超临界二氧化碳在聚合物中的溶解计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界二氧化碳(Supercritical Carbon Dioxide,ScCO2)在聚合物中的溶解性是重要的物理化学属性之一,广泛用作聚合物改性、合成、共混和新型材料制备等领域,主要有实验和模型研究两类。实验研究耗时、费力、开销大,同时也易受实验条件等制约;传统预测模型精度与适应性不高,与实验值偏差也较大。本文作者从粒子群算法(Particle Swarm Optimization,PSO)、聚类方法、人工神经网络(Artificial Neural Network, ANN)和吸附理论、扩散理论与翻埋理论出发,深入研究ScCO2在聚合物中的溶解计算模型。研究主要成果如下:
     (1)粒子群改进算法研究。
     改进算法引入自适应权值调整策略提高收敛速度和精度,通过混沌理论优化学习因子避免早熟收敛,简称CSAPSO算法。实例表明,CSAPSO算法的收敛速度较快、精度较高、多样性较好。
     (2)基于CSAPSO算法的溶解预测模型研究。
     将CSAPSO算法与反向传播人工神经网络(Back Propagation,BPANN)结合提出溶解计算模型,称CSAPSO-BPANN模型。BP算法具有较强的局部搜索能力,但全局搜索能力相对薄弱,而CSAPSO算法正好与BP算法互补。模型采用CSAPSO算法对BP ANN的连接权值进行优化得到。实验表明,模型在未训练的聚合物中溶解预测性能较好,具有较好的探索预测能力。
     (3)基于聚类方法的溶解预测模型研究。
     径向基函数人工神经网络(Radial Basis Function,RBF ANN)的连接权值和基函数中心、扩展常数分别通过CSAPSO算法和聚类方法优化,得到3个统称为CSAPSO-C RBFANN的溶解计算模型。实验表明,聚类方法对基函数中心和扩展常数的优化效果明显,模型在经过训练的聚合物溶解预测中性能较优,具有较好的开发预测能力。
     (4)基于扩散理论的溶解预测模型研究。
     受溶解与扩散的本质--质量传递和PSO思想的启发,提出基于粒子扩散能和扩散概率的双种群PSO改进算法,得到DCSAPSO-BP ANN溶解计算模型。实验表明,无论是在经过训练还是未经过训练的聚合物溶解预测中,模型都表现优越,稳定性较好。
     (5)基于吸附、扩散和翻埋的溶解理论计算模型研究。
     将界面吸附、扩散与翻埋理论结合,通过翻埋溶解增长系数来衡量因翻埋而产生的溶解增量随时间的变化关系,提出基于吸附-扩散和吸附-翻埋两个过程的溶解理论计算模型。通过算例表明,模型从理论上描述各实验条件对溶解度的影响,能给挤出加工实验提供合理的实验参考。
     (6)挤出实验研究。
     在不同温度、压力、螺杆转速和气体进气流量下进行发泡材料的挤出实验,分析各产品的性能与实验参数的相互关系。通过比较在模型预测的理想进气流量下的实验产品性能,表明了模型提供的实验参数是合理的,溶解计算模型对实验有实际的指导意义。
Solubility of supercritical carbon dioxide (ScCO2) in polymers is one of the mostimportant physicochemical properties, which has been used successfully in polymermodification, polymer synthesis, polymer blending, preparation of new material, andso on. Solubility studies consist of experiment and prediction, experimental studiesare difficult to implement under many restricted conditions such as time consuming,strenuosity, and material consuming, while most traditional prediction methods havesome shortcomings such as inaccurate, low adaptability, and the correlation is notgood compared with experimental. In this thesis, study on prediction model of ScCO2solubility in polymers based on particle swarm optimization (PSO), clustering method,artificial neural network (ANN), and the adsorption, diffusion, and burying theory iscarried out. The main work and achievements are as follows:
     (1) Study on improved particle swarm optimization algorithm.
     The improved PSO algorithm is introduced into the self-adaptive weightadjustment strategy to improve the convergence speed and accuracy, and introducedinto chaos theory to tune the acceleration coefficients and avoid prematureconvergence, hereinafter called CSAPSO algorithm. Examples show that theconvergence speed, accuracy, and diversity of CSAPSO algorithm are better.
     (2) Study on solubility prediction model based on CSAPSO algorithm.
     A solubility prediction model combined with CSAPSO algorithm and backpropagation ANN, called CSAPSO-BP ANN is proposed. BP algorithm with a strongability to search local optimum suffers weak ability to search global optimum, whileCSAPSO algorithm complements the BP algorithm. The model is developed usingCSAPSO algorithm to optimize the BP ANN connection weights. Examples showthat, the model has excellent prediction capability and better exploration researchcapability in the prediction example of untrained polymers.
     (3) Study on solubility prediction model based on clustering method.
     Three solubility prediction models, called by a joint name, CSAPSO-C RBFANN, are proposed. The connection weights, function center and spreads of radial basis function ANN are optimized by the CSAPSO algorithm and clustering method.Experiments show that the effect of using clustering method to tune function centerand spreads is obvious, and the model has better prediction performance with gooddevelopment research capability in the prediction example of trained polymers.
     (4) Study on solubility prediction model based on diffusion theory.
     Inspired by the essence of solubility and diffusion, mass transfer, and PSO, adouble populations PSO algorithm based on the particle diffusion energy anddiffusion probability is developed, then a solubility prediction model, calledDCSAPSO-BP ANN, is proposed. Experiments show that, in the prediction exampleof both trained and untrained polymers, DCSAPSO-BP ANN has superiorperformance and good stability.
     (5) Study on solubility theoretical calculation model based on the adsorption,diffusion and burying theory.
     Combined with interface adsorption, diffusion and burying theory, a solubilitytheoretical calculation model is developed based on two processes consist ofadsorption-diffusion and adsorption-burying, the relationship between buriedsolublity and time is estimated by a burying solubility growth factor. Experimentshows that the model describes the influence from solubility experiment conditions,and provides a reasonable reference for extrusion processing experiment.
     (6) Experimental study on extrusion process.
     Foaming materials extrusion process experiment under different temperature,pressure, screw speed and gas inlet flow is carried out, the correlation between theperformance of the products and the experiment parameters is analysed. It shows thatthe experiment parameters provided by prediction models are reasonable bycomparing the performance of the products, the solubility prediction models presentimportant references for practical experiment.
引文
[1] Karplus, M., Levitt, M., Warshel, A. The Nobel Prize in Chemistry2013[OL].http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/.24Jan2014..
    [2] Nalawade, S. P., Picchioni, F., Janssen, L. P. B. M. Supercritical carbon dioxide as a greensolvent for processing polymer melts: Processing aspects and applications[J]. Progress InPolymer Science,2006,31(1):19-43.
    [3] Maniam, S., Holmes, A. B., Krstina, J., et al. Supercritical carbon dioxide as a solvent fordeposition of a tailored dye in dye sensitized solar cells[J]. Green Chemistry,2011,13(12):3329-3332.
    [4] Girard, E., Tassaing, T., Camy, S., et al. Enhancement of Poly(vinyl ester) Solubility inSupercritical CO2by Partial Fluorination: The Key Role of Polymer-Polymer Interactions[J].Journal Of The American Chemical Society,2012,134(29):11920-11923.
    [5] Han, X., Poliakoff, M. Continuous reactions in supercritical carbon dioxide: problems,solutions and possible ways forward[J]. Chemical Society Reviews,2012,41(4):1428-1436.
    [6] Lei, Z. G., Dai, C. N., Chen, B. H. Gas Solubility in Ionic Liquids[J]. Chemical Reviews,2014,114(2):1289-1326.
    [7] Yoganathan, R. B., Mammucari, R., Foster, N. R. Dense Gas Processing of Polymers[J].Polymer Reviews,2010,50(2):144-177.
    [8] Quan, C., Li, S. F. The solubility of solid in ternary supercritical fluid systems[J]. Progress inChemistry,2004,16(6):858-862.
    [9]王鉴,张楠,武芹,等.超临界CO_2溶解性能的研究进展[J].炼油与化工,2011,22(05):1-5+83.
    [10] Sarbu, T., Styranec, T., Beckman, E. J. Non-fluorous polymers with very high solubility insupercritical CO2down to low pressures[J]. Nature,2000,405(6783):165-168.
    [11]蒋春跃,皮建彪,潘勤敏.超临界CO_2增强聚合物加工的研究与应用进展[J].高分子材料科学与工程,2009,25(10):162-165.
    [12] Markocic, E., Skerget, M., Knez, Z. Solubility and diffusivity of CO2in poly(L-lactide)-hydroxyapatite and poly(D,L-lactide-co-glycolide)-hydroxyapatite composite biomaterials[J].Journal Of Supercritical Fluids,2011,55(3):1046-1051.
    [13] Muljana, H., Picchioni, F., Heeres, H. J., et al. Experimental and Modeling Studies on theSolubility of Sub-and Supercritical Carbon Dioxide (scCO(2)) in Potato Starch andDerivatives[J]. Polymer Engineering And Science,2011,51(1):28-36.
    [14] Hezave, A. Z., Rajaei, H., Lashkarbolooki, M., et al. Analyzing the solubility of fluoxetinehydrochloride in supercritical carbon dioxide[J]. Journal Of Supercritical Fluids,2013,73:57-62.
    [15]戚朝荣,江焕峰.超临界二氧化碳介质中的有机反应[J].化学进展,2010,22(07):1274-1285.
    [16] Minelli, M., Sarti, G. C. Permeability and solubility of carbon dioxide in different glassypolymer systems with and without plasticization[J]. Journal of Membrane Science,2013,444:429-439.
    [17] Malek, K., Sahimi, M. Molecular dynamics simulations of adsorption and diffusion of gasesin silicon-carbide nanotubes[J]. Journal Of Chemical Physics,2010,132(1):1-10.
    [18] Nasouri, K., Bahrambeygi, H., Rabbi, A., et al. Modeling and optimization of electrospunPAN nanofiber diameter using response surface methodology and artificial neuralnetworks[J]. Journal Of Applied Polymer Science,2012,126(1):127-135.
    [19] Hamedi, M., Muralidharan, V., Lee, B. C., et al. Prediction of carbon dioxide solubility inpolymers based on a group-contribution equation of state[J]. Fluid Phase Equilibria,2003,204(1):41-53.
    [20] Cai, Y. M., Sun, H. Y. Prediction on viscoelastic properties of three-dimensionally braidedcomposites by multi-scale model[J]. Journal Of Materials Science,2013,48(19):6499-6508.
    [21] Nourozieh, H., Kariznovi, M., Abedi, J. Measurement and correlation of saturated liquidproperties and gas solubility for decane, tetradecane and their binary mixtures saturated withcarbon dioxide[J]. Fluid Phase Equilibria,2013,337:246-254.
    [22]银建中,刘润杰,魏炜,等.有机化合物在超临界流体中溶解度的模拟计算[J].天然气工业,2005, No.(10):154-156+123.
    [23]邓小亮,李志义,张晓冬,等.固体在超临界二氧化碳中溶解度的关联与计算[J].化工设计,2004, No.(01):39-42+48-31.
    [24] Sato, Y., Takikawa, T., Sorakubo, A., et al. Solubility and diffusion coefficient of carbondioxide in biodegradable polymers[J]. Industrial&Engineering Chemistry Research,2000,39(12):4813-4819.
    [25] Lei, Z. G., Ohyabu, H., Sato, Y., et al. Solubility, swelling degree and crystallinity of carbondioxide-polypropylene system[J]. Journal Of Supercritical Fluids,2007,40(3):452-461.
    [26] Li, G., Li, H., Wang, J., et al. Investigating the solubility of CO2in polypropylene usingvarious EOS models[J]. Cellular Polymers,2006,25(4):237-248.
    [27]张翔,孟莹,蔡建国,等.固体溶质在超临界CO_2中溶解度的关联[J].华东理工大学学报(自然科学版),2007,(04):450-455+508.
    [28]李淑芬,张卫东,陈宝良.固体溶质在超临界流体中溶解度计算方程的改进[J].化学工程,2000, No.(03):49-53.
    [29] Yazdizadeh, M., Eslamimanesh, A., Esmaeilzadeh, F. Applications of cubic equations ofstate for determination of the solubilities of industrial solid compounds in supercriticalcarbon dioxide: A comparative study[J]. Chemical Engineering Science,2012,71(2012):283-299.
    [30] Li, D. C., Liu, T., Zhao, L., et al. Solubility and Diffusivity of Carbon Dioxide in Solid-StateIsotactic Polypropylene by the Pressure-Decay Method[J]. Industrial&EngineeringChemistry Research,2009,48(15):7117-7124.
    [31]赵玲,刘涛.超临界CO_2辅助聚合物加工[J].化工学报,2013,64(02):436-442.
    [32]陈振华,曹堃,姚臻,等.基于PR状态方程的二元体系临界性质计算中不同混合规则对比[J].高校化学工程学报,2008,(03):365-370.
    [33]吴家龙.超临界流体辅助的聚合物系脱挥基础研究[D].浙江大学,2002.
    [34] Mehdizadeh, B., Movagharnejad, K. A comparative study between LS-SVM method andsemi empirical equations for modeling the solubility of different solutes in supercriticalcarbon dioxide[J]. Chemical Engineering Research&Design,2011,89(11A):2420-2427.
    [35]蒋春跃,潘勤敏,潘祖仁.若干有机物质在超临界流体中的溶解度[J].化工学报,1996,(04):394-400.
    [36] Chen, Z. H., Cao, K., Yao, Z., et al. Modeling solubilities of subcritical and supercriticalfluids in polymers with cubic and non-cubic equations of state[J]. Journal Of SupercriticalFluids,2009,49(2):143-153.
    [37]杨红宇.超临界流体中固体溶解度的统计缔合流体理论研究[D].北京化工大学,2003.
    [38]唐昭,金君素,张泽廷.对半经验模型关联化合物在超临界二氧化碳中溶解度的比较与评价[J].化工进展,2011, No.(S2):1-10.
    [39]李入林,王琳,陈开勋.超临界二氧化碳与叔丁醇二元体系气液溶解度模型研究[J].化学通报,2009, No.(10):912-916.
    [40]王伟彬,银建中,张礼鸣.溶解度参数法计算超临界流体的溶解度[J].化学工程,2008,No.(02):37-41.
    [41]王一鸣,许振良,张永锋,等.改进的反渗透膜溶解-扩散模型及其验证[J].高校化学工程学报,2010, No.(04):574-578.
    [42]邵荣,云志,秦金平,等.改进的Chrastil模型关联及推算物质在超临界流体中的溶解度[J].南京化工大学学报(自然科学版),2001,(01):30-34.
    [43]陈兵.固体溶质在超临界流体中溶解度的关联模型研究[D].浙江工业大学,2010.
    [44]卞小强,杜志敏,汤勇.改进密度模型计算溶质在超临界CO_2中的溶解度[J].石油化工,2011,40(05):536-540.
    [45]尹霞,李琴香,万艳鹏,等.高溶解性盐水体系热力学模型预测能力的比较研究Ⅰ:二元体系[J].化学学报,2008,66(15):1815-1826.
    [46]宋吉彬.含共溶剂超临界CO_2系统的溶解特性研究[D].大连理工大学,2008.
    [47]徐文浩.超临界二氧化碳体系的计算机模拟研究[D].清华大学,2010.
    [48]裴雪梅.应用分子拓扑理论研究溶质在超临界CO_2中的溶解度[D].北京化工大学,2009.
    [49] Schultz, A. J., Shaul, K. R. S., Yang, S., et al. Modeling solubility in supercritical fluids viathe virial equation of state[J]. Journal Of Supercritical Fluids,2010,55(2):479-484.
    [50] Spiga, E., Alemani, D., Degiacomi, M. T., et al. Electrostatic-Consistent Coarse-GrainedPotentials for Molecular Simulations of Proteins[J]. Journal of Chemical Theory andComputation,2013,9(8):3515-3526.
    [51] Higashi, H., Iwai, Y., Arai, Y. Solubilities and diffusion coefficients of high boilingcompounds in supercritical carbon dioxide[J]. Chemical Engineering Science,2001,56(10):3027-3044.
    [52] Turan, N. G., Mesci, B., Ozgonenel, O. Artificial neural network (ANN) approach formodeling Zn(II) adsorption from leachate using a new biosorbent[J]. Chemical EngineeringJournal,2011,173(1):98-105.
    [53] Shahamat, M., Rey, A. D. Molecular thermodynamic characterization of LCST fluid phasebehavior and exploring electrostatic algorithms to compute polymer/solvent solubilityparameters in the canonical ensemble[J]. Polymer,2013,54(18):4997-5004.
    [54] Vaferi, B., Rahnama, Y., Darvishi, P., et al. Phase equilibria modeling of binary systemscontaining ethanol using optimal feedforward neural network[J]. Journal Of SupercriticalFluids,2013,84:80-88.
    [55] Jalem, R., Nakayama, M., Kasuga, T. An efficient rule-based screening approach fordiscovering fast lithium ion conductors using density functional theory and artificial neuralnetworks[J]. Journal of Materials Chemistry A,2014,2(3):720-734.
    [56] Roosta, A., Setoodeh, P., Jahanmiri, A. Artificial Neural Network Modeling of SurfaceTension for Pure Organic Compounds[J]. Industrial&Engineering Chemistry Research,2012,51(1):561-566.
    [57]刘国华,包宏,李文超.人工神经网络在材料设计中的应用及其若干共性问题的研究[J].计算机与应用化学,2001, No.(04):388-392.
    [58] Safamirzaei, M., Modarress, H. Correlating and predicting low pressure solubility of gases inbmim BE4by neural network molecular modeling[J]. Thermochimica Acta,2012,545:125-130.
    [59] Pei, J. F., Cai, C. Z., Zhu, Y. M., et al. Modeling and Predicting the Glass TransitionTemperature of Polymethacrylates Based on Quantum Chemical Descriptors by UsingHybrid PSO-SVR[J]. Macromolecular Theory And Simulations,2013,22(1):52-60.
    [60] Wasylkiewicz, S. K., Li, Y. K., Satyro, M. A., et al. Application of a global optimizationalgorithm to phase stability and liquid-liquid equilibrium calculations[J]. Fluid PhaseEquilibria,2013,358:304-318.
    [61]杨中凯,刘辉,李建伟,等.用MATLAB软件预测固体在超临界流体中的溶解度[J].计算机与应用化学,2007, No.(05):614-616.
    [62] Bakhbakhi, Y. Phase equilibria prediction of solid solute in supercritical carbon dioxide withand without a cosolvent: The use of artificial neural network[J]. Expert Systems WithApplications,2011,38(9):11355-11362.
    [63] Bakhbakhi, Y. Neural network modeling of ternary solubilities of2-naphthol in supercriticalCO2: A comparative study[J]. Mathematical And Computer Modelling,2012,55(7-8):1932-1941.
    [64] Lashkarbolooki, M., Vaferi, B., Rahimpour, M. R. Comparison the capability of artificialneural network (ANN) and EOS for prediction of solid solubilities in supercritical carbondioxide[J]. Fluid Phase Equilibria,2011,308(1-2):35-43.
    [65] Hezave, A. Z., Raeissi, S., Lashkarbolooki, M. Estimation of Thermal Conductivity of IonicLiquids Using a Perceptron Neural Network[J]. Industrial&Engineering ChemistryResearch,2012,51(29):9886-9893.
    [66] Sabegh, M. A., Rajaei, H., Esmaeilzadeh, F., et al. Solubility of ketoprofen in supercriticalcarbon dioxide[J]. Journal Of Supercritical Fluids,2012,72:191-197.
    [67] Mehdizadeh, B., Movagharnejad, K. A comparison between neural network method and semiempirical equations to predict the solubility of different compounds in supercritical carbondioxide[J]. Fluid Phase Equilibria,2011,303(1):40-44.
    [68] Torrecilla, J. S., Palomar, J., Garcia, J., et al. Modelling of carbon dioxide solubility in ionicliquids at sub and supercritical conditions by neural networks and mathematicalregressions[J]. Chemometrics And Intelligent Laboratory Systems,2008,93(2):149-159.
    [69] Kiss, I. Z., Mandi, G., Beck, M. T. Artificial neural network approach to predict thesolubility of C-60in various solvents[J]. Journal Of Physical Chemistry A,2000,104(34):8081-8088.
    [70]胡德栋,王威强,魏东,等.固体在超临界流体中溶解度的BP人工神经网络模拟[J].山东大学学报(工学版),2006,(02):8-11.
    [71] Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., et al. Artificial Neural NetworkModeling of Solubilities of21Commonly Used Industrial Solid Compounds in SupercriticalCarbon Dioxide[J]. Industrial&Engineering Chemistry Research,2011,50(1):221-226.
    [72] Eslamimanesh, A., Gharagheizi, F., Mohammadi, A. H., et al. Artificial Neural Networkmodeling of solubility of supercritical carbon dioxide in24commonly used ionic liquids[J].Chemical Engineering Science,2011,66(13):3039-3044.
    [73] Pahlavanzadeh, H., Nourani, S., Saber, M. Experimental analysis and modeling of CO2solubility in AMP (2-amino-2-methyl-1-propanol) at low CO2partial pressure using themodels of Deshmukh-Mather and the artificial neural network[J]. Journal Of ChemicalThermodynamics,2011,43(12):1775-1783.
    [74] Modarress, H., Mohsen-Nia, M., Safamirzaei, M. Modelling the solubility of1,1,1,2-tetrafluoroethane,1-chloro-1,1-difluoroethane, butane and iso-butane in LDPE withartificial neural network[J]. Iranian Polymer Journal,2008,17(7):483-491.
    [75] Khajeh, A., Modarress, H., Rezaee, B. Application of adaptive neuro-fuzzy inference systemfor solubility prediction of carbon dioxide in polymers[J]. Expert Systems With Applications,2009,36(3):5728-5732.
    [76] Ahmadi, M. A. Neural network based unified particle swarm optimization for prediction ofasphaltene precipitation[J]. Fluid Phase Equilibria,2012,314:46-51.
    [77]徐强,张幸红,韩杰才,等.人工神经网络在材料科学中的应用与展望[J].材料科学与工艺,2005,13(04):18-22.
    [78] Liu, X. G., Zhao, C. Y. Melt index prediction based on fuzzy neural networks and PSOalgorithm with online correction strategy[J]. Aiche Journal,2012,58(4):1194-1202.
    [79] Gharagheizi, F., Eslamimanesh, A., Mohammadi, A. H., et al. Representation/Prediction ofSolubilities of Pure Compounds in Water Using Artificial Neural Network-GroupContribution Method[J]. Journal Of Chemical And Engineering Data,2011,56(4):720-726.
    [80] Khajeh, A., Modarress, H. Prediction of solubility of gases in polystyrene by AdaptiveNeuro-Fuzzy Inference System and Radial Basis Function Neural Network[J]. ExpertSystems With Applications,2010,37(4):3070-3074.
    [81] Hussain, M. A., Aroua, M. K., Yin, C. Y., et al. Hybrid neural network for prediction of CO2solubility in monoethanolamine and diethanolamine solutions[J]. Korean Journal OfChemical Engineering,2010,27(6):1864-1867.
    [82] Khayamian, T., Esteki, M. Prediction of solubility for polycyclic aromatic hydrocarbons insupercritical carbon dioxide using wavelet neural networks in quantitative structure propertyrelationship[J]. Journal Of Supercritical Fluids,2004,32(1-3):73-78.
    [83]李孟山,黄兴元,柳和生,等.基于混沌自适应粒子群人工神经网络的气体在聚合物中的溶解模型[J].化学学报,2013,71(07):1053-1058.
    [84] Li, M. S., Huang, X. Y., Liu, H. S., et al. Solubility prediction of gases in polymers usingfuzzy neural network based on particle swarm optimization algorithm and clusteringmethod[J]. Journal Of Applied Polymer Science,2013,129(6):3297-3303.
    [85] Li, M. S., Huang, X. Y., Liu, H. S., et al. Prediction of the gas solubility in polymers by aradial basis function neural network based on chaotic self-adaptive particle swarmoptimization and a clustering method[J]. Journal Of Applied Polymer Science,2013,130(5):3825-3832.
    [86] Li, M. S., Huang, X. Y., Liu, H. S., et al. Prediction of gas solubility in polymers by backpropagation artificial neural network based on self-adaptive particle swarm optimizationalgorithm and chaos theory[J]. Fluid Phase Equilibria,2013,356:11-17.
    [87] Wu, Y., Liu, B. X., Li, M. S., et al. Prediction of CO2Solubility in Polymers by Radial BasisFunction Artificial Neural Network Based on Chaotic Self-adaptive Particle SwarmOptimization and Fuzzy Clustering Method[J]. Chinese Journal Of Chemistry,2013,31(12):1564-1572.
    [88] Minelli, M., Campagnoli, S., De Angelis, M. G., et al. Predictive Model for the Solubility ofFluid Mixtures in Glassy Polymers[J]. Macromolecules,2011,44(12):4852-4862.
    [89] Yang, Y. F., Mijalis, A. J., Fu, H., et al. Reversible Changes in Solution pH Resulting fromChanges in Thermoresponsive Polymer Solubility[J]. Journal Of The American ChemicalSociety,2012,134(17):7378-7383.
    [90] Tang, Z., Jin, J. S., Zhang, Z. T., et al. New Experimental Data and Modeling of theSolubility of Compounds in Supercritical Carbon Dioxide[J]. Industrial&EngineeringChemistry Research,2012,51(15):5515-5526.
    [91] Sousa, J., Queimada, A. J., Macedo, E. A., et al. Solubility of hydrofluorocarbons in aromaticsolvents and alcohols: Experimental data and modeling with CPA EoS[J]. Fluid PhaseEquilibria,2013,337:60-66.
    [92] Dasari, A., Desamala, A. B., Dasmahapatra, A. K., et al. Experimental Studies andProbabilistic Neural Network Prediction on Flow Pattern of Viscous Oil–Water Flowthrough a Circular Horizontal Pipe[J]. Industrial&Engineering Chemistry Research,2013,52(23):7975-7985.
    [93] Roberge, V., Tarbouchi, M., Labonte, G. Comparison of Parallel Genetic Algorithm andParticle Swarm Optimization for Real-Time UAV Path Planning[J]. IEEE Transactions onIndustrial Informatics,2013,9(1):132-141.
    [94] Zhao, X., Nguyen, M. C., Wang, C. Z., et al. Structures and stabilities of alkaline earth metalperoxides XO2(X=Ca, Be, Mg) studied by a genetic algorithm[J]. Rsc Advances,2013,3(44):22135-22139.
    [95] Kabouche, A., Boultif, A., Abidi, A., et al. Interaction parameter estimation in liquid-liquidphase equilibrium modeling using stochastic and hybrid algorithms[J]. Fluid PhaseEquilibria,2012,336:113-121.
    [96] Chen, S. S. Chaotic Simulated Annealing by a Neural Network with a Variable Delay:Design and Application[J]. Ieee Transactions On Neural Networks,2011,22(10):1557-1565.
    [97] Rangaiah, G. P. Evaluation of genetic algorithms and simulated annealing for phaseequilibrium and stability problems[J]. Fluid Phase Equilibria,2001,187:83-109.
    [98] Bonilla-Petriciolet, A., Segovia-Hernandez, J. G. A comparative study of particle swarmoptimization and its variants for phase stability and equilibrium calculations inmulticomponent reactive and non-reactive systems[J]. Fluid Phase Equilibria,2010,289(2):110-121.
    [99] Zhan, Z. H., Zhang, J., Li, Y., et al. Orthogonal Learning Particle Swarm Optimization[J].Ieee Transactions On Evolutionary Computation,2011,15(6):832-847.
    [100] Namasivayam, V., Bajorath, J. Multiobjective Particle Swarm Optimization: AutomatedIdentification of Structure–Activity Relationship-Informative Compounds with FavorablePhysicochemical Property Distributions[J]. Journal of Chemical Information and Modeling,2012,52(11):2848-2855.
    [101] Fernandez-Vargas, J. A., Bonilla-Petriciolet, A., Segovia-Hernandez, J. G. An improved antcolony optimization method and its application for the thermodynamic modeling of phaseequilibrium[J]. Fluid Phase Equilibria,2013,353:121-131.
    [102]吴华伟,陈特放,胡春凯,等.一种改进的约束优化粒子群算法[J].计算机应用研究,2012,(03):859-861+864.
    [103] Gandomi, A. H., Yun, G. J., Yang, X. S., et al. Chaos-enhanced accelerated particle swarmoptimization[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(2):327-340.
    [104] Ben Nasr, M., Chtourou, M. Training recurrent neural networks using a hybrid algorithm[J].Neural Computing&Applications,2012,21(3):489-496.
    [105]简相超,郑君里.混沌神经网络预测算法评价准则与性能分析[J].清华大学学报(自然科学版),2001,(07):43-46.
    [106] Sedki, A., Ouazar, D. Hybrid Particle Swarm and Neural Network Approach forStreamflow Forecasting[J]. Mathematical Modelling of Natural Phenomena,2010,5(7):132-138.
    [107]张良均,曹晶,蒋世忠.神经网络实用教程[M].北京:机械工业出版社,2008.
    [108] Mirjalili, S., Hashim, S. Z. M., Sardroudi, H. M. Training feedforward neural networksusing hybrid particle swarm optimization and gravitational search algorithm[J]. AppliedMathematics And Computation,2012,218(22):11125-11137.
    [109]李博.粒子群优化算法及其在神经网络中的应用[D].大连理工大学,2005.
    [110] Han, F., Zhu, J. S. Improved Particle Swarm Optimization Combined with Backpropagationfor Feedforward Neural Networks[J]. International Journal Of Intelligent Systems,2013,28(3):271-288.
    [111] Davanipoor, M., Zekri, M., Sheikholeslam, F. Fuzzy Wavelet Neural Network With anAccelerated Hybrid Learning Algorithm[J]. Ieee Transactions On Fuzzy Systems,2012,20(3):463-470.
    [112] Kit Yan, C., Dillon, T. S., Singh, J., et al. Neural-network-based models for short-termtraffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardtalgorithm[J]. IEEE Transactions on Intelligent Transportation Systems,2012,13(2):644-654.
    [113] Guerra, F. A., Coelho, L. D. Multi-step ahead nonlinear identification of Lorenz's chaoticsystem using radial basis neural network with learning by clustering and particle swarmoptimization[J]. Chaos Solitons&Fractals,2008,35(5):967-979.
    [114] Leung, S. Y. S., Tang, Y., Wong, W. K. A hybrid particle swarm optimization and itsapplication in neural networks[J]. Expert Systems With Applications,2012,39(1):395-405.
    [115] Kennedy, J., Eberhart, R.,Particle swarm optimization[C], Proceedings of the1995IEEEInternational Conference on Neural Networks. Part1(of6),1995,4:1942-1948.
    [116] Nouaouria, N., Boukadoum, M., Proulx, R. Particle swarm classification: A survey andpositioning[J]. Pattern Recognition,2013,46(7):2028-2044.
    [117] Hu, M. Q., Wu, T., Weir, J. D. An Adaptive Particle Swarm Optimization With MultipleAdaptive Methods[J]. Ieee Transactions On Evolutionary Computation,2013,17(5):705-720.
    [118]田雨波.混合神经网络技术[M].北京:科学出版社,2009.
    [119] Zhan, Z. H., Zhang, J., Li, Y., et al. Adaptive Particle Swarm Optimization[J]. IeeeTransactions On Systems Man And Cybernetics Part B-cybernetics,2009,39(6):1362-1381.
    [120]申元霞,王国胤,曾传华.相关性粒子群优化模型[J].软件学报,2011,(04):695-708.
    [121] Khare, A., Rangnekar, S. A review of particle swarm optimization and its applications inSolar Photovoltaic system[J]. Applied Soft Computing,2013,13(5):2997-3006.
    [122] Valdez, F., Melin, P., Castillo, O. An improved evolutionary method with fuzzy logic forcombining Particle Swarm Optimization and Genetic Algorithms[J]. Applied SoftComputing,2011,11(2):2625-2632.
    [123]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.
    [124] Marinakis, Y., Marinaki, M. Particle swarm optimization with expanding neighborhoodtopology for the permutation flowshop scheduling problem[J]. Soft Computing,2013,17(7):1159-1173.
    [125]聂瑞,章卫国,李广文,等.一种自适应混合多目标粒子群优化算法[J].西北工业大学学报,2011,(05):695-701.
    [126] Sinha, A. K., Zhang, W. J., Tiwari, M. K. Co-evolutionary immuno-particle swarmoptimization with penetrated hyper-mutation for distributed inventory replenishment[J].Engineering Applications Of Artificial Intelligence,2012,25(8):1628-1643.
    [127] Cheng, M. Y., Huang, K. Y., Chen, H. M. K-means particle swarm optimization withembedded chaotic search for solving multidimensional problems[J]. Applied MathematicsAnd Computation,2012,219(6):3091-3099.
    [128] Li, M. W., Kang, H. G., Zhou, P. F., et al. Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm[J]. Journal of Systems Engineering andElectronics,2013,24(2):324-334.
    [129] Coelho, L. D. A quantum particle swarm optimizer with chaotic mutation operator[J].Chaos Solitons&Fractals,2008,37(5):1409-1418.
    [130]冯琳,毛志忠,袁平.一种改进的多目标粒子群优化算法及其应用[J].控制与决策,2012,(09):1313-1319.
    [131] Qasem, S. N., Shamsuddin, S. M., Hashim, S. Z. M., et al. Memetic multiobjective particleswarm optimization-based radial basis function network for classification problems[J].Information Sciences,2013,239:165-190.
    [132] Zheng, Y. J., Chen, S. Y. Cooperative particle swarm optimization for multiobjectivetransportation planning[J]. Applied Intelligence,2013,39(1):202-216.
    [133] Nickabadi, A., Ebadzadeh, M. M., Safabakhsh, R. A novel particle swarm optimizationalgorithm with adaptive inertia weight[J]. Applied Soft Computing,2011,11(4):3658-3670.
    [134]温涛,盛国军,郭权,等.基于改进粒子群算法的Web服务组合[J].计算机学报,2013,(05):1031-1046.
    [135] Nickabadi, A., Ebadzadeh, M. M., Safabakhsh, R. A competitive clustering particle swarmoptimizer for dynamic optimization problems[J]. Swarm Intelligence,2012,6(3):177-206.
    [136] Liu, B., Wang, L., Jin, Y. H., et al. Improved particle swarm optimization combined withchaos[J]. Chaos Solitons&Fractals,2005,25(5):1261-1271.
    [137]高哲,廖晓钟.基于平均速度的混合自适应粒子群算法[J].控制与决策,2012,(01):152-155+160.
    [138] Tsekouras, G. E. A simple and effective algorithm for implementing particle swarmoptimization in RBF network's design using input-output fuzzy clustering[J].Neurocomputing,2013,108:36-44.
    [139] Schaffer, J. D.,Multiple Objective Optimization with Vector Evaluated GeneticAlgorithms[C], International Conference on Genetic Algorithms-ICGA85,1985:93-100.
    [140] Deb, K. Multi-objective Genetic Algorithms: Problem Difficulties and Construction of TestProblems[J]. Evolutionary Computation,1999,7(3):205-230.
    [141] Tan, K. C., Lee, T. H., Khor, E. F. Evolutionary algorithms for multi-objective optimization:Performance assessments and comparisons[J]. Artificial Intelligence Review,2002,17(4):253-290.
    [142] Khajeh, A., Modarress, H., Mohsen-Nia, M. Solubility prediction for carbon dioxide inpolymers by artificial neural network[J]. Iranian Polymer Journal,2007,16(11):759-768.
    [143] Sato, Y., Fujiwara, K., Takikawa, T., et al. Solubilities and diffusion coefficients of carbondioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene underhigh pressures and temperatures[J]. Fluid Phase Equilibria,1999,162(1-2):261-276.
    [144] Aionicesei, E., Skerget, M., Knez, Z. Measurement of CO2solubility and diffusivity inpoly(L-lactide) and poly(D,L-lactide-co-glycolide) by magnetic suspension balance[J].Journal Of Supercritical Fluids,2008,47(2):296-301.
    [145] Skerget, M., Mandzuka, Z., Aionicesei, E., et al. Solubility and diffusivity of CO2incarboxylated polyesters[J]. Journal Of Supercritical Fluids,2010,51(3):306-311.
    [146] Sato, Y., Yurugi, M., Fujiwara, K., et al. Solubilities of carbon dioxide and nitrogen inpolystyrene under high temperature and pressure[J]. Fluid Phase Equilibria,1996,125(1-2):129-138.
    [147] Hilic, S., Boyer, S., Padua, A., et al. Simultaneous measurement of the solubility of nitrogenand carbon dioxide in polystyrene and of the associated polymer swelling[J]. Journal OfPolymer Science Part B-Polymer Physics,2001,39(17):2063-2070.
    [148] Sato, Y., Takikawa, T., Takishima, S., et al. Solubilities and diffusion coefficients of carbondioxide in poly(vinyl acetate) and polystyrene[J]. Journal Of Supercritical Fluids,2001,19(2):187-198.
    [149]王耀南,余群明,袁小芳.混沌神经网络模型及其应用研究综述[J].控制与决策,2006,21(02):121-128.
    [150] Faridi-Majidi, R., Ziyadi, H., Naderi, N., et al. Use of artificial neural networks to determineparameters controlling the nanofibers diameter in electrospinning of nylon-6,6[J]. JournalOf Applied Polymer Science,2012,124(2):1589-1597.
    [151] Ahmadi, M. A. Neural network based unified particle swarm optimization for prediction ofasphaltene precipitation[J]. Fluid Phase Equilibria,2012,314(01):46-51.
    [152] Zhang, J. R., Zhang, J., Lok, T. M., et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied MathematicsAnd Computation,2007,185(2):1026-1037.
    [153] Al-Bulushi, N. I., King, P. R., Blunt, M. J., et al. Artificial neural networks workflow andits application in the petroleum industry[J]. Neural Computing&Applications,2012,21(3):409-421.
    [154] Abiyev, R. H. Fuzzy wavelet neural network based on fuzzy clustering and gradienttechniques for time series prediction[J]. Neural Computing&Applications,2011,20(2):249-259.
    [155]汤可宗,杨静宇,高尚,等.一种求解约束优化问题的线性进化算法[J].模式识别与人工智能,2009,(06):869-876.
    [156] Yang, F. Q., Sun, T. L., Zhang, C. H. An efficient hybrid data clustering method based onK-harmonic means and Particle Swarm Optimization (vol36, pg9847,2009)[J]. ExpertSystems With Applications,2013,40(11):4735-4735.
    [157]刘衍民,隋常玲,赵庆祯.基于K-均值聚类的动态多种群粒子群算法及其应用[J].控制与决策,2011,(07):1019-1025.
    [158] Yang, F., Sun, T., Zhang, C. An efficient hybrid data clustering method based onK-harmonic means and Particle Swarm Optimization[J]. Expert Systems With Applications,2009,36(6):9847-9852.
    [159] Yin, M. H., Hu, Y. M., Yang, F. Q., et al. A novel hybrid K-harmonic means andgravitational search algorithm approach for clustering[J]. Expert Systems With Applications,2011,38(8):9319-9324.
    [160] Kiselev, S. B., Ely, J. F., Belyakov, M. Y. Adsorption of critical and supercritical fluids[J].Journal Of Chemical Physics,2000,112(7):3370-3383.
    [161]马海平,陈子栋,潘张鑫.一类基于物种迁移优化的进化算法[J].控制与决策,2009,(11):1620-1624.
    [162] Abdechiri, M., Meybodi, M. R., Bahrami, H. Gases Brownian Motion Optimization: anAlgorithm for Optimization (GBMO)[J]. Applied Soft Computing,2013,13(5):2932-2946.
    [163]王铁奇,邱德华,胡桂武.基于迁徙策略的PSO集成及其在序列模体识别中的应用[J].衡阳师范学院学报,2008,(03):21-25.
    [164] Lazzus, J. A. Thermodynamic modeling based on particle swarm optimization to predictphase equilibrium of binary systems containing ionic liquids[J]. Journal Of MolecularLiquids,2013,186:44-51.
    [165] Wang, F. K., Hsiao, Y. Y., Chang, K. K. Combining Diffusion and Grey Models Based onEvolutionary Optimization Algorithms to Forecast Motherboard Shipments[J].Mathematical Problems In Engineering,2012:
    [166] Bharat, T. V., Sivapullaiah, P. V., Allam, M. M. Robust solver based on modified particleswarm optimization for improved solution of diffusion transport through containmentfacilities[J]. Expert Systems With Applications,2012,39(12):10812-10820.
    [167]徐星,吴昱,魏波,等.基于扩散机制的杂交粒子群优化算法[J].计算机应用研究,2011,(11):4156-4159.
    [168]徐星,李元香,吴昱.基于扩散机制的双种群粒子群优化算法[J].计算机应用研究,2010,(08):2882-2885+2898.
    [169]徐星.融合热运动机制的粒子群优化算法研究及其应用[D].武汉大学,2010.
    [170] Wang, F. K., Chang, K. K., Hsiao, Y. Y. Implementing a diffusion model optimized by ahybrid evolutionary algorithm to forecast notebook shipments[J]. Applied Soft Computing,2013,13(2):1147-1151.
    [171]陶新民,刘福荣,刘玉,等.一种多尺度协同变异的粒子群优化算法[J].软件学报,2012,(07):1805-1815.
    [172] Price, P. E., Romdhane, I. H.£¨A diffusion theory review Paper)Multicomponent diffusiontheory and its applications to polymer-solvent systems[J]. Aiche Journal,2003,49(2):309-322.
    [173] Brunner, G., Johannsen, M. New aspects on adsorption from supercritical fluid phases[J].Journal Of Supercritical Fluids,2006,38(2):181-200.
    [174] Morse, G., Jones, R., Thibault, J., et al. Neural network modelling of adsorptionisotherms[J]. Adsorption-journal Of The International Adsorption Society,2011,17(2):303-309.
    [175]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005
    [176] Gumma, S., Talu, O. Net Adsorption: A Thermodynamic Framework for Supercritical GasAdsorption and Storage in Porous Solids[J]. Langmuir,2010,26(22):17013-17023.
    [177] Galizia, M., Daniel, C., Fasano, G., et al. Gas Sorption and Diffusion in Amorphous andSemicrystalline Nanoporous Poly(2,6-dimethyl-1,4-phenylene)oxide[J]. Macromolecules,2012,45(8):3604-3615.
    [178]《半导体器件制造技术丛书》编写组.扩散技术[M].北京:国防工业出版社,1972.
    [179] Lyubchyk, A., Esteves, I., Cruz, F., et al. Experimental and Theoretical Studies ofSupercritical Methane Adsorption in the MIL-53(Al) Metal Organic Framework[J].Journal Of Physical Chemistry C,2011,115(42):20628-20638.
    [180] J.H.德博尔.吸附的动力学特征[M].北京:科学出版社,1964.
    [181] Wind, J. D., Sirard, S. M., Paul, D. R., et al. Carbon dioxide-induced plasticization ofpolyimide membranes: Pseudo-equilibrium relationships of diffusion, sorption, andswelling[J]. Macromolecules,2003,36(17):6433-6441.
    [182]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,2006.
    [183]余忠.微孔塑料连续挤出成型的理论与实验研究[D].南昌大学,2011.
    [184] He, W. J., Zhang, S. H., Prakash, A., et al. A hierarchical multi-scale model for hexagonalmaterials taking into account texture evolution during forming simulation[J].Computational Materials Science,2014,82:464-475.
    [185] Walton, S., Brown, M. R., Hassan, O., et al. Comment on Cuckoo search: A newnature-inspired optimization method for phase equilibrium calculations by V. Bhargava, S.Fateen, A. Bonilla-Petriciolet[J]. Fluid Phase Equilibria,2013,352:64-66.
    [186]王女,赵勇,江雷.受生物启发的多尺度微/纳米结构材料[J].高等学校化学学报,2011,(03):421-428.
    [187]张廼龙,郭小明.多尺度模拟与计算研究进展[J].计算力学学报,2011,(S1):1-5.
    [188] Padding, J. T., Briels, W. J., Stukan, M. R., et al. Review of multi-scale particulatesimulation of the rheology of wormlike micellar fluids[J]. Soft Matter,2009,5(22):4367-4375.
    [189] Wang, Q. F., Keffer, D. J., Deng, S. X., et al. Multi-scale models for cross-linked sulfonatedpoly (1,3-cyclohexadiene) polymer[J]. Polymer,2012,53(7):1517-1528.
    [190] Tian, X. A., Zhang, X. P., Wei, L., et al. Multi-scale simulation of the1,3-butadieneextraction separation process with an ionic liquid additive[J]. Green Chemistry,2010,12(7):1263-1273.
    [191] Pellegrin, B., Prulho, R., Rivaton, A., et al. Multi-scale analysis of hypochlorite inducedPES/PVP ultrafiltration membranes degradation[J]. Journal of Membrane Science,2013,447:287-296.
    [192] Chaudhuri, P. Multi-scale modeling of fracture in concrete composites[J]. Composites PartB-engineering,2013,47:162-172.
    [193] Filleter, T., Espinosa, H. D. Multi-scale mechanical improvement produced in carbonnanotube fibers by irradiation cross-linking[J]. Carbon,2013,56:1-11.
    [194] Guo, M. S., Li, J. H. The multi-scale attribute of transport and reaction systems[J]. ProgressIn Natural Science,2001,11(2):81-86.
    [195] Degasperi, A., Calder, M. A process algebra framework for multi-scale modelling ofbiological systems[J]. Theoretical Computer Science,2013,488:15-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700