波,等.鼻息肉中MMP-9和NF-κB的表达研究[J].中国 耳鼻咽喉颅底外科杂志,2004,10(2):80-82.
    [16]贺广湘,孙虹,王天生,等.鼻息肉病与正常鼻黏膜组织的蛋白质组差异分析[J].临床耳鼻咽喉科杂志,2006,20(5):212-216.
    [17]吴敏曼,孙虹,贺广湘,等.慢性鼻-鼻窦炎鼻息肉与正常鼻黏膜差异蛋白质的检测及其意义[J].中华耳鼻咽喉头颈外科杂志,2006,41(3):171-175.
    [18]Min-Man W, Hong S, Zhi-Qiang X, et al. Differential proteomic analysis of nasal polyps, chronic sinusitis, and normal nasal mucosa tissues [J]. Otolaryngol Head Neck Surg,2009,141(3):364-368.
    [19]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method[J]. Methods,2001,25(4):402-408.
    [20]Wooster R. Cancer classification with DNA microarrays:is less more?[J]. Trends Genet,2000,16(8):327-329.
    [21]Draghici S, Khatri P, Bhavsar P, et al. Onto-Tools, the toolkit of the modern biologist:Onto-Express, Onto-Compare, Onto-Design and Onto-Translate[J]. Nucl Acids Res,2003,31(13):3775-3781.
    [22]Schena M. Microarray biochip technology.2000, Natick, MA:Eaton Pub. xiv, 298,32 of plates.
    [23]Chien CY, Tai CF, Ho KY, et al. Expression of hypoxia-inducible factor lalpha in the nasal polyps by real-time RT-PCR and immunohistochemistry[J]. Otolaryngol Head Neck Surg,2008,139(2):206-210.
    [24]Liuwantara D, Elliot M, Smith MW, et al. Nuclear factor-kappaB regulates beta-cell death:a critical role for A20 in beta-cell protection[J]. Diabetes,2006,55(9): 2491-2501.
    [25]Huang H, Paul WE. Protein tyrosine phosphatase activity is required for IL-4 induction of IL-4 receptor alpha-chain[J]. J Immunol,2000,164(3):1211-1215.
    [26]So EY, Kim SH, Park HH, et al. Corticosteroid inhibits IL-4 signaling through down-regulation of IL-4 receptor and STAT6 activity[J]. FEBS Lett,2002,518(1): 53-59.
    [27]李昌崇,叶乐平,陈小芳,等.哮喘大鼠信息传递与转录活化因子6的表达和地塞米松对其表达的影响[J].中华儿科杂志,2005,43(7):521-525.
    [28]Benitez P, Alobid I, de Haro J, et al. short course of oral prednisone followed by intranasal budesonide is an effective treatment of severe nasal polyps[J]. Laryngos-cope,2006,116(5):770-775.
    [29]Martinez-Anton A, de Bolos C, Alobid I, et al. Corticosteroid therapy increases membrane-tethered while decreases secreted mucin expression in nasal polyps[J]. Allergy,2008,63(10):1368-1376.
    [30]Pujols L, Alobid I, Benitez P, et al. Regulation of glucocorticoid receptor in nasal polyps by systemic and intranasal glucocorticoids[J].Allergy,2008,63(10):1377-1386.
    [31]Pujols L, Benitez P, Alobid I, et al. Glucocorticoid therapy increases COX-2 gene expression in nasal polyps in vivo[J]. Eur Respir J,2009,33(3):502-508.
    [32]Ramji DP, Foka P. CCAAT/enhancer-binding proteins:structure, function and regulation[J]. Biochem J,2002,365(3):561-575.
    [33]Uematsu S, Kaisho T, Tanaka T, et al. The C/EBP beta isoform 34-kDa LAP is responsible for NF-IL-6-mediated gene induction in activated macrophages, but is not essential for intracellular bacteria killing[J]. J Immunol,2007,179(8):5378-86.
    [34]Murray PJ. The JAK-STAT signaling pathway:input and output integration[J]. J Immunol,2007,178(5):2623-2629.
    [35]Frobose H, Ronn SG, Heding PE, et al. Suppressor of cytokine Signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex[J]. Mol Endocrinol,2006,20(7):1587-1596.
    [36]Wallace PM, MacMaster JF, Rouleau KA, et al. Regulation of inflammatory responses by oncostatin M[J]. J Immunol,1999,162(9):5547-5555.
    [37]Santamaria D, Ortega S. Cyclins and CDKS in development and cancer:lessons from genetically modified mice[J]. Front Biosci,2006,11(1):1164-1188.
    [38]Lim JH, Lee YM, Chun YS, et al. Reactive oxygen species-mediated cyclin D1 degradation mediates tumor growth retardation in hypoxia, independently of p21cip1 and hypoxia-inducible factor[J]. Cancer Sci,2008,99(9):1798-1805.
    [39]Taille C, El-Benna J, Lanone S, et al. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle[J]. J Biol Chem,2005,280(27):25350-25360.
    [40]Song KS, Seong JK, Chung KC, et al. Induction of MUC8 gene expression by interleukin-1 beta is mediated by a sequential ERK MAPK/RSK1/CREB cascade pathway in human airway epithelial cells[J]. J Biol Chem,2003,278(37):34890-34896.
    [41]Song KS, Lee WJ, Chung KC, et al. Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSKl-CREB activation in human airway epithelial cells[J]. J Biol Chem,2003,278(26):23243-23250.
    [42]李同丽,李源,张革化,等.p38丝裂原素活化蛋白激酶在慢性鼻-鼻窦炎黏膜中的表达及意义[J].中华耳鼻咽喉科杂志,2004,39(10):626-627.
    [43]Lin SK, Kok SH, Shun CT, et al. Tumor necrosis factor-alpha stimulates the expression of C-C chemokine ligand 2 gene in fibroblasts from the human nasal polyp through the pathways of mitogen-activated protein kinase[J]. Am J Rhinol,2007,21(2): 251-255.
    [44]Zaravinos A, Bizakis J, Spandidos DA. RKIP and BRAF aberrations in human nasal polyps and the adjacent turbinate mucosae[J]. Cancer Lett,2008,264(2):288-298.
    [45]Friedrichsen B N, Carlsson C, Moldrup A, et al. Expression, biosynthesis and release of preadipocyte factor-1/delta-like protein/fetal antigen-1 in pancreatic beta-cells:possible physiological implications [J]. J Endocrinol,2003,176(2):257-266.
    [46]Abdallah BM, Ding M, Jensen, et al. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone [J]. Endocrinology,2007,148(7):3111-3121.
    [47]Jensen CH, Jauho El, Santoni-Rugiu E, et al. Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1[J]. Am J Pathol, 2004,164(4):1347-1359.
    [48]Fundova P, Filipovsky T, Funda DP, et al. Expression of IGF-1R and iNOS in nasal polyps; epithelial cell homeostasis and innate immune mechanisms in patho-genesis of nasal polyposis[J]. Folia Micrbbiol,2008,53(6):558-562.
    [49]de Oliveira-Marques V, Cyme L, Marinlao HS, et al. A Quantitative Study of NF-kappaB Activation by H202:Relevance in Inflammation and Synergy with TNF-alpha[J].J Immunol,2007,178(6):3893-3902.
    [50]Jeong S, Cho IR, An WG, et al. STP-A11, an oneoprotein of Herpesviras saimiri augments both NF-kappaB and AP-1 transcription activity through TRAF6[J]. Exp Mol Med,2007,39(1)56-64.
    [51]Shadf O, Bolshakov VN, Raines S, et al.Transeriptioual profiling of the LPS induced NF-kappaB response in macrophages[J]. BMC Immunol,2007,8(1):1-17.
    [52]Calzado MA, Bacher S, Schmitz ML. NF-kappaB inhibitors for the treatment of inflammatory diseases and cancer[J].Curr Med Chem,2007,14(3):367-376.
    [53]Okamom T. NF-kappaB and rheumatic diseases[J]. Endocr Memb Immune Disord Drug Targets,2006,6(4):359-72.
    [54]Ryter SW, Choi AM. Heme oxygenase-1:redox regulation of a stress protein in lung and cell culture models [J]. Antioxid Redox Signal,2005,7(1-2):80-91.
    [55]Song R, Mahidhara RS, Liu F, et al. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway[J]. Am J Respir Cell Mol Biol,2002,27(5):603-610.
    [56]Almolki A, Taille C, Martin GF, et al. Heme oxygenase attenuates allergen-induced airway inflammation and hyperreactivity in guinea pigs[J]. Am J Physiol Lung Cell Mol Physiol,2004,287(1):L26-34.
    [57]Kobayashi H, Takeno M, Saito T, et al. Regulatory role of heme oxygenase 1 in inflammation of rheumatoid arthritis[J]. Arthritis Rheum,2006,54 (4)1132-1142.
    [58]Overhaus M, Moore BA, Barbato JE, et al. Biliverdin protects against poly-microbial sepsis by modulating inflammatory mediators[J]. Am J Physiol Gastrointest Liver Physiol,2006,290(4):G695-703.
    [59]Hegazi RA, Rao KN, Mayle A, et al. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway[J]. J Exp Med,2005, 202(12):1703-1713.
    [60]Elhini A, Abdelwahab S, Ikeda K. Heme oxygenase (HO)-1 is upregulated in the nasal mucosa with allergic rhinitis [J].Laryngoscope,2006,116(3):446-450.
    [61]Lo S, Di Palma S, Pitkin L, et al. Localisation of heme oxygenase isoforms in allergic human nasal mucosa[J].2005,262(7):595-598.
    [62]余少卿,章如新,刘国钧,等.血红素氧合酶1在变应性鼻炎豚鼠模型的鼻黏膜中的表达[J].临床耳鼻咽喉科杂志,2005,19(11):504-506.
    [63]Lo S, Di Palma S, George E, et al. Immunolocalisation of heme oxygenase isoforms in human nasal polyps[J]. J Laryngol Otol,2009,123(1):131-135.
    [64]Vives PM, Somoza N, Fernandez Alvarez J, et al. Evidence of expression of endotoxin receptors CD14, Toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endofoxin (LPS) in islet beta cells[J]. Clin Exp Immunol,2003,133(2):208-218.
    [65]Decker T. Sepsis:avoiding its deadly toll[J]. J Clin Invest,2004,113(10):1387-1389.
    [66]Lee YC, Kim C, Shim JS, et al. Toll-like Receptors 2 and 4 and Their Mutations in Patients with Otitis Media and Middle Ear Effusion[J]. Clin Exp Otorhinolaryngol, 2008,1(4):189-195.
    [67]Madan M, Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis:proteomic findings[J]. PloS One,2008,3(9):e3204.
    [68]王成硕,董震,杨占泉.Toll样受体mRNA在鼻息肉中的表达及意义.中国耳鼻咽喉头颈外科,2004,11(3):185-187.
    [69]Kaisho T, Akira S. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand,2001,59(3):124-130.
    [1]Meltzer EO, Hamilos DL, Hadley JA, et al. Rhinosinusitis:Establishing definitions for clinical research and patient care[J]. J Allergy Clin Immunol,2004, 114(6):155-212.
    [2]Fokkens W, Lund V, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps group[J].Rhinol Suppl,2007,20:1-136.
    [3]Zhang N, Holtappels G, Claeys C, et al. Pattern of inflammation and impact of Staphylococcus aureus enterotoxins in nasal polyps from southern China[J]. Am J Rhinol,2006,20(4):445-450.
    [4]许庚,徐睿,史剑波,等.对慢性鼻窦炎海口标准的重新认识[J].中国眼耳鼻喉科杂志,2005,5(1):1-3.
    [5]Bhattacharyya N. Clinical outcomes after revision endoscopic sinus surgery [J]. Arch Otolaryngol Head Neck Surg,2004,130(8):975-978.
    [6]McMains KC, Kountakis SE. Revision functional endoscopic sinus surgery: objective and subjective surgical outcomes[J].2005,19(4):344-347.
    [7]Vandermeer J,Sha Q,Lane AP, et al. Innate immunity of the sinonasal cavity: expression of messenger RNA for complement cascade components and toll-like receptors[J]. Arch Otolaryngol Head Neck Surg,2004,130(12):1374-1380.
    [8]王成硕,董震,杨占泉.Toll样受体mRNA在鼻息肉中的表达及意义.中国耳鼻咽喉头颈外科,2004,11(3):185-187.
    [9]Kaisho T, Akira S. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol Scand,2001,59(3):124-130.
    [10]Massari P, Henneke P, Ho Y, et al. Cutting edge:Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent[J]. J Immunol,2002, 168(4):1533-1577.
    [11]Claeys S, Van Hoecke H, Holtappels G, et al. Nasal polyps in patients with and without cystic fibrosis:a differentiation by innate markers and inflammatory mediators[J]. Clin Exp Allergy,2005,35(4):467-472.
    [12]Ekholm SV, Reed SI. Regulation of Gl cyclin-dependent kinases in the mamma-lian cell cycle[J]. Curr Opin Cell Biol,2000,12(6)676-684.
    [13]Musgrove EA. Cyclins:roles in mitogenic signaling and oncogenic transfor-mation [J]. Growth Factors,2006,24(1):13-19.
    [14]Alao JP. The regulation of cyclin D1 degradation:roles in cancer development and the potential for therapeutic invention[J]. Mol Cancer,2007,6(24):1-16.
    [15]Lim JH, Lee YM, Chun YS, et al. Reactive oxygen species-mediated cyclin D1 degradation mediates tumor growth retardation in hypoxia, independently of p21cip1 and hypoxia-inducible factor[J]. Cancer Sci,2008,99(9):1798-1805.
    [16]Miyakawa Y, Matsushime H. Rapid downregulation of cyclin D1 mRNA and protein levels by ultraviolet irradiation in murine macrophage cells[J]. Biochem Biophys Res Commun,2001,284(1):71-76.
    [17]Fasanaro P, Magenta A, Zaccagnini G, et al. Cyclin D1 degradation enhances endothelial cell survival upon oxidative stress[J]. FASEB J,2006,20(8)1242-1244.
    [18]Ammit AJ, Panettieri RA. Invited review:the circle of life:cell cycle regulation in airway smooth muscle [J]. J Appl Physiol,2001,91(3)1431-1437.
    [19]Fiaschi TN, Sicari BM, Ubriani K, et al. Cellular mechanism through which parathyroid hormone-related protein induces proliferation in arterial smooth muscle cells:definition of an arterial smooth muscle PTHrP/p27kip1 pathway[J]. Circ Res, 2006,99(9):933-942.
    [20]Taille C, El-Benna J, Lanone S, et al. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle [J]. J Biol Chem,2005,280(27):25350-25360.
    [21]卓致远,黄茂,葛海燕,等.哮喘小鼠气道平滑肌细胞增殖及细胞周期蛋白D1表达的差异[J].南京医科大学学报,2007,27(1):43-46.
    [22]Pelletier JP, Martel-Pelletier J. Oncostatin M:foe or f riend? [J]. Art hritis Rheum, 2003,48(12):3301-3303.
    [23]Jorcyk CL, Holzer RG, Ryan RE. Oncostatin M induces cell detachment and enhances the metastatic capacity of T-47D human breast carcinoma cells[J]. Cytokine, 2006,33(6):323-326.
    [24]MiyajimaA, Kinoshita T, Tanaka M, et al. Role of Oncostatin M in hematopoiesis and liver development[J]. Cytokine Growth Factor Rev,2000,11(3):177-183.
    [25]Wallace PM, MacMaster JF, Rouleau KA, et al. Regulation of inflammatory responses by oncostatin M[J]. J Immunol,1999,162(9):5547-5555.
    [26]Kang HJ, Kang JS, Lee SH, et al. Upregulation of Oncostatin M in allergic rhinitis[J]. Laryngoscope,2005,115(12):2213-2216.
    [27]Fritz DK, Kerr C, Tong L, et al. Oncostatin-M up-regulates VCAM-1 and synergizes with IL-4 in eotaxin expression:involvement of STAT6[J]. J Immunol, 2006,176(7):4352-4360.
    [1]Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995,270(20):467-470.
    [2]Lee SH, Kim JE, Lim HH, et al. Antimicrobial defensin peptides of the human nasal mucosa [J]. Ann Otol Rhinol Laryngol,2002,111(2):135-141.
    [3]郑杰.TLRs、慢性炎症与肿瘤[J].生命科学,2007,19(2):15-20.
    [4]Kaisho T, Akira S. Toll-like receptors and their signaling mechanism in innate immunity[J]. Acta Odontol Scand.2001,59(3):124-30.
    [5]王成硕,董震,杨占泉.Toll样受体mRNA在鼻息肉中的表达及意义[J].中国耳鼻咽喉头颈外科,2004,11(3):185-187.
    [6]Muzio M, Polentarutti N, Bosisio D, et al. Toll-like receptor family and signalling pathway [J]. Biochem Soc Trans,2000,28(5):563-566.
    [7]Liu Z, Kim J, Sypek JP, et al. Gene expression profiles in human nasal polyp tissues studied by means of DNA microarray [J]. Allergy Clin Immunol,2004,114(4): 783-790.
    [8]Gaubin M, Autiero M, Basmaciogullari S, et al. Potent inhibition of CD4/TCR-mediated T cell apoptosis by a CD4-binding glycoprotein secreted from breast tumor and seminal vesicle cells[J]. Immunol,1999,162(5):2631-2638.
    [9]Singh G, Katyal SL. Clara cell proteins[J]. Ann N Y Acad Sci,2000,923:43-58.
    [10]王鑫,董震.鼻息肉组织免疫相关基因的表达谱[J].中华耳鼻咽喉科杂志,2004,39(12):721-724.
    [11]王鑫,董震.白细胞介素-17及其受体在鼻息肉组织中的表达及意义[J].中华耳鼻咽喉科杂志,2005,40(12):899-902.
    [12]郑世信,郭敛容,姚利,等.鼻息肉基因芯片检测及其基因表达谱的研究[J].临床耳鼻咽喉头颈科杂志,2008,22(5):193-196.
    [13]Baars EW, Savelkoul HE Citrus/Cydonia comp. can restore the immunological balance in seasonal allergic rhinitis-related immunolo-gical parameters in vitro[J]. Mediators Inflamn,2008,10(1):1-8.
    [14]刘冰,吴建,范静平,等.鼻息肉基因芯片检测及基因表达谱的研究[J].临床耳鼻咽喉头颈科杂志,2008,22(11):495-497.
    [15]乐建新,陈建军,孔维佳,等.鼻息肉组织中IL-4,IL-5,IL-6和IL-8的含量及其表达[J].临床耳鼻咽喉科杂志,2006,20(11):484-486.
    [16]Besancon WC, Bene MC, Montaqne P et al.Eosinophilia and cell activation mediators in nasal secretions[J]. Laryngoscope,2002,112(1):43-46.
    [17]Benson M, Carlsson L, Adner M, et al. Gene profiling reveals increased expression of uteroglobin and other anti-inflammatory genes in glucocorticoid-treated nasal polyps [J].Allergy Clin Immunol 2004,113(6):1137-1143.
    [18]Benson M, Steenhoff Hov DA, Clancy T, et al. Connectivity can be used to identify key genes in DNA microarray data:a study based on gene expression in nasal polyps before and after treatment with glucocorticoids[J]. Acta Otolaryngol,2007, 127(10):1074-1079.
    [19]Figueiredo CR, Santos RP, Silva ID,et al. Microarray cDNA to identify inflammatory genes in nasal polyposis[J].Am J Rhinol,2007,21(2):231-235.
    [20]Rudack C, Sachse F, Alberty J, et al. Chronic rhinosinusitis--need for further classification?[J]. Inflamm Res,2004,53(3):111-117.
    [21]Wang X, Dong Z, Zhu DD, et al. Expression profile of immune-associated genes in nasal polyps[J]. Ann Otol Rhinol Laryngol 2006,115 (6):450-456.
    [22]Chen YS, Arab SF, Westhofen M, et al. Expression of interleukin-5, interleukin-8, and interleukin-10 mRNA in the osteomeatal complex in nasal polyposis[J]. Am J Rhinol 2005,19(2):117-123.
    [23]Danielsen A, Tynning T, Brokstad KA, et al. Interleukin 5,IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum[J]. Eur Arch Otorhinolaryngol,2006,263(3):282-289.
    [24]Lee JY, Lee SH, Lee HM, et al. Analysis of gene expression profiles of normal human nasal mucosa and nasal polyp tissues by SAGE[J]. Allergy Clin Immunol,2006, 118(1):134-142.
    [25]LeClair EE. Four reasons to consider a novel class of innate immune molecules in the oral epithelium [J]. J Dent Res,2003,82 (12):944-950.
    [26]Bingle L, Cross SS, High AS, et al. Spluncl (Plunc) is expressed in glandular tissues of the respiratory tract and in lung tumours with a glandular phenotype[J]. J Pathol,2005,205(4):491-497.
    [27]Zhou HD, Li GY, Yang YX, et al. Intracellular co-localization of SPLUNC1 protein with nanobacteria in nasopharyngeal carcinoma epithelia HNE1 cells depended on the bactericidal permeability increasing protein domain[J].Mol Immunol, 2006,43(11):1864-1871.
    [28]Yang LL, Liu XQ, Liu W, et al. Comparative analysis of whole saliva proteomes for the screening of biomarkers for oral lichen planus[J]. Inflamm Res,2006,55(10): 405-407.
    [29]Bingle CD, Craven CJ. PLUNC:a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx[J].Hum Mol Genet,2002, 11(8):937-943.
    [30]Lindahl M, Stahlbom B, Tagesson C. Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/-ionization-time of flight[J]. Electrophoresis,2001,22(9):1795-1800.
    [31]吴敏曼,孙虹,贺广湘,等.慢性鼻-鼻窦炎鼻息肉与正常鼻黏膜差异蛋白质的检测及其意义[J].中华耳鼻咽喉头颈外科杂志,2006,41(3):171-175.
    [32]吴敏曼,孙虹,刘火旺,等.超氧化物歧化酶和PLUNC蛋白在慢性鼻窦炎和鼻息肉组织中的表达及意义[J].临床耳鼻咽喉头颈外科杂,2008,22(20)913-916.
    [33]Bousquet J. Allergic rhinitis as a global health problem[J]. ACI Int,2001,13:13.
    [34]Mullol J, Valero A, Alobid I, et al.Allergic Rhinitis and its Impact on Asthma update(ARIA 2008). The perspective from Spain[J].J Investig Allergol Clin Immunol, 2008,18(5)327-334.
    [35]Kristan SS, Malovrh MM, Silar M, et al. Airway angiogenesis in patients with rhinitis and controlled asthma[J].Clin Exp Allergy,2009,39 (3):354-360.
    [36]Settipane RA. Complications of allergic rhinitis[J]. Allergy Asthma Proc,1999, 20(4):209-213.
    [37]Benson M, Carlsson B, Carlsson LM,et al.DNA microarray analysis of transforming growth factor-beta and related transcripts in nasal biopsies from patients with allergic rhinitis[J].Cytokine,2002,18(1):20-25.
    [38]Benson M,Carlsson B,Carlsson LM.Increased expression of Vascular Endothelial Growth Factor 2A in seasonal allergic rhinitis[J].Cytokine,2002,20(6)268-273.
    [39]薛金梅,赵长青,解军.气道炎症相关生物标记物的基因检测[J].山西医科大学学报,2008,39(4):302-305.
    [40]Yuyama N, Davies DE, Akaiwa M, et al. Analysis of novel Disease-related genes in bronchial asthma[J], Cytokine,2002,19(6):287-296.
    [41]Nishi N,Miyazaki M, Tsuji K, et al. Squamous cell carcinoma related antigen in children with acute asthma[J]. Ann Allergy Asthma Immunol,2005,94(3):391-397.
    [42]余少卿,章如新,刘国均,等.趋化因子及其受体在变应性鼻炎中基因表达的临床研究[J].中华耳鼻咽喉科杂志,2005,19(2):52-54.
    [43]刘冰,吴建,赵舒薇,等.人类变应性鼻炎基因表达谱的研究[J].中国耳鼻 咽喉头颈外科,2008,15(3):149-152.
    [44]Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6[J].Cytokine Growth Factor Rev,2003,14 (5):409-426.
    [45]Williams I R. CCR6 and CCL20:partners in intestinal immunity and lymphorga-nogenesis[J]. Ann N Y Acad Sci,2006,1072(3):52-61.
    [46]Reibman J, Hsu Y, Chen LC, et al. Airway epithelial cells release MIP-3alpha/ CCL20 in response to cytokines and ambient particulate matter[J]. Am J Respir Cell Mol Biol,2003,28(6):648-654.
    [47]Benson M, Svensson PA, Adner M et al. DNA microarray analysis of chromo-somal susceptibility regions to identify candidate genes for allergic disease:a pilot study[J]. Acta Otolaryngol,2004,124(7):813-819.
    [48]Zhang J, Noguchi E, Migita O,et al. Association of a haplotype block spanning SDAD1 gene and CXC chemokine genes with allergic rhinitis[J]. Allergy Clin Immunol,2005,115(3):548-554.
    [49]刘繁荣,钟清玲,熊小亮,等.鼻N K/T细胞淋巴瘤的免疫表型、EBV感染及TCRy基因重排的检测[J].肿瘤防治研究,2007,34(9):693-695.
    [50]Nagato T, Kobayashi H, Kishibe K, et al. Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients [J]. Clin Cancer Res,2005, 11(23):8250-8257.
    [51]Chan JK. The new world health organization classification of lymphomas:The past, the present and the future[J]. Hematol Oncol,2001,19(4):129-150.
    [52]李甘地.成熟(外周)T细胞和NK细胞肿瘤[J].白血病淋巴瘤,2004,13(6):368-371.
    [53]Garcia CM, Santon A, Mendez MC, et al. Nasopharyngeal/nasal type T/NK lymphomas:analysis of 14 cases and review of the literature [J]. Tumori,2003,89(3): 278-284.
    [54]Ko YH, Ree HJ, Kim WS, et al. Clinicopathologic and genotypic study of extranodal nasal-type natural killer/T-cell lymphoma and natural killer precursor lymphoma among Koreans[J]. Cancer,2000,89(10):2106-2116.
    [55]Lien HC, Lin CW, Huang PH, et al.Expression of cyclin-dependent kinase 6 (cdk6) and frequent loss of CD44 in nasal-nasopharyngeal NK/T cell lymphoma: Comparison with CD56-negative peripheral T-cell lymphomas[J]. Lab Invest,2000, 80(6):893-900.
    [56]Oshimi K. Leukemia and lymphoma of natural killer lineage cells[J]. Int J Hematol,2003,78(1):18-23.
    [57]Nagata H, Konno A, Kimura N, et al. Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus [J]. Blood,2001,97(3): 708-713.
    [58]王维虎,李晔雄,林晨,等.人鼻腔NK/T细胞淋巴瘤基因表达谱的建立与分析[J].中华肿瘤杂志,2006,28(7):518-522.
    [59]Colvin RA, Campanella GS, Sun J, et al. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10 and CXCL11 function[J]. J Biol Chem,2004,279(29): 30219-30217.
    [60]Pellegrino A, Antonaci F, Russo F, et al. CXCR3-binding chemokines in multiple myeloma[J].Cancer Lett,2004,207(2):21-227.
    [61]Kitaya K, Nakayama T, Daikoku N, et al. Spatial and temporal expression of ligands for CXCR3 and CXCR4 in human endometrium[J]. J Clin Endocrinol Metab, 2004,89(5):2470-2476.
    [62]王成涛,曹卡加,李茵,等.鼻咽癌远处转移的预后因素分析[J].癌症,2007,26(2):212-215.
    [63]Guo X, Lui WO, Qian CN, et al. Identifying cancer-related genes in nasopharyn-geal carcinoma cell lines using DNA and mRNA expression profiling analyses [J]. Int J Oncol,2002,21(6):1197-1204.
    [64]李虹,韩为民,冯湘灵,等.用芯片技术分析鼻咽癌周围的基质细胞基因表达特点[J].癌症,2003,22(3):235-238.
    [65]刘仲奇,田勇泉,刘俊秀,等.染色体分离基因在纯化鼻咽癌组织中的表达[J].中国耳鼻咽喉头颈外科,2007,14(4):195-198.
    [66]刘仲奇,田勇泉,黄河,等.纯化鼻咽组织全基因组表达谱在筛选鼻咽癌相关靶基因中的应用[J].中南大学学报(医学版),2005,30(1):1-6.
    [67]Behrens P, Brinkmann U, Wellmann A. CSE1L/CAS:its role in proliferation and apoptosis[J]. Apoptosis,2003,8(1):39-44.
    [68]Qin LX, Tang ZY. The prognostic molecular markers in hepato-cellular carcinoma[J]. World J Gastroenterol,2002,8(3):385-392.
    [69]Hui AB, Lo KW, Teo PM, et al. Genome wide detection of oncogene amplifica-tions in nasopharyngeal carcinoma by array based comparative genomic hybridiza-tion[J]. Int J Oncol,2002,20(3):467-473.
    [70]Fang WY, Liu TF, Xie WB, et al. Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection[J]. Acta Biochim Biophys Sin (Shanghai),2005,37(8):541-546.
    [71]Lockhart DJ, Winzeler EA. Genomics, gene expresion and DNA arrays[J]. Nature,2000,405(6788):827-836.
    [72]Tu IP, Schaner M, Diehn M, et al. A method for detecting and correcting feature misidentification on expression microarrays[J]. BMC Genomics,2004,5 (1):64.
    [1]Akira S, Takeda K.Toll-like receptor signalling[J]. Nat Rev Immunol,2004,4(7): 499-511.
    [2]Vives PM, Somoza N, Fernandez Alvarez J, et al. Evidence of expression of endotoxin receptors CD14, Toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endofoxin (LPS) in islet beta cells [J]. Clin Exp Immunol,2003,133(2):208-218.
    [3]Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors(TLR) in human leukocytes:selective expression of TLR3 in dendritic cells[J]. J Immunol,2000,164(11):5998-6004.
    [4]Decker T. Sepsis:avoiding its deadly toll[J]. J Clin Invest,2004,113(10):1387-1389.
    [5]Lee YC, Kim C, Shim JS, et al. Toll-like Receptors 2 and 4 and Their Mutations in Patients with Otitis Media and Middle Ear Effusion[J]. Clin Exp Otorhinolaryngol, 2008,1(4):189-195.
    [6]Madan M, Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis:proteomic findings[J]. PloS One,2008,3(9):e3204.
    [7]Heumann D, Roger T. Initial responses to endotoxins and Gramnegative bacteria [J]. J Clin Chim Acta,2002,323(122):59-72.
    [8]Hashimoto M, Asai Y, Ogawa T. Separation and st ruct ural analysis of lipoprotein in a lipopolysaccharide preparation from porphyromonas gingivalis[J]. Int Immunol, 2004,16(10):1431-1437.
    [9]Mirlashari MR, Lyberg T. Expression and involvement of Toll-like receptors TLR2, TLR4 and CD14 in monocyte TNF-alpha production induced by lipopolysaccharides from Neisseria meningitidis[J]. J Med Sci Monit,2003,9 (8):316-324.
    [10]Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2[J]. J Exp Med,2003,197 (9):1107-1117.
    [11]Kaisho T, Akira S. Toll-like receptors as adjurant receptors[J]. J Biochim Biophys Acta,2002,1598 (1):1-13.
    [12]Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8[J]. Science,2004,303(5663):1526-1529.
    [13]Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA[J]. Science,2004,303(5663): 1529-1531.
    [14]Akira S. Mammalian Toll-like receptors[J]. Curr Opin Immunol,2003,15(1):5-11.
    [15]Akira S, Takeda K, Kaisho T. Toll-like receptors:Critical proteins linking innate and acquired immunity[J]. Nat Immunol,2001,2(8):675-680.
    [16]Anderson KV. Toll signaling pathways in the innate immune response[J]. Curr Opin immunol,2000,12(2):13-19.
    [17]Kaisho T, Akira S. Toll-like receptors and their signaling mechanism in innate immunity[J]. Acta Odontol Scand,2001,59(3):124-130.
    [18]Vandermeer J, Sha Q, Lane A P, et al. Innate immunity of the sinonasal cavity: expression of messenger RNA for complement cascade components and toll-like receptors[J]. Arch Otolaryngol Head Neck Surg,2004,130(12):1374-1380.
    [19]王成硕,董震,杨占泉.Toll样受体mRNA在鼻息肉中的表达及意义[J].中国耳鼻咽喉头颈外科,2004,11(3):185-187.
    [20]Pitzurra L, Bellocchio S, Nocentini A, et al. Antifungal immune reactivity in nasal polyposis[J]. Infect Immun,2004,72(12):7275-7281.
    [21]Nonaka M, Ogihara N, Fukumoto A,et al. Toll-like receptor 2,3,4,5 ligands and interleukin-4 synergistically induce TARC production in nasal polyp fibroblasts[J]. Auris Nasus Larynx,2008,35(4):515-520.
    [22]游学俊,陆翔,刘洋,等.Toll样受体在慢性鼻—鼻窦炎和鼻息肉中表达的差异[J].中华耳鼻咽喉头颈外科杂志,2007,42(5):345-349.
    [23]Wang J, Matsukura S, Watanabe S, et al. Involvement of Toll-like receptors in the immune response of nasal polyp epithelial cells[J]. Clin Immunol,2007,124(3):345-352.
    [1]Bhattacharyya N. Clinical outcomes after revision endoscopic sinus surgery[J]. Arch Otolaryngol Head Neck Surg,2004,130(8):975-978.
    [2]McMains KC, Kountakis SE. Revision functional endoscopic sinus surgery: objective and subjective surgical outcomes[J]. Am J Rhinol,2005,19(4):344-347.
    [3]Fokkens W, Lund V, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps group[J]. Rhinol Suppl,2007,20:1-136.
    [4]Scadding GK, Durham SR, Mirakian R, et al. BSACI guidelines for the management of rhinosinusitis and nasal polyposis[J]. Clin Exp Allergy,2008,38(2): 260-275.
    [5]Benitez P, Alobid I, De Haro J, et al. A short course of oral prednisone followed by intranasal budesonide is an effective treatment of severe nasal polyps[J]. Laryngos-cope,2006,116(5):770-775.
    [6]Bachert, C, Watelet JB, Gevaert P, et al. Pharmacological management of nasal polyposis[J].Drugs,2005,65(11):1537-1552.
    [7]Schubert MS. A superantigen hypothesis for the pathogenesis of chronic hypertr-ophic rhinosinusitis, allergic fungal sinusitis, and related disorders [J]. Ann Allergy Asthma Immunol,2001,87(3):181-188.
    [8]Bemstein JM, Kanasl R. Superantigen hypothesis for the early development of chronic hyperplastic sinusitis with massive nasal polyposis[J]. Curr Opin Otolaryngol Head Neck Sury,2005,13(1):39-44.
    [9]Allen DB.Systemic effects of intranasal steroids:an endocrinologist's perspective [J]. J Allergy Clin Immunol,2000,106(4):S179-190.
    [10]Baena-Cagnani CE. Safety and tolerability of treatments for allergic rhinitis in children[J]. Drug Saf,2004,27(12):883-898.
    [11]Skov M, Main KM, Sillesen IB, et al. Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide [J]. Eur Respir J,2002, 20(1):127-133.
    [12]Johnson SR, Marion AA, Vrchoticky T, et al. Cushing syndrome with secondary adrenal insufficiency from concomitant therapy with ritonavir and fluticasone[J]. J Pediatr,2006,148(3):386-388.
    [13]Shinkai M, Henke MO, Rubin BK. Macrolide antibiotics as immunomodulatory medications:proposed mechanisms of action[J]. Pharmacol Ther,2008,117(3):393- 405.
    [14]Cervin A, Kalm 0, Sandkull P, et al. One-year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery:clinical outcome and effects on mucociliary parameters and nitric oxide[J].Otolaryngol Head Neck Surg,2002,126(5): 189-183.
    [15]Yamada T, Fujieda S, Mori S, et al. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage[J]. Am J Rhinol,2000,14(3):143-148.
    [16]Cervin A. The anti-inftammatory effect of erythromycin and its derivatives, with special reference to nasal polyposis and chronic sinusitis[J]. Acta Otolaryngol,2001, 121(1):83-92.
    [17]董震,于睿莉.鼻息肉药物治疗的现状及进展[J].中华耳鼻咽喉头颈外科杂志,2007,42(5):397-400.
    [18]刘铭,周兵,刘华超,等.变应性真菌性鼻窦炎[J].中华耳鼻咽喉科杂志,2002,37(3):169-172.
    [19]Landsberg R, Segev Y, DeRowe A, et al. Systemic corticosteroids for allergic fungal rhinosinusitis and chronic rhinosinusitis with nasal polyposis:a comparative study[J]. Otolaryngol Head Neck Surg,2007,136(2):252-257.
    [20]Sohail MA, Al Khabori M, Hyder J, et al. Acute fulminant fungal sinusitis: clinical presentation,radiological findinga and treatment[J]. Acta Trop,2001,80(2): 177-185.
    [21]Passali D, Bernstein JM, Passali FM, et al. Treatment of recurrent chronic hyperplastic sinusitis with nasal polyposis [J]. Arch Otolaryngol Head Neck Surg, 2003,129(6):656-659.
    [22]Perez-Novo CA, Claeys C, Van Zele T, et al. Eicosanoid metabolism and eosinophilic inflammation in nasal polyp patients with immune response to Staphylo-coccus aureus enterotoxins[J]. Am J Rhinol,2006,20(4):456-460.
    [23]Stevenson DD. Aspirin desensitization in patients with AERD[J]. Clin Rev Allergy Immunol,2003,24(2):159-168.
    [24]Ponikau JU, Sherris DA, Kephart GM, et al. Features of airway remodeling and eosinophilic inflammation in chronic rhinosinusitis:is the histopathology similar to asthma?[J]. J Allergy Clin Immunol,2003,112(5):877-882.
    [25]Watelet JB, Bachert C, Claeys C, et al. Matrix metalloproteinases MMP-7, MMP-9 and their tissue inhibitor TIMP-1:expression in chronic sinusitis vs nasal polyposis[J]. Allergy,2004,59(1):54-60.
    [26]李华斌,陈雷.慢性鼻-鼻窦炎的研究在争议中进展[J].临床耳鼻咽喉头颈外科杂志,2009,23(2):49-51.
    [27]Reiss M. Current aspects of diagnosis and therapy of nasal polyposis[J]. Wien Klin Wochenschr,1997,109(20):820-825.
    [28]Bernal-Sprekelsen M, Sudhoff H, Dazert S.Complications after endonasal surgery of the paranasal sinuses for inflammatory diseases[J]. Laryngorhinootologie,2004,83 (1):23-28.
    [29]Pawliczak R, Lewandowska-Polak A, Kowalski ML.Pathogenesis of nasalpolyps: an update[J]. Curr Allergy Asthma Rep,2005,5(6):463-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700