一类平面两自由度并联机构的性能分析与优选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
少自由度并联机构,特别是2、3自由度的新型并联机构是并联以及混联机器人机构创新和性能评价的基础和重点,有着重要的应用前景和开发价值。最近十年以来,提出了大量的2、3自由度的并联机构,然而实际在用的并联机构的数目却非常少,阻碍其广泛应用的原因主要有两方面:(1)并联机构的比较和优选困难。机构类型的多样性,使得适合于特定操作任务的最佳的机构方案难以选择;(2)机构参数的优化设计困难。机构的性能指标依赖于其拓扑类型、驱动布局和设计参数,难以进行全局优化设计。本文首先构建了一类2自由度平面并联机构(PPKM),然后提出一个系统的方法来研究它们的优选问题,目的是为规定的操作任务选择一个最合适的机构方案。主要工作如下:
     首先,完整地构建一类含PRR分支的PPKM,并给出每个机构唯一的和明确的描述。主要包括三个方面的工作:(1)分析了六种不同分支的五杆机构,从中选择分支为PRR、以固定在静平台上的P关节作为驱动关节的PPKM作为研究对象;(2)以两自由矢量的独立方向数为依据,分析了该类PPKM的三种驱动布局,并采用与坐标系无关的结构参数描述每种布局;(3)提出统一的方法描述该类PPKM,每个机构都可以根据其驱动布局类型和结构参数给以唯一描述,在此基础上建立了机构统一的运动学方程、雅可比矩阵以及各向同性条件,并编制了对应的运动分析软件,以避免单个机构的分析和大量的符号运算。
     其次,对三种典型驱动副布局的PPKM的性能进行了研究,主要包括三方面内容:(1)根据机构几何约束,采用归一化原理建立了三种机构的设计空间模型;(2)系统地分析了三种机构的理论工作空间、奇异轨迹以及灵活工作空间与机构杆件尺寸参数以及与机构控制模式之间的关系,讨论了其在机构尺寸设计空间内的分布规律,为优选控制模式提供依据;(3)分析了三种机构的全局条件数、全局速度指标、全局刚度指标以及空间利用率指标与机构杆件尺寸参数之间的关系,并绘制了相应的性能图谱。提出了一种新的空间利用率指标,以机构最大规则形状灵活工作空间与整个机构占地面积之比作为空间利用率,更具实用价值。同时,在机构工作空间求解过程中,简化了传统的边界搜索法,提出了一组高效的、只在边界附近搜索验证的算法来确定PPKM可达的、灵活的工作空间及其边界,以及包含在它们内部的最大规则形状的灵活工作空间。
     再次,提出一种优选方法,从三种PPKM中为规定的操作任务选择一种最合适的机构方案。优选标准考虑了每个PPKM的全局条件指标、全局速度指标、全局刚度指标和空间利用率指标。优选工作分两个层次进行:(1)对三种布局PPKM进行优化设计,确定了三个运动学参数优化的PPKM,使每个PPKM都能产生一个规则灵活工作空间尽可能接近所给定的操作任务;(2)考虑不同的优选标准,确定一种最合适的机构方案。
     最后,利用优选的机构进行了5自由度混联高速喷涂机器人的设计。首先,根据操作任务进行了并联机构的尺寸综合;然后,分析了并联机构部分的局部性能,利用Langrane方程建立了机构动力学模型,在Solidworks软件中建立虚拟样机并进行运动轨迹规划和受力仿真;研制单喷枪、三喷枪协同喷涂二款五轴混联高速喷涂机器人,并比较了这二种结构的性能优劣。
Lower-mobility parallel mechanism, especially the novel parallel mechanism with 2,3 degrees of freedom is the foundation and focus of the innovation and performance evaluation of parallel and hybrid robot mechanisms, and has important potential applications and the development value. In the recent ten years, the large number of 2,3 degrees of freedom parallel mechanism were proposed, however the actual number of parallel mechanism is very poor in the actual application. The reasons of hindering their wide application have two main aspects:(1) difficult to select a suitable mechanism. Since the variety of mechanism type, the comparison of different mechanisms for a given operation task is difficult. (2) Parameter optimization of the mechanism is difficult. The performance index of the parallel mechanism depend on its topological type, the actuated layout and design parameters, so it is difficult to globally optimize in the design. In this dissertation, a class of 2-DOF planar parallel mechanism (PPKM) is constructed, and then a unified method is put forward to solve the problem of their optimization for a specified operating task. The main work is as follows:
     Firstly, a class of PPKM with PRR branches is built. Mainly jobs include three aspects:(1) Five-bar mechanisms with six different branches are analyzed. The PPKM with PRR branches is chosen for study, which is actuated by P joint fixed on the static platform; (2) According to the number of absolute directions of the two-vector-system, the actuated layout problem of a class of PPKM is analyzed. The coordinate-free description of each kind of actuated layout is given; (3) A unified kinematics model to describe a class of PPKM is proposed, so each mechanism in the family is depicted by means of the type of actuated layout, and the structure parameter. Based on the unified model, the kinematic problems, the Jacobian matrix and isotropic are analyzed. Additional, the kinematics analysis software is designed to avoid analyzing singular mechanism and the vast symbolic computation.
     Secondly, the performance of three typical actuated layout of PPKM is analyzed, mainly including three aspects:(1) First, according to the geometric constraints condition, the design space models of the three institutions are derived using the normalization principle; (2) The relationship between theoretical workspace, singular trajectory, and dexterous workspace with structural parameters is studied and the distributing regulation in mechanism design space is discussed; (3) The global condition number, the global velocity index, the global stiffness index, and the space utilized rate index of three kinds of PPKM with traditional actuated layout are calculated. The design space is adopted to study the relationship between the full performances and size of mechanisms and to draw the performance diagram. A novel space utilized rate index is defined as the ratio of maximal regular dexterous workspace to the covering area of the whole mechanism, which is more practical. The algorithm of traditional boundary searching is simplified and an efficient numerical algorithm is proposed to determine the reachable workspaces, the dexterous workspaces and the maximal regular dexterous workspaces and their boundaries.
     Thirdly, for a prescribed operation task, an optimal mechanism is found from three different PPKM. The global velocity index, the global velocity index, the global stiffness index, and the space utilized rate index are considered as optimal criterion. And the optimization is earried out at two levels:(1) Parameters of three different PPKM is optimal designed to produce a regular dexterous workspace close to the prescribed operating space; (2) The optimal mechanism is determined considering the different optimization criteria.
     Finally, a 5-DOF hybrid high-speed spraying robot is designed and the optimal mechanism is adopted as its main parallel mechanism. The kinematics and dynamic analysis are done, and the mobile trajectory is investigated and simulated with Solidworks software. Meanwhile, both 5-axis hybrid robots with single airbrush and with mult-airbrush for spray painting are developed respectively according to the design method. Furthermore, the performance for the two spray robots with different structures is compared.
引文
[1]杨廷力.机器人机构拓扑结构学[M].北京:机械工业出版社,2004.
    [2]K.H. Hunt. Kinematic geometry of mechanisms [M]. Oxford UK:Clarendon Press,1978.
    [3]B. Dasgupta, T.S. Mruthyunjaya. The Stewart platform manipulator:a review [J]. Mech. Mach. Theory,2000,35(1):15-40.
    [4]张署,U.Heisel并联运动机床.北京:机械工业出版社.2003.4.
    [5]D.-S. Kwon, G-H. Yang, et al. KAIST interactive bicycle simulator [A]. Proc. of the IEEE Int. Cconf. on Robotatics and Automation, p.2313-2318, Seoul, Korea,2001.
    [6]P.C. Sheldon, M.Wis. Six axis machine tool [P]. United States patent, No.5388935,1996
    [7]O. Company, F. Pierrot. Modeling and design issues of 3-axis parallel machine-tool [J]. Mech. Mach. Theory,2002,37:1325-1345.
    [8]P. Wenger, D. Chablat. Kinematic analysis of a new parallel machine tool:the Orthoglide [M]. Advances in Robot Kinematics, J. Lenarcic, and M.M. Stanisic (eds.), Kluwer Academic Publishers,2000,305-314.
    [9]D. Chablat, Ph. Wenger, F. Majou, J.P. Merlet. An interval analysis based study for the design and the comparison of three-Degrees-of-Freedom parallel kinematic machines [J]. Int. J. of Robotics Research,2004,23(6):615-624.
    [10]沈惠平,张曙,刘安心.并联运动机械结构综合及其设计研究的最新进展[J].中国机械工程,2009,20(1):118-125.
    [11]李彬,黄田,刘海涛等Exechon混联机器人三自由度并联机构模块位置分析[J].中国机械工程,2010,21(23):2785-2789.
    [12]L.-W. Tsai, S.A. Joshi. Kinematic analysis of 3-DOF position mechanisms for use in hybrid kinematic machines [J]. ASME J. Mech. Design,2002,124:245-253
    [13]李曚.可重构混联机械手模块TriVariant的设计理论与方法[D].天津:天津大学,2005:1-124.
    [14]F. Xi, D. Zhang, Z. Xu, C.M. Mechefske. A comparative study on Tripod units for machine tools [J]. Int. J. of Machine Tools & Manufacture,2003,43:721-730.
    [15]吴振勇,王玉茹,黄田Tricept机器人的尺度综合方法研究[J].机械工程学报,2003,39(6):22-25.
    [16]黄田,刘海涛,赵学满等.五自由度混联机器人.中国,ZL200710057178. X[P]. 2007-04-20.
    [17]沈惠平,赵海彬,邓嘉鸣等.基于自由度分配和方位特征集的混联机器人机型设计方法及应用[J].机械工程学报,2011,47(23):56-64.
    [18]R. Clavel. Device for the movement and positioning of an element in space [P]. United States patent, No.4976582,1990.
    [19]MARCO C. Fundamentals of mechanics of robotic manipulation[M]. Berlin:Springer, 2004.
    [20]L.-W. Tsai. Systematic enumeration of parallel manipulators. TR 1998-33, Institute for Systems Research, University of Maryland, USA,1998. (http://www.isr.umd.edu)
    [21]J.M. Herve, F. Sparacino. Structural synthesis of parallel robots generating spatial translation[A]. Proc. of the 5th IEEE Int. Conf. on Advanced Robotics, p.808-813, Pisa, Italy, 1991.
    [22]C.C. Lee, J.M. Herve. Translational parallel manipulators with doubly planar limbs [J]. Mech. Mach. Theory,2006,41:433-455.
    [23]李秦川,黄真.基于位移子群分析的3自由度移动并联机构型综合[J].机械工程学报,2003,39(6):18-21.
    [24]Z. Huang, Q:-C. Li. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators [J]. Int. J. Robotics Research,2002, 21(2):131-145.
    [25]Z. Huang, Q.-C. Li. Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method [J]. Int. J. ofRobotics Research,2003,22(1):59-79.
    [26]李秦川.对称少自由度并联机器人型综合理论及新机型综合[博士论文].秦皇岛:燕山大学,2003.
    [27]杨廷力,金琼等.基于单开链单元的三平移并联机器人机构型综合及其分类[J].机械工程学报,2002,38(8):31-36.
    [28]Q. Jin, T.-L. Yang. Theory for topology synthesis of parallel manipulators and its application to three-dimension translation parallel manipulators [J]. ASME J. of Mech. Design,2004, 126:625-39.
    [29]Q. Jin, T.-L. Yang. Synthesis and analysis of a group of 3-Degree-of-Freedom partially decoupled parallel manipulators [J].ASME J. Mech. Design,2004,126:301-306.
    [30]F. Gao, W. Li, X. Zhao, Z. Jin, H. Zhao. New kinematic structures for 2-,3-,4-, and 5-DOF parallel manipulator designs [J]. Mech. Mach. Theory,2002,37:1395-1411.
    [31]张立杰.两自由度并联机器人的性能分析及尺寸优化[D].河北:燕山大学,2006:1-151.
    [32]Innoeenti C., Parenti-Castelli V. Direct Position analysis of the Stewart Platform meehanism: an exhaustive numerical approach via a mono-dimensional search algorithm[J], Trans. ASME J. Mech. Transmissions Automation Des.1993,115:932-937.
    [33]Wang J.Y, Kim D.H. Robust estimator design for forward kinematics solution of a Stewart Platform[J]. Robotic Systems,1998,15(3):29-42.
    [34]韩林,文福安,梁崇高.6-5平台型并联机构的位置正解[J].北京邮电大学学报,1998, 21(6):33-37
    [35]毕树生,宗光华.偏置式Delta并联机构的运动学分析[J],航空学报,2003,24(1):84-89.
    [36]Boudreaur, Turkkrann. Solving the forward kinematies of Parallel manipulators with a genetic algorithm[J]. Journal of Robotic Systems,1996,13(9):111-125.
    [37]McareeP.R, DanielR.W. A fast robust solution to the stewart Platform forward kinematies[J]. Journal of Robotic Systems,1996,13(7):407-447.
    [38]梁崇高,荣辉.一种stewart平台型机械手位移正解[J].机械工程学报,1991,27(2):26-30.
    [39]Innocenti C, Castelli V P. Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism. ASME Journal of Mechanical Design,1993,115:515-521.
    [40]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:23-30.
    [41]许瑛,付廷贵,彭应龙.空间3自由度并联机构的影响系数分析[J].机械制造,45(515),42-44.
    [42]C.M. Gosselin, J. Angeles. Singularity analysis of closed-loop kinematic chains [J]. IEEE Trans. Robotics and Automation,1990,6(3):281-290.
    [43]J. Angeles. Fundamentals of robotic mechanical systems:theory, methods, and algorithms (3rd Ed.) [M], NY, USA:Springer,2007.
    [44]刘溯.1T3R并联机器人设计及其实验装置研制[D].重庆大学,2006.
    [45]J. P. Merlet, C. M. Gosselin, N. Mouly. Workspace of planar parallel manipulators[J]. Mech. Mach. Theory,1998,33(12):7-20.
    [46]黄田,汪劲松,D. J. Whitehouse. Gough-Stewart平台运动学设计理论与方法[J].中国科学(E辑),No.4 Vol.291999.
    [47]Bhattacharya S., Hatwal H., et Ghosh A. On the optimum design of a Stewart platform type parallel manipulators. Robotica,13(2):133-140, Mars- Avril,1995.
    [48]Y. Lou, G. Liu, and N. Chen etc. Optimal design of parallel manipulators for maximum effective regular workspace[J]. Proc. IEEE/RSJ Int. Conf. on Intel. Robots Sys., Alberta, p.795-800,2005.
    [49]Y. Lou, D. Zhang and Z. Li. Optimal design of a parallel machine based on multiple criteria [J]. Proc. IEEE Int. Conf. on Robot. Auto., Barcelona, p.3219-3224,2005.
    [50]R. Boudreau, C. M. Gosselin. The synthesis of planar parallel manipulators with a genetic algorithm. ASME J. Mech. Des.,1999,121:533-537.
    [51]Xin-Jun Liu, Jinsong Wang, G. Pritschow. On the optimal kinematic design of the PRRRP 2-DoF parallel mechanism[J]. Mechanism and Machine Theory 41 (2006) 1111-1130
    [52]X.-J. Liu, J. Wang, K.K. Oh, J. Kim. Anew approach to the design of a DELTA robot with a desired workspace[J]. J. of Intelligent and Robotic Systems,2004,39:209-225.
    [53]X.-J. Liu. Optimal kinematic design of a three translational DOFs parallel manipulator [J]. Robotica,2006,24:239-250.
    [54]X.-J. Liu, J. Wang, F. Gao. Performance atlases of the workspace for planar 3-dof parallel manipulators [J]. Robotica,2000,18(5):563-568.
    [55]X.-J. Liu, J. Wang. A new methodology for optimal kinematic design of parallel mechanisms[J]. Mech. Mach. Theory,2007,42:1210-1224.
    [56]Wang Z.-F., Wang G, and Ji S.-M., et al. Optimal design of a linear Delta robot for the prescribed cuboid dexterous workspace[A]. Proc. IEEE Int. Conf. on Robotics and Biomimetics, p.2183-2188, Sanya, China,2007.
    [57]Wang Z.-F., Ji S.-M., et al. Optimal design of parallel robots for the prescribed regular dexterous workspace [A]. Proc. IEEE Int. Conf. on Automation and Logistics, p.563-568, Jinan, China, August 18-21,2007.
    [58]R.E. Stamper, L.-W. Tsai, G.C. Walsh. Optimization of a three DOF translational platform for well-conditioned workspace [A]. IEEE Int. Conf. on Robotics and Automation, p.3250-3255, Albuquerque, USA,1997.
    [59]C.M. Gosselin, and M. Guillot. The synthesis of manipulators with prescribed workspace [J]. ASME J. Mech. Design,1991,113:451-455.
    [60]R. Boudreau, C.M. Gosselin. The synthesis of planar parallel manipulators with a genetic algorithm. ASME J. Mech. Des.,1999,121:533-537.
    [61]M.A. Laribi, L. Romdhane, S. Zeghloul. Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace [J]. Mech. Mach. Theory,2007,42:859-870.
    [62]沈惠平,杨廷力,马履中.3-P(?)R//4r//R型三维平移解祸并联机构及其位置分析[J].机械科学与技术,2004,23(12):1414-1416.
    [63]沈惠平,葛乐通,马履中等.3-P//R(?)4r(?)R型三维平移并联机构及其位置分析[J].机械设计,2004,21(11):13-15.
    [64]杨金堂.受控五杆机构实现轨迹理论与实验研究[D].武汉科技大学博士学位论文,2009.
    [65]杨金堂,孔建益,熊禾根等.平面低副五杆机构的基本型及其演化[J].机械设计与研究,2006,22(4):28-31.
    [66]廖汉元,孔建益,李佳,等.平面两自由度五杆机构的型综合[J].湖北工业大学学报,2006,21(3):157-158,185.
    [67]李佳,廖汉元,孔建益等.平面五杆机构的机构变换及选型[J].中国机械工程,2007,18(1):20-22.
    [68]F.-F. Xi. A comparison study on hexapods with fixed-length legs [J]. Int. J. of Machine Tools & Manufacture,2001,41:1735-1748.
    [69]L.W. Tsai, S. Joshi. Comparison study of architectures of four 3 Degree-of-Freedom translational parallel manipulators [A]. Proc. IEEE Int. Conf. Robotics and Automation, Seoul:1283-1288, Korea, May 21-26,2001.
    [70]X. J. Liu, J. S. Wang, G. Pritschow. Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms[J]. Mech. Mach. Theory,2006,41:119-144.
    [71]X. J. Liu, J. S. Wang, H. J. Zheng. Optimum design of the 5R symmetrical parallel manipula- tor with a surrounded and good-condition workspace[J]. Robotics and Autonomous Systems,2006,54:221-233.
    [72]L.W. Tsai. Robot analysis:The mechanics of serial and parallel manipulators [M]. USA: John Wiley & Sons,1999.
    [73]王忠飞.一类空间平移的并联机器人的类型综合和优选方法研究[D].浙江工业大学博士学位论文,2007.
    [74]X. J. Liu, J. S. Wang, G. Pritschow. On the optimal kinematic design of the PRRRP 2-DoF parallel mechanism[J]. Mech. Mach. Theory,2006,41:1111-1130.
    [75]李娟,刘延杰,孙立宁等.新型2-DOF高加速定位平台的动态性能[J].光学精密工程,2008,16(5):851-855.
    [76]Xin-Jun Liu, Liwen Guan, Jinsong Wang. Kinematics and Closed Optimal Design of a Kind of PRRRP Parallel Manipulator J]. Journal of Mechanical Design,2007,129:558-562.
    [77]14.孙立宁,陈立国,荣伟彬,等.面向微机电系统组装与封装的微操作装备关键技术[J].机械工程学报,2008,44(11):13-19.
    [78]Jin Q. Yang T.-L. Position analysis for a class of novel 3-DOF translational parallel robot mechanisms [A]. Proc. of the 2001 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p.1289-1294, Pittsburgh, PA,2001, DETC2001/DAC-21151.
    [79]M. Carricato, V. Parenti-Castelli. Position analysis of a new family of 3-DOF translational parallel manipulators [J]. ASME J. Mech. Design,2003,125:316-322.
    [80]M. Carricato, V. Parenti-Castelli. A family of 3-DOF translational parallel manipulators [J]. ASME J. of Mech. Design,2003,125:302-307.
    [81]张立杰.两自由度并联机器人的性能分析及尺寸优化[D].河北:燕山大学,2006:1-151.
    [82]王冠.满足任务尺寸空间需求的并联机器人的参数优化设计方法[D].浙江:浙江工业大学,2009.
    [83]朱小蓉,沈惠平,刘传飞等.两自由度并联操作手的工作空间与奇异性研究[J].机械设计与研究,2010(5).
    [84]白志富,陈五一.并联机构不同正解间无奇异转换问题探讨[J].机器人,2006,28(5):463-470.
    [85]沈辉,吴学忠,李泽湘.并联机构奇异点的运动分岔研究[J].国防科技大学学报,2004,26(6):54-57.
    [86]王玉新,李雨桐,潘双夏.一种规避并联机构转向点奇异问题的新方法[J].中国科学,2008,38(1):125-136.
    [87]徐宗刚.3_PCR并联机构工作空间及轨迹规划的研究与应用[D].山东:山东理工大学,2009.
    [88]F. Gao, X. J. Liu, W. A. Gruver. Performance evaluation of two-degree-of-freedom planar p-arallel robots[J]. Mech. Mach. Theory,1998,33(6):661-668.
    [89]K. j.Zhang, X. j. Liu. On the Design of 3-Dof Spherical Parallel Manipulators with Prismatic Actuators[J].Chinese Journal of Mechanical Engineering,2001,14(1):22-26
    [90]C. M. Gosselin, J. Angeles. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators [J]. Transaction of the ASME, Journal of Mechanical Design,1991, 113:220-226.
    [91]姚蕊,唐晓强,黄鹏,杨建新.高加速度的柔性3-RRR并联机构尺度综合设计[J].清华大学学报(自然科学版),2008,48(2):184-189.
    [92]王陈琪.高速高精度平面并联机器人时间最优控制系统的研究[D].哈尔滨工业大学硕士学位论文,2006.
    [93]孙立宁,刘延杰,崔晶等.高速精密平面定位机构的设计与应用[J].机械设计与制造,2005,(4):81-83.
    [94]Y. Yue, F. Gao, X. C. Zhao, Q. J. Ge. Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator[J]. Mech. Mach. Theory, 2010,45:756-771.
    [95]W. Dong, L. N. Sun, Z. J. Du. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints[J]. Precision Engineering,2008,32:222-231.
    [96]J. Wu, J. S. Wang, L. P. Wang, et al. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy [J]. Mech. Mach. Theory,2009,44:289-305.
    [97]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业工业版社,1997:23-30.
    [98]Zhuangsheng Zhu, Runliang Dou:Mechatronics, Vol.19(2009):761-766.
    [99]A.M. Hay, J.A. Snyman. Optimal synthesis for a continuous prescribed dexterity interval of a 3-dof parallel planar manipulator for different prescribed output workspaces [J]. Int. J. Numer. Meth. Eng.,2006,68:1-12
    [100]Wang Z.-F., Ji S.-M., et al. A methodology for determining the reachable and dexterous workspace of parallel manipulators [A]. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.2871-2876Harbin, China,2007.
    [101]Wang Z:F., Ji S.-M., et al. A methodology for determining the maximal regular-shaped dexterous workspace of the PMs[A]. Proc. IEEE Int. Conf. on Mechatronics and Automation, p.827-832, Harbin, China,2007.
    [102]M. Stock, K. Miller. Optimal kinematic design of spatial parallel manipulators:application to linear Delta robot [J]. ASME J. Mech. Design,2003,125:292-301.
    [103]Y. Li, Q. Xu. A new approach to the architecture optimization of a general 3-PUU translational parallel manipulator [J]. J. Intell. Robot Syst.2006,46(1):59-72.
    [104]A. Kosinska, M. Galicki, K. Kedzior. Designing and optimization of parameters of delta-4 parallel manipulator for a given workspace [J]. J. Robot. Sys.,2003,20(9):539-548.
    [105]S.A. Joshi. A comparison study of 3-DOF parallel manipulators[D]. USA:University of Maryland,2002.
    [106]丁庆勇,刘新宇,孙立宁等.基于弦方法的平面并联操作手工作空间分析[J].机械与电子,2004,(7):3-6.
    [107]J.A. Snyman, L.J. du Plessis, J. Duffy An optimization approach to the determination of the boundaries of manipulator workspaces [J]. ASME J. Mech. Des.,2000,122:447-456.
    [108]A.M. Hay, J.A. Snyman. The chord method for determination of nonconvex workspaces of planar parallel manipulators [J]. Compu. Mathe. with App.,2002,43:1135-1151.
    [109]A.M. Hay, J.A. Snyman. A multi-level optimization methodology for determining the dexterous workspaces of planar parallel manipulators [J]. Strut. Multidis. Optim.,2005,30: 422-427.
    [110]J. Wu, et al. A comparison study on the dynamics of planar 3-DOF 4-RRR,3-RRR and 2-RRR parallel manipulators [J]. Robot Comput. Integr. Manuf.,2010.
    [111]J. Wu, J. S. Wang, L. P. Wang, Z. You. Performance comparison of three planar 3-DOF parallel manipulators with 4-RRR,3-RRR and 2-RRR structures[J]. Mechatronics,2010,20: 510-517.
    [112]S. Staicu, X. J. Liu, J. S. Wang. Inverse dynamics of the HALF parallel manipulator with revolute actuators[J]. Nonlinear Dyn,2007,50:1-12.
    [113]A.M. Hay, J.A. Snyman. Methodologies for the optimal design of parallel manipulators [J]. Int. J. Numer. Meth. Eng.,2004,59:131-152.
    [114]O. Altuzarra, J. Aginaga, A. Hernandez, I. Zabalza. Workspace analysis of positioning disc-ontinuities due to clearances in parallel manipulators[J]. Mech. Mach. Theory,2011,46:57 7-592.
    [115]V. T. Portman, V. A. Chapsky, Y. Shneor. Workspace of parallel kinematics machines with minimum stiffness limits:Collinear stiffness value based approach[J]. Mech. Mach. Theory, 2012,49:67-86.
    [116]蓝兆辉,苏民伟.平面并联机械手灵活工作空间及其空洞分析[J].机械设计与研究,2000,增刊,128-129.
    [117]朱心平,崔建昆,张源.求解3-RRR平面并联机器人工作空间的迭代搜索法[J].机械研究与应用,2010(3):48-49.
    [118]J.P. Merlet. Designing a parallel manipulator for a specific workspace [J]. Int. J. Robot. Res., 1997,16(4):545-556.
    [119]龚纯,王正林.精通Matlab最优化计算[M].电子工业出版社,2009.
    [120]Y. Lou, G. Liu, N. Chen, Z. Li. Optimal design of parallel manipulators for maximum effective regular workspace [A]. Proc. IEEE/RSJ Int. Conf. on Intel. Robots Sys, Alberta, 2005,795-800.
    [121]Xiaorong ZHU, Huiping SHEN. Performance Evaluation of a 2-DOF Planar Parallel Manipulator[J]. Applied Mechanics and Materials Vols.121-126 (2012) pp 2829-2833
    [122]Xiaorong ZHU, Huiping SHEN, Wei ZHU. Optimal Kinematic Design of a 2-DOF Planar Parallel Manipulator[J]. Applied Mechanics and Materials Vols.44-47 (2011) pp 1843-1847.
    [123]朱小蓉,沈惠平,朱伟.平行导轨二滑块驱动在一侧的并联操作手的运动轨迹实现与仿真研究[J].制造技术与机床,2011(2):17-21.
    [124]郭新贵,李从心.一种新型柔性加减速算法[J].上海交通大学学报,2003,37(2):205-207.
    [125]陈金成,徐志朋,徐正飞,等.基于分段三次样条曲线的高速加工平滑运动轮廓自适应算法研究[J].机械工程学报,2002,38(5):61-65.
    [126]李加文,陈宗雨,李从心等.基于函数逼近的三角函数加减速方法[J].机床与液压,2006(3):66-67.
    [127]叶修梓,陈超祥主编Cosmos高级教程:Cosmostion[M]北京:机械工业出版社,2007.
    [128]沈惠平;邓嘉鸣;蒋益兴等.一种单喷枪喷涂五轴混联机器人[P],2011.7,ZL201110042826.
    [129]邓嘉鸣;沈惠平;蒋益兴等,一种多喷枪协同式喷涂五轴混联机器人[P],2011.7,ZL201110042831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700