水稻RACK1基因(OsRACK1)在盐胁迫响应中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RACK1蛋白属于一类含有WD-40重复结构蛋白家族的亚家族。WD-40重复蛋白是一类大的蛋白质家族,结构高度保守,广泛分布于真核生物和原核生物中,目前已鉴定到140多种蛋白属于WD-40重复蛋白家族。这类蛋白在多种生物生命活动过程中扮演非常重要的角色,如细胞信号转导、蛋白转运、细胞骨架的组装和解聚、RNA的加工、染色质的修饰及转录、细胞分裂、胞浆移动、细胞凋亡、光信号转导、细胞运动、开花、花序的发育以及分生组织的形成等。每个WD重复结构域包含40-60个氨基酸,WD结构域的N端一般是由Gly-His(GH)二肽组成的11到24个氨基酸残基,它的C端含有Trp-Asp(WD)二肽。最初RACK1蛋白被确定为蛋白激酶C(PKC)的受体,现在认为RACK1蛋白作为支架蛋白在多个信号转导途径中起重要作用。
     已有研究结果表明,拟南芥AtRACK1参与了植物对渗透胁迫信号的响应过程,并且与植物忍耐渗透胁迫密切相关。以AtRACK1蛋白的氨基酸序列为模板对水稻基因组序列进行比对,我们找到两个与编码AtRACK1蛋白高度同源的基因。在蛋白质水平两者与AtRACK1蛋白的同一性和相似性分别达到70%和80%。推测水稻的RACK1(OsRACK1)可能与拟南芥RACK1(AtRACK1)具有相似的功能。
     本研究以粳稻日本晴为研究材料,首先通过RT-PCR技术及T-A克隆法克隆了编码RACK1蛋白(NP-916988)的基因OsRACK1,并构建了OsRACK1基因的过表达载体和RNAi表达载体,再通过农杆菌介导的植物转化方法导入水稻并筛选出OsRACK1基因过表达和RNAi OsRACK1基因片段抑制表达的转基因植株,并进一步深入研究了OsRACK1基因在盐胁迫响应中的功能。主要结果如下:
     1提取水稻总RNA,并对其完整性进行了检测。
     2 RT法反转录合成了完整的OsRACK1基因的cDNA第一链,并以此为模板,用PCR技术扩增了双链OsRACK1的基因。序列分析表明,OsRACK1基因的大小为1199bp,包含了基因完整的编码序列,且与已发表的基因全序列完全相同,同源性达100%。
     3构建了带有由35S启动子控制的GUS基因的水稻OsRACK1基因的过表达载体和RNAi表达载体,并通过农杆菌介导的植物转化方法将其导入粳稻日本晴基因组中。
     4通过GUS染色进行初步的检测,然后对阳性植株进行基因组DNA PCR法鉴定,再用Southern blot对目的基因的真实性和拷贝数进行检测,最后通过RQ-PCR对OsRACK1基因的表达量进行鉴定获得了转基因水稻植株。
     5应用RACK1过表达(OX-2)和抑制表达(R-2)的转基因植株T1代种子进行的萌发试验及相关生理生化指标分析结果表明,在盐胁迫条件下OX-2种子萌发要快于对照和R-2种子的萌发;OX-2种子的根长、根数及芽长同样高于对照和R-2的;而且前者的可溶性糖的含量也较高,但可溶性蛋白和ABA含量低于对照与R-2的。表明RACK1过表达促进了盐胁迫条件下的种子萌发。
     6对相关转基因幼苗在盐胁迫条件下的生理分析结果表明,与对照(非转基因水稻)相比,在同样程度的盐胁迫条件下,RACK1过表达幼苗的相对含水量、叶绿素含量、脯氨酸含量、氧化酶的活性和ABA含量均低于对照和R-2幼苗,而MDA含量和电导率高于对照和R-2植株。由此推测OsRACK1蛋白对幼苗耐盐性具有负调节作用。
     7对OsRACK1基因在调节植株耐盐性生理与分子机理的进一步研究结果表明,OsRACK1过表达的转基因幼苗无论根还是叶的K/Na比均低于对照和OsRACK1表达受抑制的转基因幼苗,而OsRACK1表达受抑制的转基因幼苗根系对K的吸收和运输均大于对照和过表达转基因幼苗。在盐胁迫下,OsRACK1表达受抑制的转基因幼苗内源ABA的含量显著高于OsRACK1过表达的转基因幼苗和对照。与无盐胁迫处理相比,盐胁迫处理显著促进了DREB1和P5CS的表达,但各基因型间差异不明显。外源ABA处理显著促进了P5CS的表达,但对DREB1的表达无作用。RACK1基因的表达不受盐胁迫和外源ABA影响,在盐胁迫下转基因水稻内源ABA的含量与RACK1的表达量成负显著相关性。
     根据以上研究并结合前人的研究结果,推测OsRACK1对盐胁迫条件下种子萌发和幼苗生长的调节机制不同;OsRACK1对幼苗耐盐胁迫具有负调节作用,当OsRACK1基因表达受到抑制后,通过某种机制调节ABA合成,进而提高了水稻对盐胁迫的忍耐性。
RACK1 belongs to a large family of WD40 repeat proteins and is a highly conserved protein found in both animals and plants.These proteins are characterized by the presence of repeats consisting of between 40 and 60 amino acids with two internal conserved dipeptide sequences,glycine-histidine(GH) and tryptophan-aspartic acid(WD).Typically,WD40 repeat proteins contain 4 to 16 repeating regions consisting of a core of amino acids initiated by a GH dipeptide and ends with a WD dipeptide.The consensus sequence motif is {X6-94-[GH-X23-41-WD]}4-16.Because of their highly conserved structural motif,it was suggested that WD40 proteins play very diverse roles both in animals and in plants.RACK1 is now viewed as a versatile scaffold protein that can bind or act with numerous signalling molecules from diverse signal transduction pathways in a regulated fashion,including cAMP signalling,cell cycle control,Ca~(2+) release,ribosome assembly and mRNA translation regulation, cytoskeleton remodelling and proteasome degradation.RACK1 has been found to be a potential physical and functional linker between various signalling molecules.
     Recently,we have screened a mutant,Atrack1,from Arabidopsis thaliana that is highly tolerant to osmotic stress.Furthermore,we also found two highly homologous genes(NC008394 and NC008398) in the Oryza sativa to AtRACK1 from NCBI.The deduced amino acid sequences of these two genes-encoded proteins have 80%identity and 70%similarity to AtRACK1. However,at present,we know little about the functions of rice RACK1.Based on the results obtained from Arabidopsis,we deduced that OsRACK1 may also play important roles in the responses of rice to adverse stresses,especially to salt stress,drought stress,etc.To verify this hypothesis,we construct two kinds of transgenic rice plants,i.e.,OsRACK1 over-expression transgenic plant line and OsRACK1 inhibition transgenic plant line using RNA interference (RNAi) technique.The major results are as follows:
     1.We successfully constructed two kinds of transgenic rice plants by agrobacterium tumefaciens.The expression degrees of OsRACK1 gene were from 132%to 175%in over-expression transgenic plant lines and were 33%to 71%in OsRACK1 inhibition transgenic plant lines,respectively,as compared with that of non-transgenic rice plants.We chosed seeds harvested from T1 generation of one transgenic rice plant line from two kinds of two transgenic lines,respectively,in combination with those of non transgenic plants,as materials for the further analyses.
     2.The results from seed germination assay showed that,when exposed to salt conditions, seed germination of all genotypes was inhibited and the inhibition on seed germination was increased as the NaCl concentration increased.However,obvious differences in seed germination were observed among various genotypes,of which OsRACK1 over-expressing transgenic line was better than those of OsRACK1 inhibition transgenic plant line and non-transgenic rice seeds.Furthermore,the root length,root numbers and soluble suagr content of OsRACK1 over-expressing transgenic line were higher,but the contents of soluble protein and abseisic acid(ABA) were lower than those of OsRACK1 inhibition transgenic plant line and non-transgenic lines.These results indicated that OsRACK1 positively regulated seed germination.
     3.As compared to non-transgenic lines,the relative leaf water content,the contents of chlorophyll,proline and ABA,and the activities of anti-oxidases were lower in OsRACK1 over-expressing transgenic line than in OsRACK1 inhibition transgenic plant line under the same stress condition.Whereas the MDA content and the electric conductivity of OsRACK1 over-expressing transgenic line were higher than those of OsRACK1 inhibition transgenic plant line.
     4.Further studies on the possible physiological and molecular mechanisms of OsRACK1 gene in regulating rice salt-tolerance indicated that the K~+/Na~+ ratio both in roots and in leaves of OsRACK1 over-expressing transgenic line was lower than those of OsRACK1 inhibition transgenic plant line and non-transgenic lines.The abilities to absorb and transport K~+ of OsRACK1 inhibition transgenic plant line were higher than those of OsRACK1 over-expressing transgenic line and non-transgenic lines.Salt stress significantly stimulated ABA biosynthesis and accumulation,however,this timulation was higher in OsRACK1 inhibition transgenic seedlings than in OsRACK1 over-expressing transgenic and non-transgenic seedlings.Real-time PCR analysis showed that salt stress significantly stimulated the expression of DREB1 and P5CS, as compared with that of non slat stress treatment,and no obvious differences were observed among various genotypes investigated.Exogenous ABA treatment had a stimulating effect on the expression of PSCS,but had no effect on the expression of DREB1.The expression of RACK1 was not affected by salt stress and exogenous ABA treatments.Under salt stress condition,the ABA content was negatively related to the RACK1 expression.
     According to the above results and other reports,it was suggested that the OsRACK1 gene exert its functions in salt-tolerance of seed germination and seedling growth with different mechanisms.OsRACK1 negatively regulated salt-tolerance of seedling growth largely through controlling ABA biosynthesis.That is,when the expression of OsRACK1 was inhibited,the ABA biosynthesis was stimulated by some unknown mechanisms,as a consequence,the tolerance to salt stress was ehnhanced.Of course,the detailed physiological and molecular mechanisms of OsRACK1 action need to be further investigation.
引文
陈德明,俞仁培(1998).盐胁迫下不同小麦品种的耐盐性及其离子特征.土壤学报,35(1):88-94
    陈建勋(2002).植物生理学实验指导.广州:华南理工大学出版社.
    陈其军,肖玉梅,王学臣,周海梦(2004).植物功能基因组研究中的基因敲除技术,植物生理学通讯,40(1):121-122
    陈少欲(1991).膜脂过氧化对植物细胞的伤害.植物生理学通讯,27(2):84-90
    戴高兴,彭克勤,皮灿辉(2003).钙对植物耐盐性的影响.中国农学通报,19(3):97-101
    董发才,苗琛,荆艳彩(2002).小麦根系过氧化氢的积累与耐盐性的关系.武汉植物学研究,20(4):293-298
    龚明,丁念诚,刘友良(1990).ABA对大麦和小麦抗盐性的效应.植物生理学通讯,3:14-18.
    郭秀林,李孟军,关军锋(2002).PEG胁迫下小麦幼苗ABA与Ca~(2+)/CaM的关系.作物学报.28537-540
    何文亮,黄承红,张峰(2004).盐胁迫过程中抗坏血酸对植物的保护作用.西北植物学报,24(12):2196-2201
    黄大年,高振宇,华志华,汪晓玲,薛锐(2001),.基因枪在水稻工程育种中的应用 植物学通报,18:283-287
    粱永超,丁瑞兴,刘谦(1999).硅对大麦耐盐性的影响及其机制.中国农业科学.32:75-83
    贾庚祥,朱至清,李银心(2002).甜菜碱与植物耐盐基因工程.植物学通报.19:272-279
    蒋玲艳,王林果(2006).反向遗传学技术及其应用.医学综述,12(6):323-326
    蒋明义(1999).水分胁迫下植物体内HO·的产生与细胞的氧化损伤.植物学报,41(3):229-234
    刘巧泉,张景六,王宗阳,洪孟民,顾铭洪(1998).根癌农杆菌介导的水稻高效转化系统的建立,植物生理学报,24:259-271
    刘志生(1996).鲁德1号冬小麦耐盐力分析.中国农学通报,12(3):21-22
    骆爱玲,刘家尧,马德钦(1995).转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高.科学通报.45:1953-1956
    吕慧颖,李银心,孔凡江(2003).植物Na~+/H~+逆向转运蛋白的研究进展.植物学通报,20(3):363-369
    吕庆,郑荣梁(1996).干旱及活性氧引起的膜脂过氧化与脱脂化.中国科学(C辑),26(1):26-30
    吕芝香,王正刚(1993).盐胁迫下小麦苗吡咯-5-羧酸还原酶活性和游离脯氨酸积累.植物生 理学报,19:111-115
    彭立新,李德全,束怀瑞(2002).植物在渗透胁迫下的渗透调节作用.天津农业科学,8:40-43
    钱琼秋,朱祝军,何勇(2006).硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响.植物营养与肥料学报,12(06):875-881
    R.克纳普(郑慧莹译)(1974).实验植物群落学.北京:科学出版社,63-65
    Sambrook J,Russell D.黄培堂译(2002).分子克隆实验指南(第三版).北京:科学出版社,487-513.
    史跃林,罗庆熙,刘佩瑛(1995).Ca~(2+)对盐胁迫下黄瓜幼苗中CaM、MD含量和质膜透性的影响(简报).植物生理学通讯,31(5):347-349
    孙国荣,陈月艳,关旸,阎秀峰(1999).盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化.木本植物研究,19(04):445-452
    王爱国,罗广华,邵从本(1983).大豆种子超氧物歧化酶的研究.植物生理学报,9(1):77-79
    王爱国,邵从本,罗广华(1986).丙二醛作为作物脂质过氧化指标的探讨.植物生理学通讯,2:55-57
    王春裕(2002).论盐渍土之种稻生态改良.土壤通报,33:94-95
    王生力,裘平,冯朝军(2001).盐渍土资源综合利用的可持续发展观.北京地质,13:21-24.
    王玮,张枫,李德全(2002).外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响.作物学报,28:121-126
    王晓娟,覃新程,戴若兰(1999).盐胁迫下小麦新品系89122的抗氧化酶类活性变化的研究.兰州大学学报(自然科学版),35(1):141-144
    王弋博,李勃,朱丽(2005).外源甜菜碱对两种玉米耐盐性影响的研究.兰州大学学报(自然科学版),41(2):35-37
    王忠华,舒庆尧,夏英武(1999).基因工程在水稻改良方面的研究进展.生物技术通报,15(2):5-8
    武宝玕,格林.托德(1985).小麦幼苗中过氧化物歧化酶活性与幼苗脱水忍耐力相关性的研究,植物学报,27(2):152-160
    吴海滨,朱汝财,赵德刚(2004).TILLING技术的原理与方法述评.分子植物育种,2(4):574-580
    吴旭红,高玉芝(2002).盐胁迫对植物形态和生理过程的影响.高师理科学报,22(4):51-53
    许雯,孙梅好,朱亚芳(2001).甘氨酸甜菜碱增强青菜抗盐的作用.植物学报.43:809-814
    徐文忠,雍伟东,徐云远,梁铁兵,白薇,种康,谭克辉,许智宏,朱至清(2005).利用反义RNA技术分析春化相关基因VER17在冬小麦花发育过程中的功能.植物生理与分子生物学学报,01:71-77
    杨月红,孙庄艳(2002).植物的盐害和抗盐性.生物学教学,27(11):1-2
    雍太文,杨文钰,王小春,徐精文(2002).外源ABA对杂交水稻种子萌发的生理效应.种子, 125(5):26-28
    张建锋,张旭东,周金星(2005).世界盐碱地资源及其改良利用的基本措施.水土保持研究,12:28-30
    张俊莲,张金文(2005).植物Na~+/H~+逆向转运蛋白与植物耐盐性的研究进展.草原与草坪,11(4):3-8
    张玉琼,张鹤英(1998).淹水逆境下玉米若干生理生化特征的变化.安徽农业大学学报,25(4):378-381
    张新春,庄炳昌,李自超(2002).植物耐盐性研究进展.玉米科学,10(1):50-56
    赵可夫(1993).植物抗盐生理.北京:中国科学技术出版社,230-232
    赵楠,林璟瑜,王淑芳,王勇,王宁宁(2006).过表达B基因的转基因微型番茄的获得 南开大学学报(自然科学版),39(4):103-107
    郑娥香,杨志行,朱治平,傅中滇(2001).水稻bicoid反义基因转基因植株胚胎发育的形态变化.植物学通报,18(6),707-713
    Abebe T,Arron C,Guenzi,E(2003).Tolerance of Mannitol-accumulating transgenic wheat to water stress and salinity.Plant Physiology,131:1748-1755
    Anamul Hoque M,Okuma E,Nasrin Akhter Banu M,Nakamura Y,ShimoishiY,Y Murata(2006).Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities.Journal of Plant Physiology,164(2007):553-561
    Apse MP,Snedden A,Blumwald E(1999).Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis.Science,285:1256-1258
    Arata FE,Endo YT,Sonnewald U(2001).Improved salt tolerance of transgenic tobacco expressing apoplastic yeas-derived invertase.Plant Cell Physiology,42:245-249
    Ashique AM,Kharazia V,Yaka R,PhamLuong K,Peterson AS,Ron D(2006).Localization of the scaffolding protein RACK1 in the developing and adult mouse brain.Brain Research,1069:31-38
    Ashraf M and All Q(2008).Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola(Brassica napus L.)Environmental and Experimental Botany,63:266-273
    Bansal KC(2001).Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco.Journal of Plant Biochemistry and Biotechnology,10:31-37
    Barthakur S,Babu V,Baba A,Hasezawa S,Syono K(1986).Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts.Plant Cell Physiology,27: 463-468
    Basu U, Good AG, Taylor GJ (2001). Transgenic Brassica napus plants overexpressing aluminium induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant, Cell & Environment, 24: 1269-1278
    Becanam, Moran J F (1998). Iturbe-ormaetx TURBE-ORMAETXEI iron dependent oxygen free radical generation in plants subjected to environmentastress:toxicity and antioxidant protection. Plant Soil, 201:137-147
    Bernstein, Caudy AA, Hammond SM, and Hannon GJ (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409: 363-366
    Bethke PC, Malcolm CD (1992). Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiology, 99: 219-226
    Borsani O, Valpuesta V, Botella MA (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126:1024-1030
    Bowler CL, Vandenbranden R, Rycke J (1991). Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. The EMBO Journal, 10:1723-1732
    
    Boyer JS (1982). Plant productivity and environment. Science, 218:443-448
    Brodford KJ (1983). Water relation and growth of the flacca tomatomutant in relation to abscisic acid. Plant Physiology, 72: 251-255.
    Buchanan B B, Gruissem W, Jones R L (2002). Biochemistry and molecular biology of plants. New York: The American Society of Plant Physiologists, 2000: 1189-1196
    Buettner G R, Schafer F Q (2004). Ascorbate as an antioxidant in vitamin C. BIOS Scientific Publishers, Oxford, 173-188
    Byrd S, Reins D, Doetsch P W (1990). Effects of oxidative DNA damage on transcription by RNA polymerases. Free Radical Biology & Medicine, 9(1): 47-57
    Camp K, Capiau MV, Montagu D (1996). Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiology, 112: 1703-1714
    Cao J. Duan X, McElory D, Wu R (1992). Regeneration of herbicide resistant transgenic rice plants following microprojectiles-mediated transformation of suspension culture cell. Plant Cell, 11: 586-591
    Carninci P, Hayashizaki Y, Shinozaki K (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 13 (1): 61-72
    Ceci M, Gaviraghi C, Gorrini C, Sala L A, Offenhauser N, Marchisio PC, and Biffo S (2003). Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature, 426: 579-584
    Chan MT, Chang HH, Ho SL (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha amylase promoter betaglucuronidase gene. Plant Molecular Biology, 22: 491-506
    Chang I F, Szick-Miranda K, Pan S, and Bailey-Serres J (2005). Proteomic characterization of evolutionary conserved and variable proteins of Arabidopsis cytosolic ribosomes. Plant Physiology, 137: 848-862
    Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, AssmannSM, Jones AM (2004). GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiology, 135: 907-915
    Chen J G, Ullah H, Temple B, Liang J, Guo, J, Alonso J M, Ecker J R, and Jones A M (2006). RACK1 mediates multiple hormone responsiveness anddevelopmental processes in Arabidopsis. Journal of Experimental Botany, 57: 2697-2708
    Chen S, Dell EJ, Lin F, Sai J, Hamm HE (2004a). RACK1 regulates specific functions of Gbc. Journal of Biological Chemistry, 279: 17861-17868
    Chen S, Spiegelberg BD, Lin F, Dell EJ, Hamm HE (2004b). Interaction of Gbc with RACK1 and other WD40 repeat proteins. Journal of Molecular Cell Cardiology, 37: 399-406
    Chen THH, Gusta LV (1983). Abscisic acid- induced freezing resistance in cultured plant cells. Plant Physiology, 73: 71-75
    Chen Y, Huang Y F, Wang Q Y (1996). Progress in study on tomato refreshing by antisense technology. Progress in Biochemistry and Biophysics, 23: 108-113
    Cheng XY, Sardana X, Kaplan R, Altosaar H (1998). Agrobacterium-transfered rice plants expressing synthetic cryIA(b) and cryIA(c) genes highly toxic to striped stem borer and yellow stem borer. Proceeding of the National Acadecy of Science in the United States of America, 95:2767-2772
    Chunag CF, Meyerowitz EM (2000). Speeifie and heritable genetic interference by double stranded RNA in Arbidopsis thaliana. Proceedings of the National Academy of Sciences USA, 7: 4985-4990
    Craig P, Hunter (2000). Gene silencing: Shrinking the black box of RNAi .Current Biology, 10: 136-137
    Cramer GR (1985). Displacement of Ca~(2+)and Na~+ form the plassmalemm of rottcells. Plant Physiology, 79: 207-211
    Dalmay T, Hmailton A, Rudd S (2000). An RNA-depentent RNA polymerasegene in Arabidopsis is required for Posrttanseriptional gene silencing mediated by a trnasgene but not by a virus. Cell, 101: 543-553
    Dell EJ, Connor J, Chen S, Stebbins EG, Skiba NP, Mochly-Rosen D, Hamm HE (2002). The betagamma subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins. Journal of Biological Chemistry, 277: 49888-49895
    Del Rio LA, Corpas F J, Sandalio L M (2002).. Reative oxygen species, antioxidant systems and nitric oxide in peroxisome. Journal of Experimental Botany, 53(1): 255-272
    Deronde JA, Cress WA, Staden J (2001). Interaction of osmotic and temperature stress on transgenic soybeans. South African Journal of Botany, 67: 655-660
    Dong JJ, Wei min T, Wallace GB (1996). Agrobacterium-mediated tranformation of Javanica rice. Molecular Breeding, 2:267-276
    Duan XL, Li G, Xue QZ, Abo-Ei-Saad M, Xu D, Wu R (1996). Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotechnology, 14: 494-498
    Dubouzet J G, Sakuma Y, Ito Y (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, High-salt- and cold-responsive gene expression. Plant Journal, 33: 751-763
    Ehman S R, Herres P J C, Bourne W F (1996). The effect of soidium chloride on germination and the potassium and calcium contents of Acacia seeds. Seed Technology, 25: 45-57
    Epstein E (1998). How Calcium enhances plant salt to lerance. Science, 280: 1906-1907
    Espinosa-Ruiz A, Belles JM, Serrano R (1999). Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant Journal, 20(5): 529-539
    Ezaki B, Gardner RC, Ezaki Y (2000). Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiology, 122: 657-665
    Ezaki B, Katsuhara M, Kawamura M (2001). Different mechanisms of four aluminum (AI)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiology, 127: 918-927
    Elbashir SM, Lendeckel W, Tuschl T (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15: 188-200
    Falkenberg P, Storm AR (1990). Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of E. coli..Biochimicaet Biophysica Acta, 1034: 253-259
    Flowers T J (1972). The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochemistry, 11: 1881-1886
    Fowler S, Thomashow MF (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 14: 1675-1690
    Foyer C H, Descourviers P, Kunert K J (1994). Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant, Cell & Environment, 17: 507-523
    Gabor V, Davletova HS, Laszlo KT (1999). Plants ectopically expressing the ironbinding protein, ferritin, is tolerant to oxidative damage and pathogen. Nature Biotechnology, 17: 192-196
    Garvik B M, and Yates J R (1999). Direct analysis of protein complexes usingmass spectrometry. Nature Biotechnology, 17: 676-682
    Gaxiola RA, Li JS, Soledad LM (2001). Drought- and salt-tolerant plants result from overexpression of the ATP/ H~+pump. Proceedings of the National Academy of Sciences, 98: 11444-11449
    
    Geraldine L, Dodd and Lisa A. Donovan (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany, 86(8): 1146-1153
    Giavalisco P, Wilson D, Kreitler T, Lehrach H, Klose J, Gobom J, and Fucini P (2005). High heterogeneity within the ribosomal proteins of the Arabidopsis thaliana 80S ribosome. Department of Plant Molecular Biology. 57: 577-591
    Gossett, Millhollon E P, Lucas M C (1994). Changes in antioxidant levels in response to NaCl treatment in salt-tolerant and salt-sensitive cultivars of cotton, Gossypium hirsutum. Crop Science, 34: 706-714
    Gramer G R, Lauchli A, Polito V S (1985). Displacement of Ca~(2+) by Na~+ from the plasmalemma of root cells. Plant Physiology, 79: 207-211
    
    Guilfoyle T J (1997). The structure of plant gene promoters. Genetic Engineering, 19: 15-47
    Gupta AS, Heinen JL, Holaday AS (1993). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences, 90: 1629-1633
    Guo Q, Pan RC (1984). Effect of ABA on the resistance of rice seedlings to chilling injury. Acta Phytophysiologica Sinica, 10: 295-303
    Guo J, Liang J, Chen JG (2007) RACK1: a versatile scaffold protein in plants? International Journal of Plant Developmental Biology 1: 95-105.
    Hannon GJ (2002). RNA interference. Nature, 418:244-251
    Hayashizaki Y, Shinozaki K (2001). Arabidopsis encyclopedia using full-length cDNAs and its application. Plant Physiology and Biochemistry, 39: 211-220
    Hideg NT, Oberschall A (2003). Detoxification function of aldose/aldehyde reductase during drought and ultraviolet-B (280-320 nm) stresses. Plant, Cell & Environment, 26: 513-522.
    Hiei, Ohta S, Komari T (1994). Efficient transformation of rice (Oryza stativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6(2): 271-282
    Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000). Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress, Plant Physiology, 122: 1129-1136.
    Humphrey A. Esechie (1995). Partitioning in chilodium ion in the germination seed of two forage legumes under varied salinity and temperature regimes. Communications in Soil Science and Plant Analysis, 26: 3357-3370
    I-luang J, Hirji R, Adam L (2000). Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: Metabolic limitations. Plant Physiology, 122: 747-756
    ImLay JA, Linn S (1998). DNA damage and oxygen radical toxicity. Science, 240: 1302-1309
    
    Ishida S, Takahashi Y, Nagata T (1993). Isolation of cDNA of an auxin-regulated gene encoding a G protein beta subunit-like protein from tobacco BY-2 cells. Proceedings of the National Academy of Sciences, USA, 90: 11152-11156
    Jang IC, Oh SJ, Seo JS (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology, 131: 516-524
    Jefferson R A, Kavangh T A, Bevan M W (1987). GUS fusions: β-Glu- curonidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal. 13:3901-3907
    Joshua ZL, Annick JF, Ann T, Michael WB, Peter BH (2000). Methods of double-stranded RNA-mediated gene inactivation in Arabidopsis and their use to define an essential gene in methionine biosynthesis. Plant Molecular Biology, 44: 759-775
    Kamat hRS, Fraser AG, Dong Y (2003). Systematic functional analysis of the Ceanorhabdits elegans genome using RNAi. Nature, 421: 231-237
    Karakas B, OziAsAkins P, Stushnoff C (1997). Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ, 20: 609-616
    Kasuga M, Liu Q, Miura S (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 17: 287-291
    Kazuo T, Li X, Kenji O (2000). Effects of sodium chloride on seed germination and growthof two Chinese desert shrubs, Haloxyton ammodendron and H.persicum (Chenopodiaceae). Australian Journal of Botany, 48: 455-460
    Kishor BPK, Hong ZL, Miao GH, Hu CAA, Verma DPS (1995). Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants, Plant Physiology, 108: 1387-1394
    Kishor PBK, Hong ZL, Szoke M, Miao GH, Hong Z, Verma DPS (1992). Subcellular location of D1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean, Plant Physiology, 99: 1642-1649
    Kishor PBK, Hong ZL, Miao GH, Hong Z (1995). Overexpression of delta-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108: 1387-1394
    Kouassi N, Brugidou C, Chen L, Ngon A, Yussi M, Beachy R, Fauguet C (1997). Transgenic rice plants expressing rice yellow mottle virus coat protein gene. International Rice Research Notes, 22(1): 14-15
    Krishnara S, Thorpe TA (1996). Salinity stress effects on [1 4C-1]-and[1 4C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat. International Journal of Plant Science, 157(1): 110-117
    Larosa PC, Hasegawa PM, RhodesD (1987). Abscisic acid stimulated osmotic adjustment and its involvement in adap tation of tobacco cells to NaCl. Plant Physiology, 85: 174-181.
    Laurie, Sophie, Feeney (2002). A role for HKTI in sodium uptake by wheat roots. Plant Journal, 32: 139-149
    Liang J, Zhang J (1997). How do roots control xylem sap ABA concentration in response to soil drying? Plant and cell Physiology, 38: 10-16
    Link AJ, Eng J, Schieltz DM, Carmack E, Mize G J, Morris D R, Garvik B M, and Yates J R (1999). Direct analysis of protein complexes using mass spectrometry. Nature Biotechnology 17: 676-682.
    Lilius L, Holmbers G (1996). Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology, 14: 177-180
    Liu Q, Kasuga M, Sakuma Y (1998). Two transcription factors, DREB1 and DREB2, with an EREBPPAP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arbidopsis. Plant Cell, 10: 1391-1406
    Liu Q, Singh SP, Green AG (2002). High-oleic cottonseed oils produced by hairpin RNA-mediaetd Post transcriptional gene silencing. Plant Physiology. 129: 1732-1743
    Maheswari M, Joshi DK, Saha R (1999). Transverse, relaxation time of leaf water protons and membrane injury in wheat (Triticurn aestivum L.) in response to high temperature. Annales Botanici Fennici, 84:741-745
    Matgorzata J and Grazyna K (2007). Modification of plasma membrane and vacuolar H~+-ATPases in response to NaCl and ABA. Journal of Plant Physiology, 64(3): 295-302
    Mamidipudi V, Zhang J, Lee KC, Cartwright CA (2004). RACK1 regulates G1/S progression by suppressing Src kinase activity. Molecular and Cell Biology, 24: 6788-6798
    Maria C, Rubio EM, Gonzalez FR (2002). Effects of water stress on antioxidant enzymesof leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Plant Physiology, 115: 531-542
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110: 563-574
    Maruyama K, Sakutna Y, Kasuga M (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1 APCBF3 transcriptional factor using two microarray stystems. Plant Journal, 38: 982-993
    Matsumura, Takeshi, Tabayashi (2002). Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Plant Physiology, 116: 317-327
    McKersie BD (2001). Stress tolerance of transgenic plants overexpressing superoxide dismutase. J Journal of Experimental Botany, 52: 8-15
    Mckersie BD, Bowley SR, Harjanto E (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology, 111: 1177-1181
    McKersie BD, Bowley SR, Jones KS (1999). Winter survival of transgenic alfalfa overexpressing superoxide dismustase. Plant Physiology, 119: 839-847
    McKersie BD, Chen M, Beus SR (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiology, 103: 1155-1163
    Medina J, Bargues M, Terol J (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP-domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 119: 463-470
    Moghaieb REA, Saneoka TN, Hussein HA (2000). Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Science and Plant Nutrition, 46: 873-883
    Moran JF, Becana M, Iturke-onnaetxe I (1994). Drought in-duces oxidative stress in pea plants, Planta, 94: 346-352
    Mourrain P, Beelin C, Elmyana,T (2000). Arabidopsis SGS2 and SGS3 genes are required for Posttranscriptional gene silencing and natural virus resistance. Cell, 101: 533-542
    Muller-Moule P, Golan T, Niyogi KK (2004). Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiology, 134: 1163-1172
    Muller-Moule P, Havaux M, Niyogi K K (2003). Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiology, 133:748-760
    Munns R, Termaat A (1986). Whole plant responses to salinity. Australian Journal of Plant Physiology, 143-160
    Munns R (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environment, 16: 15-24
    Murray M G, Thompson W F (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4325
    Napoli C, Lemieux C, Jorgensen R (1990). Introduction of a chimeric chalcone synthasegene into petunia results in reversible co-suppression of homologousgenes in trans. Plant Cell, 2: 279-289
    Nilsson J, Sengupta J, Frank J, Nissen P (2004). Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Reports, 5:1137-1141
    Niu X, Narasimhan L, Salzman A, Bressan A and Hasegawa PM (1993). NaCl regulation of plasma membrane H~+-ATPase gene expression in a glycophyte and halophyte. Plant Physiology, 103:713-718
    Ouellet F, Vazquez Tello A, Sarhan F (1998). The wheat wcs120 promoter is cold-inducible in both mono-cotyledonous and dicotyledonous species. FEBS Letters, 423: 324-328
    Park JM, Park CJ, Lee SB (2001). Overexpression of the tobacco Tsi-1 gene encoding an EREBP/AP2-Type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 13:1035-1046
    Patterson RL, Van Rossum DB, Barrow RK, Snyder SH (2004). RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca~(2+) release. Proceedings of the National Academy of Sciences, USA, 101: 2328-2332
    Peng YH, Zhu YF, Mao YQ (2004). Alkali grass resists salt stress through high K~+ and an enddermis barrier to Na~+. Journal of Experimental Botany, 55: 939-949
    Perez-Prat E, Narasimhan ML, Niu X, Botella MA, Bressan RA and Valupesta V (1994). Growth cycle stage dependent NaCl induction of plasma membrane H~+-ATPase mRNA accumulation in de-adapted tobacco cells. Plant, Cell & Environment, 17: 327-333
    Piao HL, Lim JH, Kim SJ (2001). Constitutive over-expression of AtGSKI induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant Journal, 27: 305-314
    Qin F, Sakuma Y, Li J (2004). Cloning and functional analysis of a novel DREB1PCBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiology, 45: 1042-1052
    Quarrie S A, Jones H G (1979). Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Annales Botanici Fennici, 44: 323-332
    Raineri DM. Bottino P. Gorden MP (1990). Agrobacterium-mediated transfermation of rice (Oryza sativa L). Biotechnology, 8: 33-38
    Rdmaswamy G, Slack FJ (2002). siRNA: A guide for RNA silencing. Chemistry Biology, 9(10):1053-1059
    Rhodes D, Hanso A D (1993). Quaternary ammonium and teritiary sulfonium compounds in higher plant. Annual Review of Plant Physiology and Plant Molecular Biology, 44: 357-384
    Riechmann JL, Ratcliffe OJ (2000). Agenome perspective on plant transcription factors. Current Opinion in Plant Biology, 3:423-434
    Rohila JS, Rajinder KJR (2002). Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley HVA1 cDNA. Plant Science, 16: 525-532
    Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994). Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proceedings of the National Academy of Sciences, USA, 91: 839-843
    Ronde JA, Spreeth MH, Cress WA (2000). Effect of antisense L-Delta(1)- pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and-drought stress. Journal of Plant Growth Regulation, 32:13-26
    Roxas VP, Lodhi SA, Garrett DK (2000). Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiology, 41:1229-1234
    Roxas VP, Roger K, Smith JER (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 15: 988-993
    Roya M, Wu R (2001). Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science, 160: 869-875
    Roya M, Wu R (2002). Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 163: 987-992
    Rus AM, Estan MT, Gisbert C (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K~+/Na~+ selectivity under salt stress. Plant Cell, 24: 875-880
    Saijo Y, Hata S, Kyozuka J (2000). Over-expression of a single Ca z'-dependent protein kinase confers both cold and salt/ drought tolerance on rice plants. Plant Journal, 23: 319-327
    Sakamoto A, Murata A, Murata N (1998). Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Molecular Biology Reporter, 38: 1011-1019
    Sanchez M, Queijeiro E, Revilla G (1997). Changes in ascorbic acid levels in apoplastic fluid during growth of pine hypocotyls. Physiologia Plantarum, 101: 815-820
    Sanmartin M, Drogoudi PD, Lyons T (2003). Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta, 216: 918-928
    Schwarz DS, Hutvagner G, Haley B, Zamore PD (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell, 10: 537-548
    Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Chhipa B R, Lal P (1995). Na/K ratios as the basis of salt tolerence in Wheat. Australian Journal of Agricultural Research, 46: 533-539
    Seki M, Narusaka M, Yamaguchi2Shinozaki K, Carninci P, Kawai J, Shinozaki K, Yamaguchi- Shinozaki K (1996). Molecular responses to drought and cold stress. Current Opinion in Biotechnology, 7: 161-167
    Sengupta J, Nilsson J, Gursky R, Spahn CM, Nissen P, and Frank J (2004). Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nature Structural & Molecular Biology, 11: 957-962
    Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000). Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Letters, 484: 7-11
    Sheveleva E, Chmara W, Bohnert HJ (1997). Increased salt and drought tolerance by D-onomtol production in transgenic nicotiana tabacum L. Plant Physiology, 15:1211-1219
    Shi HZ, Xiong LM, Stevenson B (2002). The Arabidopsis salt overly sensitive 4 mutants uncover acritical role for vitamin B6 in plant salt tolerance. Plant Cell, 14: 575-588
    Shi QH , Zhu ZJ , Khalid A (2004). Effects of Iso-osmotic salt stress on the activities of antioxidative enzymes, H~+-ATPase and H~+-PPase in tomato plants. Journal of Plant Physiology and Molecular Biology, 30 (3): 311-316
    Shi WM, Muramoto Y, Ueda A (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermo tolerance by overexpressing in Arabidopsis thaliana. Gene, 273: 23-27
    Shinozaki K. Yamaguchi-Shinozaki K (1996). Molecular responses to drought and cold stress. Current Opinion in Biotechnology, 7: 161-167
    Shinozaki K. Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiology, 115: 327-334
    Sibole J V, Cabot C, Poschenrieder C (1998). Role of sodium in the ABA-medicated long-term growth response of bean to salt stress. Physiologia Plantarum, 104: 299-305
    Singh K N, Rana R S (1978). Growth and composition of rye seedlings in sea water. Plant Physiology, 4: 145-146
    Sivamani E, Bahieldin A, Wraith JM (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science, 155: 1-9
    Smirnoff, N (2000). Ascorbate biosynthesis and function in photo protection. Bioscience, 355: 1455-1465
    Smirnoff, N (2005). Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. Blackwell Publishing Ltd., Oxford, UK, 53-86
    Smith NA, Singh S, Wang MB, Peter AS, Allan GG, Peter MW (2000). Total silencing by intron-spliced hairpin RNAs. Nature, 407:319-320
    Smith MM, Hodson MJ (1982). Salt - induced ultrastructural damage to mitochondria in root tips of a salt - sensitive ecotype of Agrstis stolonifera. Journal of Experimental Botany, 33(136): 886- 895
    Somervolle C, Browse J, Jaworski J G (2000). Biochemistry and molecular biology of plants. Rockville : American Society of plant Physiologists, 456-572
    Song Y R, Ma Q H (1995). Antisense RNA and plant gene expression and regulation. Plant Molecular Biology—Achievements and Perspective, 268-278 (in Chinese)
    Steele MR, McCahill A, Thompson DS, MacKenzie C, IsaacsNW, Houslay MD, Bolger GB (2001). Identification of a surface on the beta-propeller protein RACK1 that interacts with the cAMP-specific phosphodiesterase PDE4D5. Cell Signaling, 13: 507-513
    Stephan G, Christiane M (2004). RNAi: ancient mechanism with a promising future. Experimental Gerontology, 39:985-987
    Stockinger EJ, Gilmour SJ, Thomashow MF (1997). Arabidopsis thaliana CBF1 encodes an AP- domain-containing transcriptional activator that binds to the C-repeat PDRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences USA, 94: 1035-1040
    Stoutjesdjik DA, Singh SD, Liu Q (2003). hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable sileneing. Plant Physiology, 129:1723-1731
    Szabolcs I, Soils S, Pessarakli M (1994). Handbook of plant and Crop stress. New York: Marcel Dekker, 3-11
    Tamura T, Hara K, Yamaguchi Y (2003). Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiology, 131:454-462
    Tanaka HH, Hayashi YHT, Tanaka YA (2000). Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology Reporter, 43: 103-111
    Tarczynski MC, Jensen RG, Bohnert HJ (1993). Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259: 508-510
    Tcherkasowa AE, Adam-Klages S, Kruse ML, Wiegmann K, Mathieu S, Kolanus W, Kronke M, Adam D (2002). Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. Journal of Immunology, 169: 5161-5170
    Tepperman JM, Dunsmuir P (1990). Transformed plants with elevated levels of chloroplasts SOD are not more resistant to superoxide toxicity. Plant Molecular Biology Reporter, 14: 501-511
    Thomas JC, Sepahi M, Arendall B (1995). Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant, Cell & Environment, 18: 801-806
    Tsugane K, Koboyashi K, Niwa Y (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell, 11: 1195-1206
    Vain P, Worldand B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M (1998). Expression of all engineered cysteine proteinase inhibitor (Oryza cystain-IDELTAD86) for nematode resistance in trans-genetic rice plants.Theoretical And Applied Genetics, 96(2): 266-271
    Vaucheret H, Beelinc C, Elmayan, T (1998). Transgene-indueed gene sileneing in plants. Plant Journal, 16: 651-659
    Veljovic-Jovanovic S D, Pignocchi C, Noctor G, Foyer C H, (2001). Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiology, 127: 426-435
    Waie B, Rajam MV (2003). Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Science, 164:727-734
    Walker RR, Blackmore DH, Sun Q (1993). Carbon dioxide assimilation and foliar ion concentration in leaves of lemon(Citrus limon L.) trees irrigated with NaCl or Na_2SO_4. Australian Journl of Plant Physiology, 20: 173-185
    Wang H, Datla R, Georges F (1995). Promoters from kinl and cor616, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Molecular Biology Reporter, 28: 605-617
    Wang J, Zhang H, Allen RD (1999). Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiology, 40: 725-732
    Winicov L, Bastola DR (1999). Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in Alfalfa and improves salinity tolerance of the plants. Plant Physiology, 120: 473-480
    Worby CA, Simonson LN, Dixon JE (2001). RNA interference of gene expression in cultured Drosophilla cells. Science's Stke: Signal Transduction Knowledge Environment, 4(2): 574-580
    Wu LQ, Fan ZM, Guo L, Li YQ, Chen ZL, Qu LJ (2005). Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Science, 168: 297-302
    Xie ZX, Duan LS, Tian XL, Wang BM, Eneji EY and Li ZH (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology, 165:375-384
    Xu DP, Duan XL, Wang BY (1996). Expression of a late embryogenesis abundant protein gene, MV Al, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110: 249-257
    Xu HX, Jiang XY, Zhan KH, Cheng XY, Chen XJ, Jose MP and Cu DQ (2008). Functional characterization of a wheat plasma membrane Na~+/H~+ antiporter in yeast. Archives of Biochemistry and Biophysics, In Press, Corrected Proof, Available online
    Yarwood SJ, Steele MR, Scotland G, Houslay MD, Bolger GB (1999). The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. Journal of Biological Chemistry, 274: 14909-14917
    Yokoi S, Cubero FJ, Ruiz MT (2002). Differential expression and function of Arabidopsis thaliana NHX Na~+/H~+ antiporters in the salt stress response. Plant Journal, 30: 529-533
    Yu Q, Osborne LD, Rengel Z (1999). Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Annales Botanici Fennici, 84: 543-547
    Zhang H, Goodman HM, Janssons W (1997). Antisense inhibition of the photo system I antenna protein Lhca4 in Arabidopsis thaliana. Plant Physiology, 115:1525-1531
    Zhang JZ (2003). Overexpression anlysis of plant transcription factors. Current Opinion in Plant Biology, 6:430-440
    Zhang HX, Hodson JN, Williams JP (2001). Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences, 98: 12832-12836
    Zheng HH, Li Y, Yu ZH, Li W, Chen M, Mi Y(1997). Recovery of transgenic rice plants expressing the rice dwarf virus outer coat protein gene (S8). Theoretical and Applied Genetics, 94(3): 522-527
    Zhu BC, Su J, Chan MC (1998). Overexpression of a Delta(1)-pyrroline- 5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Science, 139: 41-48
    Zong H, Lakkineni LK, Zhang ZM (2000). Removal of feedback inhibition of DELTA I-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology, 122: 1129-1136
    Zoran R, Yang G, Ann S, Zhang L (1998). Higher chilling tolerance in maize is not always related to the ability for greater and faster abscisic acid accumulation. Plant Physiology, 153:154-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700