多业务CDMA蜂窝通信系统容量性能和无线资源管理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为移动用户提供多种业务服务是未来无线通信网络的主要发展方向。由于CDMA技术具有灵活支持多种业务的优点,因而被第三代移动通信系统所采纳。如何在恶劣的无线传播环境里以及用户运动且相互干扰的情况下为各类业务提供QoS保证,同时充分利用珍贵的无线频谱资源,是基于CDMA技术的第三代蜂窝通信系统、以及未来的无线个人通信系统都必须致力解决的问题。本文从系统设计的角度出发,围绕多业务CDMA蜂窝通信系统的容量性能和三种重要的与无线资源管理有关的算法:功率控制算法、接纳控制算法和分组调度算法进行研究。
     对承载具有不同QoS要求的多业务CDMA蜂窝通信系统的容量性能进行研究是系统容量规划所需解决的关键问题之一,同时,有效精确的分析方法有助于我们深入地认识影响CDMA系统小区容量的诸多因素,从而提出相应的解决办法,提高系统的频谱利用率。本文在第二章里首次全面地研究了多业务CDMA蜂窝通信系统的上行链路和下行链路的容量性能。对于上行链路,提出并验证了在多业务环境中,用对数正态分布的随机变量来近似基站接收到的总干扰信号的统计特性可以获得比目前文献中大量采用的高斯近似分析方法更为精确的结果,从而为研究上行链路的容量性能提供了简洁可靠的解析评估方法。对于下行链路,移动台接收到源自不同基站发送的合成信号,其分布特性不易解析得到,提出了计算机仿真的方法来研究下行链路的业务容量性能。在分析中,我们综合考虑了呼叫的到达过程,业务激活因子,无线传播环境和功率控制误差等因素,弥补了目前文献中一些过于简单或理想的假设条件,使之更符合系统的实际情况,以有助于系统的容量规划设计。
     功率控制是蜂窝通信系统,尤其是基于CDMA的蜂窝通信系统中资源分配与干扰管理的关键技术之一,有效的功率控制算法能够降低用户间的相互干扰,增加系统容量,对于移动用户而言,还能延长手机的待机时间。本文第三章对多业务CDMA蜂窝通信系统的功率控制问题进行了研究。首次提出了广义SIR平衡的概念,并将现有文献中只能适用于单一业务蜂窝系统的、基于SIR平衡
    
     中文摘要
    概念的一大类集中式和分布式功率控制算法经改进后能够应用到多业务的
    CDMA蜂窝通信系统中,增大系统的容量。同时从理论上证明了单一业务蜂窝
    系统中的SIR平衡问题是广义SIR平衡问题的一个子集,从而完善了基于SIR
    平衡概念的功率控制算法的理论研究。
     CDMA蜂窝通信系统的小区容量是有限的,当小区容量己处于饱和状态时,
    继续接纳新的用户进入系统,将使己有用户的 QOS无法得到保证。系统必须采
    取有效的接纳控制策略,使得各类业务的QOS在获得保证的同时,尽可能为更
    多的用户提供服务。本文第四章对多业务CDMA蜂窝通信系统的接纳控制问题
    进行了研究。首次提出了基于幻 测量的能够满足多种业务不同 QOS要求的两
    种接纳控制算法:局部策略和全局策略,弥补了现有文献中基于SIR测量的接
    纳控制算法无法支持多种业务服务的不足。
     以分组交换方式为基于Intenlet的大量非实时数据业务提供服务可以优化系
    统的频谱利用率。在分组交换网络里,当有多个分组业务流等待接受服务时,
    必须确定合理的服务规则,安排流的服务顺序和服务时间,以满足各个业务流
    的 QOS要求,这就是分组调度所要解决的基本问题。本文第五章对 CDMA蜂窝
    通信系统中的分组调度问题进行了研究。首次提出了综合考虑移动台的信道条
    件、分组大小、时延约束、离散速率与固定调度间隔约束的多种分组调度算法,
    弥补了目前文献中只考虑其中部分约束条件或者部分信息的调度算法的不足。
    我们通过大量的计算机仿真研究了所提出的各种算法在不同的信道环境中和不
    同约束条件下的性能,仿真结果证明了本文所提出的几种分组调度算法的性能
    优于目前文献中一些典型算法的性能,这将为实际系统中分组调度算法的设计
    提供有益的指导。
     为验证、评估本文所提出的各种算法的性能,作者分别编写了容量性能、功
    率控制算法、接纳控制算法和分组调度算法的仿真软件,并利用这些软件考察
    了各种算法的性能,本文第六章对这些仿真工作进行了简要总结,并给出了主
    要的流程图。
Future wireless communication systems trend to provide multi-services to mobile users. CDMA technique is adopted by the 3rd generation mobile communication systems due to its flexibility in supporting multi-services. How to keep QoS of heterogeneous services and at the meantime utilize the scarce radio spectrum resources is challenging for 3rd generation mobile communication systems and future personal communication systems, especially in error-prone wireless channel and under the situations of users' mobility and their interfering with each other. This dissertation studies the capacity performance of the multi-service CDMA cellular systems and three key radio resource management algorithms, which are power control algorithm, admission control algorithm and packet scheduling algorithm.
    To study the capacity performance of the multi-service CDMA cellular systems is one of the key elements in procedures of the system capacity planning, meanwhile the exact analysis method is helpful to explore the factors affecting the cell capacity and thus remedies can be found to improve the efficiency of the radio spectrum utilization. The capacity performance of both the uplink and downlink are studied in chapter 2. An exact mathematical approximation method is proposed for the uplink capacity analysis, which uses a log-normal distributed random variable to approximate the statistics of total interference signal at the base station. The simulation results demonstrate that the proposed approximation method is more exact than gaussian approximation one , which have been widely used in literature. Computer simulation is used to study the capacity performance of the downlink, as the statistics of the signals received by the mobile users from different base stations is hard to gain. The call arrival process, active factors, wireless propagation environment and power control error are considered in the analysis, and some simplified or idealized assumptions adopted in current literatures are improved to better sketch the characterizations of practical system.
    HI
    
    
    
    Power control is one of the key technologies of reducing interference in cellular systems , especially in CDMA systems. An efficient power control method can reduce the interferences between users and increase capacity, for mobile users it also prolongs the working hours of the handsets. The power control problem in multi-service CDMA cellular systems is studied in chapter 3. The concept of generalized SIR balance is proposed firstly, and a class of centralized and distributed power control algorithms which can only be used in single traffic cellular systems are improved to be applied into the multi-service CDMA cellular systems, and thus the system capacity can be increased. Besides, the problem of SIR balance in single traffic cellular systems is proved to be a just a special instance of the generalized SIR balance, thus the theory about the power control algorithms based on SIR balance is supplemented.
    The cell capacity of CDMA cellular systems is limited, admitting more users than the capacity into system will make the already admitted users suffer a loss of QoS . Call admission control mechanisms must be adopted by the system to protect the QoS of the heterogeneous traffics and at the same time accommodate more users. The problem of call admission control is studied in chapter 4. Two admission control algorithms based on SIR- measurement are proposed firstly and evaluated through extensive simulations under homogeneous and heterogeneous traffic enviroment. The proposed admission algorithms can be used in multi-service CDMA cellular system and make efficient utilization of system capacity, thus make the improvement over the current admission control algorithms based on SIR- measurement which can not support multi-services with heterogeneous QoS requirements.
    It's believed that providing Internet-based non-realtime services through packet-switched way can optimize the radio spectrum utilization.In packet-switched networks, proper service disciplines , service ord
引文
[1] S.Dixit, Y.Guo, Z.Antoniou, Resource Management and Quality of service in third-generation mobile communication systems, IEEE Commun. Magazine , Feb. 2001:125-133
    [2] 3GPP TS2 3. 107 V.3. 3. 0, QoS concept and architecture(Release 1999) , June 2000
    [3] J.Kalliokulju, Quality of service management functions in 3rd generation mobile telecommunication networks, IEEE proc. of WCNC'99, 1999
    [4] K.Kim , Y.Han, A call admission control scheme for multi-rate traffic based on total received power, IEICE Trans. Commun., E84-B(3) , 2001:457-463
    [5] L.Jorguseski, E.Fledderus, J.Farserotu, Radio resource allocation in third-generation mobile communication systems, IEEE Commun. Magazine, Feb. 2001:117-123
    [6] O.Gurbuz, H.Owen, Dynamic resource scheduling schemes for W-CDMA systems, IEEE Commun. Magzine, Oct. 2000:80-84
    [7] V.Huang, W.Zhuang , Optimal resource management in packet-switching TDD CDMA systems , IEEE Personal Commun., Dec. 2000: 26-31
    [8] R.Becher, M.Dillinger, M.Haardt, et al., Broadband wireless access and future communication networks, Proceedings of the IEEE , 89(1) , Jan. 2001: 58-75
    [9] J.Sun,J.Sauvola, D.Howie, Features in future: 4G visions from a technical perspective, IEEE proc. of Globecom'01,2001
    [10] Katzela, M.Naghshineh, Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey ,IEEE Personal Commun.June 1996 :10-31
    [11] T.K.Fong, P.S.Henry, K.K.Leung, et al., Radio resource allocation in fixed broadband wireless networks , IEEE Trans, on Commun., 46(6) , 1998: 806-818
    [12] R.D.Bernardi, D.Imbeni, L.Vignali, et al., Load control strategies for mixed services in WCDMA , IEEE proc. of VTC'OO Spring, 2000
    [13] S.Choi, K.G.Shin, An uplink CDMA system architecture with diverse QoS guarantees for heterogeneous traffic , IEEE/ACM Trans, on Networking, 7(5) , 1999: 616-628
    [14] J.W.Chang, D.K.Sung, Adaptive channel reservation scheme for soft handoff in DS-CDMA cellular systems, IEEE Trans, on V.T., 50(2) , 2001: 341-353
    [15] D.K.Kim, D.K.Sung, Characterization of soft handoff in CDMA systems , IEEE Trans, on V.T.,48(4) , 1999: 1195-1202
    [16] J.Muckenheim, U.Bernhard, A framework for load control in 3rd generation CDMA
    
    networks, IEEE proc. of Globecom'01, 2001
    [17] B.Hjelm, Load management in future wideband DS-CDMA systems with non-uniform traffic distribution, IEEE proc. of PIMRC'00, 2000
    [18] Dahlman, E.Beming, P.Knutsson, et al., WCDMA-the radio interface for future mobile multimedia communications , IEEE Trans, on V.T. 47(4) , 1998: 1105-1118
    [19] N.Bambos, Toward power-sensitive network architectures in wireless communications: concepts, issues, and design aspects , IEEE Personal Commun. ,June 1998: 50-59
    [20] J. Zander ,Radio resources management in future wireless networks: requirements and limitations , IEEE Commun. Magazine ,Aug. 1997:30-36
    [21] S.A.Grandhi, R.D.Yates, D.J.Goodman, Resource allocation for cellular radio systems IEEE Trans, on V.T, 46 (3) ,1997: 581-587
    [22] K.I.Kim编著,CDMA系统设计与优化,(刘晓宁,杜志敏泽),北京,人民邮电出版 社,2000
    [23] J.S.Lee,L.E.Miller著,CDMA系统工程手册,(许希斌等译),北京,人民邮电出版 社.2001
    [24] K.S.Gilhousen, I.M.Jacobs, R.Padovani, et al. On the capacity of a cellular CDMA system, IEEE Trans, on V.T, 1991, 40(2) : 303-312
    [25] R.Prasad, M.G.Jansen, A.Kegel, Capacity analysis of a cellular direct sequence code division multiple access system with imperfect power control, IEICE Trans. On Commun., 1993, E76-B(8) : 1501-1504
    [26] A.J.Viterbi, A.M.Viterbi, E.Zehavi, Performance of power-controled wideband terrestrial digital communication, IEEE Trans. On Commun., 1993, 4(4) :559-569
    [27] A.J.Viterbi, A.M.Viterbi, E.Zehavi, Other-cell interference in cellular power-controled CDMA, IEEE Trans. On Commun.,1994, 42(2/3/4) : 1501-1504
    [28] A.M.Viterbi, A.J.Viterbi, Erlang capacity of a power controlled CDMA sytstem, IEEE Journal on Selected Areas in Commun., 1993, 11(6) : 892-899
    [29] A.J.Viterbi, CDMA Principles of Spread Spectrum Communication, New York, Addison-Wesley Publishing Company, 1995:185-218
    [30] G.Karmani, K.N.Sivarajan, Capacity evaluation for CDMA cellular systems, IEEE Proc. of Infocom'2001, Anchorage, Alaska, 2001: 601-610
    [31] J.S.Evans, D.Everitt, On the teletraffic capacity of CDMA cellular networks, IEEE Trans. on V.T., 1999,48(1) : 153-165
    [32] M.G.Jansen, Ramjee Prasad, Capacity, throughput, and delay analysis of a cellular DS
    
    CDMA system with imperfect power control and imperfect sectorization, IEEE Trans, on V.T., 1995, 44(1) : 67-74
    [33] S.Choi, D.Cho, Capacity estimation of forward link in CDMA systems supporting high data-rate service, IEICE Trans. On Commun.,2001, E84-B(8) :2170-2177
    [34] P.Pirinen, Conditional outage probability evaluation in WCDMA at high data rates, IEEE 6th Int. Symp. On Spread-Spectrum Tech&Appli. NJIT, New Jersey, USA, Sept.6-8,2000
    [35] A.Sampath, N.B.Mandayam, J.M.Holtzman, Erlang capacity of a power controlled integrated voice and data CDMA system, IEEE proc. of VTC'97:1557-1561
    [36] N.B.Mandayam, J.M.Holtzman, S.Barberis, Performance and capacity of a voice/data CDMA system with variable bit rate sources, Insights into Mobile Multimedia Communications,Acadernic Press Inc.,1998:1557-1561
    [37] Golaup, A.H.Aghvami, Reverse link Erlang capacity of a W-CDMA system supporting voice and WWW users, IEEE proc. of VTC'2001, 2001: 605-609
    [38] S.J.Lee, D.K.Sung, Capacity evaluation for DS-CDMA systems with multi-class on/off traffic, IEEE Communications Letter, 1998, 2(6) : 153-155
    [39] J.Zou, V.K.Bhargava, Design issues in a CDMA cellular system with heterogeneous traffic types, IEEE Trans, on V.T., 1998, 47(3) : 871-883
    [40] R.Vannithamby, E.S.Sousa, Performance of multi-rate data traffic using variable spreading gain in the reverse link under wideband CDMA, IEEE proc. of VTC'2000, 2000
    [41] D.Ayyagari, A.Ephremides, Cellular multicode CDMA capacity for integrated (voice and data) services, IEEE Journal on Selected Areas in Commun., 1999, 17(5) : 928-938
    [42] S.J.Lee, H.W.Lee, D.K.Sung, Capacites of single-code and multi-code DS-CDMA sytems accommodating multiclass services, IEEE Trans, on V.T., 1999, 48(2) : 376-384
    [43] W.Choi, J.Y.Kim, Forward-link capacity of a DS/CDMA system with mixed multirate sources, IEEE Trans, on V.T., 2001, 50(3) : 737-749
    [44] J.M.Aein, Power balance in systems employing frequency reuse, COMSAT Tech. Rev., 3(2) , 1973
    [45] S.A.Grandhi, R.Vijayan, D.J.Goodman, et al., Centralized power control in cellular radio systems, IEEE Trans. VT, 42(4) , 1993:466-468
    [46] J.Zander , Performance of optimum transmitter power control in cellular radio systems, IEEE Trans. VT., 41(1) , 1992:57-62
    [47] J.Zander , Transmitter power control for co-channel interference management in cellular radio systems, in 4th WINLAB workshop on 3rd generation wireless information networks, 1993
    
    
    [48] T.H.Lee, J.C. Lin, Y.T.Su, Downlink power control algorithms for cellular radio systems, IEEE Trans. VT., 44(1) , 1995:89-93
    [49] H.Alavi and R.W.Nettleton, Downstream power control for a spread spectrum cellular mobile radio systems, IEEE proc. of GLOBECOM'82, 1982
    [50] R.W.Nettleton, Power control for spread spectrum cellular mobile radio system, IEEE proc. of VTC'83, 1983:12-15
    [51] Q.Wu, Performance of optimum transmitter power control in CDMA cellular mobile systems, IEEE Trans. VT, 48(2) , 1999:571-575
    [52] Q.Wu, Optimum transmitter power control in cellular CDMA systems with heterogeneous SIR thresholds, IEEE Trans. VT., 49(4) , 2000:1424-1429
    [53] J.H.Wen, J.S.Sheu, J.L.Chen, An optimum downlink power control method for CDMA cellular mobile systems, IEEE Proc. of ICC'01, 2001
    [54] J.Zander , Distributed cochannel interference control in cellular radio systems, IEEE Trans. VT., 41(3) , 1992:305-311
    [55] S.A.Grandhi, R.Vijayan, D.J.Goodman , Distributed power control in cellular radio systems, IEEE Trans. Commun., 42(2/3/4) , 1994:226-228
    [56] G.J.Foschini, Z.Miljanic, A simple distributed autonomous power control algorithm and its convergence, IEEE Trans. VT, 42(4) , 1993:641-646
    [57] D.Mitra, An asynchronous distributed algorithm for power control in cellular radio systems, in 4th WINLAB workshop on 3rd generation wireless information networks, 1993
    [58] S.A.Grandhi, J.Zander ,Constrained power control in cellular radio systems, IEEE proc. of VTC'94, 1994:824-828
    [59] D.Kim, K-Nyeong Chang, S.kim, Efficient distributed power control for cellular mobile systems, IEEE Trans, on VT.,46(2) , 1997:313-319
    [60] D.Kim, A simple algorithm for adjusting cell-site transmitter power in CDMA cellular systems, IEEE Trans. VT.,48(4) , 1999:1092-1098
    [61] C.W.Sung and W.S.Wong.A distributed fixed-step power control algorithm with quantization and active link quality protection, IEEE Trans. VT.,48(2) , 1999:553-562
    [62] R.Jantti, S.L.Kim, Second-order power control with asymptotically fast convergence Selected Areas in Communications, IEEE Journal on Selected Areas in Commun. , 18(3) , 2000: 447-457
    [63] R.D.Yates, C.Y.Huang, Integrated power control and base station assignment, IEEE Trans, on VT., 44(3) , 1995:638-644
    
    
    [64] S.V.Hanly, An algorithm for combined cell-site selection and power control to maximize cellular spread spectrum capacity. IEEE Journal on Selected Areas in Commun,, 13(7) , 1995:1332-1340
    [65] S.V.Hanly, Capacity and power control in spread spectrum macrodiversity radio networks, IEEE Trans. On Commun. 44(2) , 1996:247-256
    [66] R.D.Yates, A framework for uplink power control in cellular radio systems, IEEE Journal on Selected Areas in Commun., 13(7) , 1995:1341-1348
    [67] J.D.Herdtner, E.K.P.Chong, Analysis of a class of distributed asynchronous power control algorithms for cellular wireless syteins, IEEE Journal on Selected Areas in Commun., 18(3) , 2000:436-446
    [68] Alagan S. Anpalagan and E. S. Sousa, "A Combined Rate/Power/Cell Control Scheme in Cellular CDMA Systems for Delay Insensitive Applications", IEEE Proc. of Globecom'OO, November 2000
    [69] S.Seo, T.Dohi , F.Adachi, SIR-based transmit power control of reverse link for conherent DS-CDMA mobile radio, IEICE Trans, on Commun., E81-B(7 ), 1998:1508-1516.
    [70] J.H. Kim, S.J.Lee, Y.W.Kim, et al., Performance of single-bit adaptive step-size closed-loop power control scheme in DS-CDMA systems, IEICE Trans, on Commun. , E81-B(7) , 1998:1548-1552
    [71] M.L.Sim, E.Gunawan, C.B.Soh, et al., Characteristics of closed loop power control algorithms for a cellular DS/CDMA system, IEE Proc.-Commun., 145(5) ,1998:355-362
    [72] M.L.Sim, E..Gunawan, B.H.Soong, Performance study of close-loop power control algorithms for a cellular CDMA systems, IEEE Trans, on VT., 48(3) , 1999:911-921
    [73] L.Song, N.B.Mandayam, Z.Gajic, Analysis of an up/down power control algorithm for the CDMA reverse link under fading, IEEE Journal on Selected Areas in Commun. , 19( 2) , 2001: 277-286
    [74] A.Abrardo, D.Sennati, On the analytical evaluation of closed-loop power control error statistics in DS-CDMA cellular systems, IEEE Trans, on VT., 49(6) , 2000:2071-2079
    [75] Chockalingam, L.B.Milstein, Open-Loop Power Control Performance in DS-CDMA Networks with Frequency Selective Fading and Non-Stationary Base Stations , Baltzer Journals December 6, 1996
    [76] D.Kim, Setting SIR targets for CDMA mobile systems in the presence of SIR measurement error, IEICE Trans, on Commun., E82-B(1 ), 1999:196-199
    [77] Z.Liu , M.E.Zarki, SIR-based call admission control for DS-CDMA cellular systems, IEEE Journal on S.A.C. ,12(4) , 1994:638-644
    
    
    [78] I.M.Kim, B.C.Shin, D.J.Lee, SIR-based call admission control by intercell interference prediction for DS-CDMA cellular systems, IEEE Commun. Letters. 4(1) , 2000:29-31
    [79] C.Y.Huang, R.D.Yates, Call admission in power controlled CDMA sytems, IEEE proc. of VTC'96,1996:1665-1669
    [80] S.M.shin ,C.Cho, D.K.Sung, Interference-based channel assignment for DS-CDMA cellular systems, IEEE J. Select. Areas Commun.,48(1) , 1999: 233-239
    [81] S.M.shin , D.K.Sung, DS-CDMA reverse link channel assignment based on interference measurement, IEE Eletron. Letters, 31(22) , 1995: 1897-1899
    [82] H.holma ,J.Laakso, Uplink admission control and soft capacity with MUD in CDMA, IEEE proc. of VTC'99,1999:431-435
    [83] J.Kuri , P.Mermelstein, Call admission on the uplink of a CDMA system based on total received power., IEEE proc. of ICC'99,1999
    [84] Z.Dziong, M.Jia, P.Mermelstein, Adaptive traffic admission for integrated services in CDMA wireless-access networks, IEEE Journal on S.A.C. ,14(9) , 1996:1737-1747
    [85] B.makarevitch, CDMA admission control based on reinforcement learning, IEEE proc. of PRIMRC'00, 2000
    [86] K.kim , Y.Han , C.Yim, et. al, A call admission algorithm with optimal power allocation for multiple class traffic in CDMA systems, IEEE proc. of VTC'2000 fall,2000
    [87] A.Sampath et. al, Power control and resource management CDMA wireless system, IEEE proc. of PIMRC'95,1995:21-25
    [88] Ogurbuz, H.owen, A resource management framework for QoS provisioning in W-CDMA systems, IEEE proc. of VTC'99,1999: 407-411
    [89] Y.Ishikawa et.al, Capacity design and performance of call admission control in cellular CDMA systems, IEEE J. Select. Areas Commun., 15(8) , 1997: 1627-1635
    [90] T.H.Lee J.T.Wang, Admission control for variable spreading gain CDMA wireless packet networks, IEEE Trans, on V.T. 49(2) , 2000:565-575
    [91] N.dimitriou, R.Tafazoli, G.Sfikas, Quality of service for multimedia CDMA, IEEE Commun. Magzine, July 2000:88-94
    [92] S.Sun W.A.Krzymien, Call admission policies and capacity of a multi-service CDMA personal communication system with continuous and discontinuous transmission, IEEE proc. of VTC'98,1998:218-223
    [93] I.Koo, E.Kim, K.Kim, Erlang capacity of voice/data DS-CDMA sytems with prioritized services, IEICE Trans. Commun. E84-B(4) , 2001:716-726
    
    
    [94] F.D.priscoli ,F.Sestini, Fixed and adaptive blocking thresholds in CDMA cellular networks, IEEE Personal Commun. April, 1998:56-63
    [95] L.Zhuge and V.O.K.Li, Interference estimation for admission control in multi-service DS-CDMA cellular system, IEEE proc. of Globecom'2000, 2000
    [96] J.S.Evans, D.Everitt, Effective bandwidth-based admission control for multiservice CDMA cellular networks, IEEE Trans, on V.T. 48(1) , 1999:36-46
    [97] B.Hjelm, Admission control in future multi-service wideband direct-sequence CDMA systems, IEEE proc. of VTC'2000 FALL, 2000
    [98] L.Nuaymi , P.Godlewski, Call admission control algorithm for cellular CDMA systems based on best achievable performance, IEEE proc. of VTC'2000, 2000
    [99] N.D.Bambos, S.C.Chen, G.J.Pottie, Radio link admission algorithm for wireless networks with power control and active link quality protection, IEEE proc. of Infocom'95,1995
    [100] M.andersin et. al, Soft and safe admission control in cellular networks, IEEE/ACM Trans. on Net. 5(2) , 1997:255-265
    [101] D.kim, Safe and distributed rate admission with over-targeted sir for multimedia mobile CDMA systems, IEICE Trans, on Commun., E82-B(12) , 1999:1939-1946
    [102] D.kim, Efficient interactive call admission control in power-controled mobile sytems, IEEE Trans, on V.T, 49(3) , 20 00:1017-1028
    [103] H.Zhang, Service discipline for guaranteed performance service in packet-swithing networks, Proceedings of the IEEE, 83(10) , 1995
    [104] M.Katevenis, S.Sidiropoulos, C.Courcoubetis, Weighted round-robin cell multiplexing in general-purpose ATM switch chip, IEEE Journal on Selec. Area Commun., 9(8) , 1991:1265-1279
    [105] M.Shreedhar, G.Varghese, Efficient fair queuing using deficit round-robin, IEEE /ACM Trans, on Networking, 4(3) , 1996:375-385
    [106] A.K.Parekh, R.G.Gallager, A generalized processor sharing approach to flow control n integrated services networks: the single-node case, IEEE/ACM Trans, on Networking, 1(3) ,1993:344-357
    [107] A.K.Parekh, R.G.Gallager, A generalized processor sharing approach to flow control n integrated services networks: the multiple-node case, IEEE proc. of Infocom'93, 1993
    [108] P.Bhawat, A.Krishna, S.Tripathi, Ehancing throughput over wireless LAN's using channel state dependent packet scheduling, IEEE proc. of Infocom'96, 1996
    [109] V.Bharghavn, S.Lu, T.Nandagopal, Fair queueing in wireless networkd: issues and approaches, IEEE Person. Comm. Magzine, 6(1) , 1999
    
    
    [110] T.S.Eugene Ng, I.Stoica, H.Zhang, Packet fair queueing algorithms for wireless networks with localion-dependenl errors, IEEE proc. of Infocom'98, new York, 1998.
    [111] P.Ramanathan, P.Agrawal, Adapting packet fair queueing algorithms to wireless networks, ACM/IEEE Internal. Conf. on Mobile Computing and Nelworking , Mobicom'98, New York, 1998
    [112] T.Nandagopal, S.Lu, V.Bharghavn, A unified architecture for the design and evaluation of wireless fair queueing algorithms, ACM/Baltzer Wireless Nelworks Journal, 1999
    [113] S.Lu, V.Bharghavn, R.Srikanl, Fair scheduling in wireless packel nelworks, IEEE/ACM Trans, on Nelworking, 7(4) , 1999:473-487
    [114] S.Lu, T.Nandagopal, V.Bharghavn, A wireless fair service algorilhm for packel cellular networks, ACM/IEEE Internal. Conf. on Mobile Computing and Nelworking, Mobicom'98, New York, 1998
    [115] Y.Cao, V.O.K.Li, Scheduling algorithms in broad-band wireless networks, IEEE Proc. of the IEEE, 89(1) , 2001:76-87
    [116] R.Jantti, S.L.Kim, Transmission rale scheduling for the non-real-time data in a cellular CDMA system, IEEE Commun. Lett., 5, 2001:200-202
    [117] S.Ramakrishna, J.M.Holtzman, A scheme for throughput maximization in a dual-class CDMA system, IEEE Journal on Selec. Area. Commun., 16(6) ,1998:830-844
    [118] A.Bedekar, S.Borst, K.Ramanan, et. al., Downlink scheduling in CDMA data networks, IEEE proc. of Globecom'99, 1999
    [119] M.Andrews, K.Kumaran, K.Ramanan, el al., Dala rale scheduling algorithms and capacily eslimales for the CDMA froward Link, Bell Labs Tech. Memo, 1999
    [120] M.Andrews, K.Kumaran, K.Ramanan, et al., Providing quality of service over a shared wireless link, IEEE Commun. Magazine, Feb. 2001:150-153
    [121] A.C.Varsou, H.V.Poor, HOLPRO: A new rale scheduling algorithms for the downlink of CDMA nelworks, IEEE proc. of VTC'00 fall, 2000
    [122] A.C.Varsou, H.C.Huang, L.Mailaender, Rale scheduling for the downlink of CDMA Mixed Traffic Nelworks," IEEE proc. of WCNC'00,2000
    [123] A.Jalali, R.Padovani, R.Pankaj, Dala Ihroughpul of CDMA-HDR a High efficiency-high data rate personal communication wireless system," IEEE proc. of VTC '00, Spring, 2000
    [124] S.Kumar, S.Nanda, High data-rale packel communicalions for cellular nelworks using CDMA: algorithms and performance , IEEE Journal on Selec. Area Commun., 17(3) , 1999: 472-492
    [125] P.Bender, P.BIack, M.Grob, et al., CDMA/HDR: A bandwidlh-efficienl high-speed wireless
    
    data service for nomadic users, IEEE Commun. Magazine July 2000:70-77
    [126] M.Kazmi, P. Godlewski, Admission control strategy and scheduling algorithms for downlink packet transmission in WCDMA, IEEE proc. of VTC'00 Fall, Boston,USA,2000
    [127] M.Kazmi, E.Dinan, P.Godlewski, et al., Scheduling algorithms for soft handoff in cellular packet CDMA, IEEE Proc. of PIMRC'00, 2000
    [128] J.Cai, L.F. Chang, K.Chawla, et al., Providing differentiated services in EGPRS through packet scheduling, IEEE proc. of Globecom'2000
    [129] L.Xu, X.Shen J.W.Mark, A dynamic fair scheduling schelne for WCDMA systems, IEEE Inter. Conf. on 3G Wireless Commun. 2001
    [130] I.F. Akyildiz, D.A.Levine, I.Joe, A slotted CDMA protocol with BER scheduling for wireless multimedia networks, IEEE/ACM Trans. on Networking, 7(2),1999:146-158
    [131] H.Holma, A.Toskala, WCDMA for UMTS-radio access for third generation mobile comlnunications, New York, John Wiley&Sons LTD, 2000
    [132] TR45.5, The cdma2000 ITU-R RTT Candidate Submission, June, 1998
    [133] 李仲令,曹世文,葛造坤编著,现代通信系统仿真及应用,成都,电子科技大学出版社,1998
    [134] 熊光愣,肖田元,张燕云编著,连续系统仿真与离散事件系统仿真,北京,清华大学出版社,1991
    [135] 李正良,钟守铭,黄廷祝,矩阵理论及其应用,四川:电子科技大学出版社,1996:293-317
    [136] 徐树方,矩阵计算的理论与方法,北京:北京大学出版社,1995:27-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700