基于关节单元库的模块化机械臂的优化与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模块化机械臂的基本组成元件是关节单元,可以根据实际情况组合出不同规格的机械臂,能够适应多变的工作环境和任务要求,近年来已成为机器人研究的一个新的热点问题,引起了国内外众多学者的关注。本文基于构建的关节库,主要研究内容包括机械臂臂长优化、轨迹规划以及实例仿真等部分。
     首先,本文提出了三种不同的运动学性能指标,三种性能指标具有不同的应用范围,结合模块化机械臂的特点,分别优化了两自由度、三自由度以及六自由度机械臂的臂长,获得机械臂杆长的最佳比例关系。
     然后,本文根据模块化原则设计了一种关节单元,构建了包含48个关节单元的单元库,并对构件进行了速度分析,用Newton-Euler法推导出了机械臂关节力矩递推公式。根据机械臂的动力学特性,提出了三种动力学性能评价指标,并在此基础上构造了模块化机械臂多目标优化模型。
     此外,本文提出了模块化机械臂运动学问题的新方法,在此基础上利用杆件参数优化结果,对4-DOF模块化机械臂进行了直线轨迹规划,对于6-DOF机械臂,采用4-3-4多项式轨迹在关节空间进行了轨迹规划,绘出了轨迹曲线,生成了轨迹样本。
     最后,在构建的关节单元库的基础上,本文分别利用遗传算法和一般优化算法,遴选出6-DOF和4-DOF模块化机械臂的关节单元组合,运用ADAMS进行虚拟样机仿真,经过验证,两组关节单元组合均满足了约束条件。从仿真结果可以得出结论,本文所研究的机械臂关节单元优化组合方法可行。
Joint module unit is the basic element of modular manipulator, with which it could assembly to a varity of manipulators that could be applied to different working environm-ent. Modular manipulator has also became a hot issue in the domain of robotics and caught the eye of the researchers around the world in recent years. In this paper, it concentrate on the configuration optimization, trajectory planning and dynamic simulati-on of the manipulators.
     Firstly, Three kinds of kinematics performance Indices are proposed in this paper, which has its own application scope. According to the fetures in configurations of the modular manipulators, the manipulators ,which have two,three and six degrees of freedom respectively,are optimized to acchive the optimum length ritio between the upper arm and fore arm.
     What’s more, a structure of Joint module unit is also devised using Modular Design principle in this paper, and Joint module library is built on the basis of forty-eight joint modules. After velocity analysis of joints, the recursion formulas of torques in every joint are deduced using Neton-Euler method. According to the dynamics performance of the manipulator, A multi-objective optimization model is constructed with three dynamics performance functions.
     Furthermore, a new method is proposed to solve the kinematics of modular manipu-lator. With the optimization results of configuration, the trajectory of a 4-DOF manipulat-or is accomplished by linear trajectory planning, and it also plans a 6-DOF manipulator’s trajectory using 4-3-4 polynomial. The specimen of the trajectory is obtained and the cur-ve of the path in every joint is also plotted by the planning programme.
     At last, two series of joint modules are selected from the joint module unit library using genetic algorithm and common algorithm respectively, which could assembly to a 6-DOF and 4-DOF manipulators. The three-dimention models are transferred to ADAMS software for dynamics simulation verify that the peak value of the torque in every joint has been satisfied the constraints in optimization model. It is concluded that the optimization method for modular manipulator in this paper is feasible.
引文
1 D.Schmitz, P.Khosla, T.Kanade. The CMU reconfigurable modular manipulator syst-em. Proceedings of the International Symposium and Exposition on Robots. 1988, 473~488.
    2 D.B.Stewart, P.K.Khosla. Rapid Development of Robotic Applications Using Comp-onent Based Real-Time Software. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburg, USA, 1995: 465~470.
    3 Paredis.C.J,Khosla.P.K. Kinematic Design of serial Link Manipulators From Task Speeifieation.The International Journal of Robotics Research. 1993, 12(3): 274~287.
    4 Paredis.C.J.J, Brown.H.B,Khosla.P.K. A Rapidly Deployable Manipulator System. Robotics and Autonomous Systems. 1997, 21(3): 289~304.
    5 S.R.Habibi, A.A.Goldenberg. Design and Control of a Reconfigurable Industrial Hydraylic Robot. Proceedings of IEEE International Conference on Robotics and Automation. 1995: 2206~2211
    6 T.Matsumaru. Design and Control of the Modular Robot System: TOMMS. Proceed-ings of IEEE International Conference on Robotics and Automation, Nagoya, Japan 1995:2125~2141
    7 http://www.esit.com/robotics_productDevelopment.php. [2010-6-1]
    8 R.Cohen, M.G.Lipton, M.Q.Dai, B.Benhabib. Conceptual Design of a Modular Rob-ot. ASME Journal of Mechanical Design. 1992, (114): 117~125
    9 B.Benhabib, G.Zak, M. G. Lipton. A Generalized Kinematic Modeling Method for Modular Robots. Journal of Robotic Systems. 1989, 6(5): 545~571.
    10 I-Ming Chen, Guiling Yang. Configuration Independent Kinematics for Modular Ro-bots. Proceedings of the IEEE International Conference on Robotics and Automaion, 1996: 1440 ~1445.
    11 K.H.Wurst. The Conception and Construction of a Modular Robot System. Internati-onal Symposium on Industrial Robotics,1986:37~44.
    12 htttp://www.robotics-research.com. [2010-6-2]
    13 Z.M.Bi, W.J.Zhang. Concurrent Optimal Design of Modular Robotic Configuration. Journal of Robotic Systems. 2001, 18(2): 77~87
    14 O.Chocron, P.Bidaud. Genetic Design of 3D Modular Manipulators. IEEE Procedings of International Conference on Robotics and Automation, New Mexico, America, 1997: 223~228
    15 Han.J, Chung.W.K, Youm.Y, Kim.S.H. Task Baesd Design of Modular Robot Manipulator Using Efficient Genetic Algorithm. IEEE Procedings of International Conference on Robotics and Automation, New Mexico, America, 1997: 507~512
    16 Chen.I, Burdick.J. Determining Task Optimal Modular Robot Assembly Configurati-ons. IEEE Proceedings of International Conference On Robotics and Automation, 1995: 132-137
    17 Chen.I, Yang.G. Automatic Model Generation for Modular Reconfigurable Robot Dynamics. Transactions of the ASME Journal of Dynamic Systems,Measurement,and Control. 1998, (120): 346~352
    18 Chen.I, Song.H, Guang.C. Kernel for Modular Robot Applications: Automatic Modeling Techniques. The International Journal of Robotics Research. 1999, 18(2): 225~242
    19吕晓俊,钱瑞明.可重构机器人运动学正逆解的算法研究.机械设计. 2006, 23(3): 53~56.
    20李树军,张艳丽,赵明扬.可重构模块化机器人模块及构形设计.东北大学学报(自然科学版). 2004, 25(1): 78~81
    21费燕琼,赵锡芳,徐卫良.机器人模块化的结构设计研究.机器人. 1999, 21(3): 223~228
    22费燕琼,冯光涛,赵锡芳,徐卫良.可重组机器人运动学正逆解的自动生成.上海交通大学学报. 2000, 34(10): 1430~1433
    23费燕琼,况迎辉,赵锡芳,徐卫良.可装配的模块机器人动力学的自动生成.东南大学学报,2000,30(2):84~88
    24魏延辉,赵杰,朱延河,蔡鹤皋.新型可重构机器人逆运动学的研究.西安电子科技大学学报(自然科学版). 2008, 35(1): 1~3
    25张连东.基于微分几何学的机器人操作性能的研究.大连理工大学博士学位论文. 2004: 3~20
    26 Y.Li, Y.Liu, X.Liu, Z.Peng. Parameters Identification and Vibration Control in Mod-ular Manipulators . IEEE/ASME Transactions on Mechatronics. 2004,9(4), 700~-705
    27赵亮,闫华晓,俞剑江.基于关节模块的模块化工业机器人.组合机床与自动化加工技术. 2008,(9):1~2
    28闫华晓.模块化工业机器人设计的若干问题研究.浙江大学硕士学位论文. 2008: 1~5
    29刘明尧,谈大龙,李斌.可重构模块化机器人现状和发展.机器人. 2001, 23(5): 275~279
    30 T.Yoshikawa. Manipulability of Robotic Mechanism. The International Journal of Robotics Research. 1985, 4(2): 1~3
    31 J.Kim, P.Khosla. Dexterity Measures for Design and Control of Manipulators. IEEE/-RSJ International Workshop on Intelligent Robots and Systems, Osaka,Japan, 1991: 758~763
    32 C.Klein, B.Blaho. Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators, The International Journal of Robotics Research, 1987, 6(2): 72~83
    33 C.Gosselin. Dexterity Indices for Planar and Spatial Robotic Manipulators, Proceedi-ngs of IEEE International Conference on Robotics and Automati-on, Cincinnati, Ohio, 1990: 650~665
    34 C.Gosselin, J.Angeles. A Global Performance Index for The Kinematic Optimization of Robot Manipulators. Journal of Mechanical Design. 1991, (113): 220~226
    35 J. Angeles, The Design of Isotropic Manipulator Architectures in the Presence of Redundancies. The International Journal of Robotics Research. 1992, 11(3): 196~201
    36 L.Stocco. Robot Design Optimization with Haptic Interface Applications. Ph.D Thes-is, Department of Electrcal and Computer Engineering,The University of BritainColumbia,Vancouver. 1999: 1~3
    37 S.Khatami, F.Sassani. Isotropic Design Optimization of Robotic Manipulators Using a Genetic Algorithm Method. Proceeeds of IEEE symposium on Intelligent Control, Vancouver, 2002: 27~30
    38 Robot Workspace Optimization Based on a Novel Local and Global Performance Indices. Proceedings of IEEE International Symposium of Industrial Electronics, Croatia, 2005: 1593~1597
    39蔡自兴.机器人学.清华大学出版社, 2000: 51~130
    40李琳. SCARA机器人运动控制数字仿真的研究.大连交通大学硕士学位论文. 2007: 21~28
    41机器人学:控制、传感技术、视觉、智能.付京逊, R.C.冈萨雷斯, C.S.G.李.中国科学技术出版社,1989: 21~33 113~121
    42冯飞,张洛平,张波.四自由度机器人MATLAB仿真实例.河南科技大学学报(自然科学版). 2008, 29(3): 2~3
    43 Said.S.M, Hassan.M.M, Sulaiman.S.B. Flexible Modular Robotics Link Design. Proceedings of IEEE TENCON 2000, Malaysia, 2000: 162~166
    44沈俊.可重构模块化机器人动力学与控制的研究.哈尔滨工业大学硕士学位论文. 2006: 20~24 25~26
    45王卫忠.可重构模块化机器人系统关键技术研究.哈尔滨工业大学博士学位论文. 2007: 1~21
    46霍伟.机器人动力学与控制.高等教育出版社, 2005: 63~86
    47黄裕军.新型六轴机器人本体运动学与驱动功率优化配置的研究.上海交通大学硕士学位论文. 1997: 19~29
    48郭良康,黄宇中.机器人动力学优化综合的研究.机器人. 1987, 1(2): 1~5
    49雷英杰,张善文,李续武,周创明. MATLAB遗传算法工具箱及应用.西安电子科技大学出版社. 2005: 62~105
    50李增刚. ADAMS入门详解与实例.国防工业出版, 2006: 1~82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700