醋化级溶解浆制备及其理化性能的分析表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国年产醋酸纤维素近30万吨,其中90%是用来生产醋酸纤维丝束,年消耗溶解浆20万吨左右。醋化级溶解浆的α-纤维素含量和聚合度等指标的要求均比一般的粘胶级溶解浆高,目前我国还不能生产,全部依靠进口。本文以蓝桉、桦木、棉短绒为原料,分别采用不同的制浆和漂白方法,研究了其制造醋酸纤维用溶解浆的理论和技术,并对其应用性能进行了较全面的分析评价,以期为国内溶解浆厂开发出高附加值的新产品。
     蓝桉采用预水解硫酸盐法制浆,预处理试验结果表明,预水解处理去除聚戊糖的效果明显优于碱预处理,二者聚戊糖去除率相差17%左右。在用碱量(Na2O计)15%条件下,所得未漂浆卡伯价为13.4,聚合度1742,白度45.8%,细浆得率41.9%。经二段氧脱木素处理,XD0ED1ETD2漂白,在总ClO2用量1.4%的情况下,所得溶解浆α-纤维素含量达到97.63%,聚合度为1086,漂白得率为88.7%。
     桦木创新性采用预水解亚硫酸盐法制浆,在总酸用量6.5%,化合酸用量1.5%的条件下,所得未漂浆卡伯价为24.2,聚合度为1545,白度72.1%,细浆得率为40.6%。结合企业现有生产条件,采用CEHETD漂白,所得溶解浆白度可达93.0%,聚合度为1032,α-纤维素含量为98.24%,漂白得率为87.9%。
     棉短绒分别采用烧碱、Soda-H2O2、氧碱法等三种不同的制浆方法进行蒸煮。结果表明,Soda-H2O2法蒸煮工艺条件最为缓和,所得浆料白度也最高,优化的较佳蒸煮工艺条件为用碱量6%,过氧化氢用量3%。未漂浆得率在88%以上,α-纤维素含量在96%以上,聚合度在1900左右,白度72-73%。结合我国棉短绒制浆企业现有生产条件,Soda-H2O2未漂浆采用二段次氯酸盐漂白,在总用氯量5.0%时,白度能够达到90.2%,漂白得率为92.1%。如采用CEH三段漂白后,在总用氯量4.0%条件下,白度可以达到90.2%以上,经次氯酸盐或过氧化氢的补充漂白,白度可提高到93%以上。采用HED漂白,在次氯酸盐漂白用氯量3%,ClO2用量1.5%的条件下,可将其白度漂白至93.8%。不同蒸煮方法的漂白浆的α-纤维素含量均在98%以上,部分甚至达到99%以上,这说明棉浆粕比较容易提纯。
     试制的浆粕物化性质分析表明,预水解桉木KP漂白浆、预水解桦木SP漂白浆、Soda-H2O2法蒸煮结合二段次氯酸盐漂白棉浆的性能,均能达到用户进货标准的要求,除个别指标略有差距外,总体与进口产品相差不大。
     SEM分析表明,预水解桉木浆粕的纤维表面较光滑,纤维结构显得较致密,但有较多的凹凸不平的破坏痕迹,与进口产品相比,表面破坏稍显剧烈。预水解亚硫酸盐桦木浆的纤维表面破坏非常剧烈,超过了进口的针叶木亚硫酸盐浆。棉浆粕的表面也有部分破坏的痕迹,但纤维较细且致密光滑。其形态特性预示了其反应性能差别。
     醋化试验分析表明,桉木浆粕醋化过程的峰值温度最高48.8℃,温升时间最短为34min,平均温升速率最大为1.64℃/min,桦木浆粕醋化过程的平均温升速率(1.50℃/min)也快于进口木浆粕(1.46℃/min),均表现出了较好的反应性能。而棉浆粕在制浆过程中去除的物质较少,纤维较致密,纤维素的含量高,因而导致其醋化过程温升速率(1.42℃/min)低于进口木浆粕。与进口产品相比,桉木浆粕、棉浆粕的醋酸纤维素分子量分布范围宽,在丙酮溶液中的溶解性差,而桦木浆粕的醋酸纤维素分子量分布较均匀,溶解性能也优于进口产品。
In China, the annual production rate of cellulose acetate is about300,000tons, of which90%is used to produce acetate fiber tow, and the annual consumption of dissolving pulp is about200,000tons. For acetate grade dissolving pulp, the requirements for some key parameters such as a-cellulose content and degree of polymerization (DP) are much higher than that for ordinary viscose grade dissolving pulp. As a matter of fact, there is still no domestic producer of acetate grade dissolving pulp and all of our domestic demands are currently met by importing. In this thesis, eucalyptus globules, birch and cotton linter were used as the raw materials to prepare acetate grade dissolving pulp through in-depth investigation of different pulping and bleaching techniques. New technologies for producing acetate grade dissolving pulps were developed. Important physical and chemical properties of the dissolving pulps produced were thoroughly analyzed and characterized, and their application performance was comprehensively evaluated. Through the work in this thesis the author wishes to offer valuable technical guidance for domestic dissolving pulp manufacturers in their efforts to develop acetate grade dissolving pulp, a high value-added new product.
     For eucalyptus globules, the prehydrolysis kraft pulping process was investigated. Pretreatment experiments indicated that the prehydrolysis treatment was more effective than alkali treatment in removing pentosan. The difference in their pentosan removal rates was about17%. Under the optimal condition at alkali dosage (in Na2O) of15%, the Kappa number of the unbleached pulp obtained was13.4, the DP was1742, the brightness was45.8%ISO, and the yield of the screened pulp was41.9%. After a two-stage oxygen delignification, followed by XD0ED1ETD2bleaching with total ClO2usage of1.4%, the dissolving pulp obtained had an a-cellulose content of97.6%and a DP of1086. The bleaching yield was88.7%.
     For birch, a novel prehydrolysis sulfite pulping process was experimented. Under the conditions of total acid dosage of6.5%and combined acid dosage of1.5%, the unbleached pulp produced had a Kappa number of24.2, a DP of1545, and a brightness of72.1%ISO. The yield of screened pulp was40.6%. Considering the existing mill production conditions, CEHETD2bleaching sequence was adopted. The dissolving pulp obtained had a brightness of93.0%ISO, a DP of1032, and an α-cellulose content of98.2%. The bleaching yield was87.9%.
     For cotton linter, three different cooking methods including Soda process, Soda-H202process and Alkali-oxygen process were investigated separately. The results showed that the Soda-H2O2process was the mildest one, and the unbleached pulp obtained had the highest brightness. The optimized cooking conditions were:alkali dosage at6%and H2O2dosage at3%. Under these conditions, the yield of unbleached pulp was above88%, and the pulp obtained had an a-cellulose content of above96%, a DP of about1900, and a brightness of72-73%ISO. Considering the existing production conditions of domestic cotton linter pulp mills, a two-stage hypochlorite bleaching process was adopted for Soda-H2O2unbleached pulp. When the total chlorine usage was at5.0%, the bleached pulp obtained had a brightness of90.2%ISO and the bleaching yield was92.1%. If a CEH three-stage bleaching process was adopted and when the total chlorine usage was at4.0%, the brightness of the bleached pulp could reach above90.2%ISO. After a supplemental bleaching with hypochlorite or H2O2, the brightness of the pulp could be further increased to93%ISO. When HED bleaching process was adopted and the chlorine dosage was3%during hypochlorite bleaching and the ClO2dosage was1.5%, the brightness of the bleached pulp could reach93.8%ISO. The bleached cotton pulps from all three cooking methods had an a-cellulose content of above98%, some even above99%, indicating that cotton pulp was easier to purify.
     Analysis of the chemical compositions of the above pulps showed that the properties of the bleached prehydrolysis KP eucalyptus pulp, bleached prehydrolysis SP birch pulp, and the bleached cotton linter pulp produced by Soda-H202cooking in combination with two-stage hypochlorite bleaching could all meet the purchasing specifications of users. The quality of the pulps obtained was generally very close to imported pulps except for some slight difference in a couple parameters.
     SEM analysis indicated that the surfaces of prehydrolysis KP eucalyptus dissolving pulp fibers was smooth, and the fiber structure appeared more compact, but there was some uneven damage observed and it seemed slightly more than the imported pulp. The surfaces of the prehydrolysis SP birch dissolving pulp fibers were however damaged very seriously, and much more so than that of the imported pulp. Some uneven damage was also observed on the surfaces of the cotton pulp fibers, but the fibers appeared finer, dense and smooth. These morphological characteristics are good indications of their performance differences during the acetification reactions.
     Results of acetification tests indicated that during the acetification reactions, the eucalyptus dissolving pulp had the highest peak temperature of48.8℃, the shortest heating time of only34min, and the highest rate of temperature increase (1.64℃/min). The rate of temperature increase for birch pulp was1.50℃/min, which was also higher than that for imported pulp (1.46℃/min). Both the eucalyptus and birch lab-made dissolving pulps demonstrated good performance in their acetification reactions. But the cotton dissolving pulp showed the lowest rate of temperature increase (only1.42℃/min) because of the lowest removal rate of impurities during pulping and its densest fiber structure. Compared to the imported pulp, the molecular weight distribution of cellulose acetates made from eucalyptus pulp and cotton pulp were wider, and their solubility in acetone was also poorer. However, the cellulose acetate made from birch pulp had more uniform molecular weight distribution and its solubility in acetone was also better than the imported pulp.
引文
1.安国兴,麦草浆氧碱漂白[J].中国造纸学报,1996(1):28-35.
    2.保罗·C·吉勒特,查尔斯·欧内斯特·霍尔.纯化棉短绒的方法[P].CN101142237 B,2011-4-13.
    3.陈洪伟,姚春丽等.三倍体毛白杨的材性及制浆性能[J].中华纸业,2003,(7).
    4.陈嘉川,杨桂花等.棉短绒低污染纸浆工艺的研究[J].中国造纸,999,(5).
    5.陈杰,姚金波,王运利等.生物酶法提高竹浆粕甲种纤维素含量的研究[J].中国造纸,2007,26(6):5-7.
    6.陈庆蔚.纸浆漂白[M].轻工业出版社.1985.
    7.陈秋艳,罗小林,曹石林,陈礼辉等.硫酸盐竹浆两段氧脱木素目标脱木素率的确定[J].中国造纸学报,2012,(4):1-4.
    8.陈义林.粘胶纤维手册[M].北京,纺织工业出版社,1981.
    9.程合丽,詹怀宇,李兵云等.玉米秆半纤维素的碱法提取与表征[J].中国造纸学报.2011,26(3):26-29.
    10.迟聪聪,张曾,于建仁,等.桉木半纤维素预提取工艺的初步研究[J].中国造纸学报,2008,23(3):6-10.
    11.崔宇,陈家川,杨桂花.溶解浆的制备及其应用[J].纸和造纸,2011,30(6):27-32.
    12.戴云.化学浆的氧气漂白[J].纸和造纸,1994,(3):13.
    13.单连文.预水解硫酸盐法溶解浆置换蒸煮技术[J].中华纸业,2012,33(10):77-82.
    14.董纪震,李繁亭译.人造丝浆译文选集[M].中国财政经济出版社,1962,北京
    15.杜德才.肠溶包衣材料在药物制剂中的应用[J].,中国药业,2001(5):62-63.
    16.段超,冯文英,张艳玲,徐明.热水预水解对杨木预水解液性能的影响[J].中华纸业,2013,(10):34-39.
    17.冯宇彤,黄运基.预水解硫酸盐法生产溶解浆技术[J].中华纸业.2011(14):68-71.
    18.甘家齐.开发利用桉树制浆造纸加快林纸一体化进展的探讨[J].中华纸业,2005,(11):22-27.
    19.高春红.烟用二醋酸纤维工业的进展[J].烟草科技,1999(5):9-11.
    20.高洁,汤烈贵.高分子科学丛书.北京:科学出版社,1996.
    21.高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    22.高洁.粘胶纤维的进展[J].化学通讯.1978,02,35-44.
    23.广西贺纸有限责任公司.高白度桉木浆开发与生产[J].国际造纸,2000,(5):16-20.
    24.郭明辉,潘月洁,陈广胜.不同海拔高度白桦木材解剖特征径向异变[J].东北林业大学学报,2000(4):25-29。
    25.郭三川,詹怀宇,罗小林,程合丽等.速生桉木硫酸盐浆氧脱木素工艺的优化[J].造纸科学与技术,2007(5):7-10
    26.海关总署发布2012年政府信息公开工作年度报告.2012.
    27.何建新,唐予远,王善元.醋酸纤维素的结晶结构与热性能[J].纺织学报,2008,29(18):12.
    28.何建新.高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研[D].东华大学,2007.
    29.贺宝元,张海燕.介于粘胶纤维与桑蚕丝之间的半合成纤维--醋酯纤维[J].天津纺织科技2004(4).
    30.贺近恪,李启基.林产化学工业全书[M].北京:中国林业出版社,2001.
    31.胡湛波,王景全,柴欣生.结合生物炼制的植物纤维原料制浆方法[P].CN101158126A,2008-04-09.
    32.黄干强,韩克涛,伍红.两段氧脱木素的段间DMD活化处理[J].中国造纸,1999,(2):5-9.
    33.黄干强,张曾,仇如全.活性氧漂白硫酸盐苇浆[J].纸和造纸,1997,6(11):38-39.
    34.黄六莲,陈礼辉,张建春,蒲俊文.硫酸盐竹浆两段氧脱木素技术的研究[J].中国造纸学报,2007,(2),109-111.
    35.黄铁檩.醋酸纤维的生产工艺、研究进展及市场分析.河南化工,2010(3):20-23.
    36.黄祖壬,张晗.溶解浆市场概况[J].造纸信息,2011(10):28-36.
    37.黄允芳,汤进.中国棉花加工2007(3)21-22
    38.江夏.醋酸纤维发展前景分析[J].人造纤维,1998(6):11-13.
    39.蒋玮,姚春丽.几种杂交桉木的纤维特性[J].中国造纸,2005,(11):47-55.
    40.金立国.醋酯纤维工业的现状和产品开发[J].合成纤维,2002,5(9):19-20.
    41.劳嘉翔.二氧化氯漂白中的催化剂[J].黑龙江造纸,1997,(2):13-18.
    42.雷以超,刘世界,吴渊等.蔗渣的热水抽提和碱法制浆[J].中国造纸,2009,28(7):73-75.
    43.李金花,宋红竹等.我国制浆造纸木材纤维原料的现状及发展对策[J].世界林业研究,2003,(6):33-35.
    44.李雍,蒲俊文,漆小华等.竹浆粕漂前与漂后木聚糖酶处理的对比[J].纸和造纸,2008,27(6):70-72.
    45.李昭成,杨桂花,曹知朋.棉短绒过氧化氢—氧碱蒸煮新工艺[J].中华纸业,2002(9):23-25.
    46.梁辰,李兵云,李国荣,詹怀仁.碱预处理对竹子SCMP浆过氧化氢漂白的影响[J].中华纸业,2010,(20):34-37.
    47.梁洪岗,刘宗梅.太古油在棉短绒蒸煮中的作用,造纸化学品,1996.8(1):35-37.
    48.林远球.化学浆氧脱木素动力学及其应用[J].纸和造纸,1995,(1):10.
    49.林云琴,周少奇.白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003,(4):29-33.
    50.刘斌,李正魁,蔡敬民,吴克等.海洋真菌Asteromyces sp.TM76木聚糖酶生产初步研究[J].工业微生物.2005,(3):13-19.
    51.刘国宏,赵茂华.全无氯漂白(TCF)技术的工厂化实践[J].武汉轻工设计,2002,(4):1.
    52.刘红霞,薛润林.棉短绒先打浆后蒸煮制浆新方法[J].中国造纸,2013,(3).
    53.刘建杰,牛立萍,丁文慧.对硫酸盐法制浆中碱抽提的探讨[J].国际造纸,2009,6,29-32.[203]赵律,李志光,李辉勇.木质纤维素预处理技术研究进展[J].化学与生物工程,2007,24,(5):5-8.
    54.刘克.关于棉短绒制浆工艺的调查研究[J].江苏造纸,2004(7):11-16.
    55.刘冉,韩卿,杨桂花两种棉短绒浆的低污染漂白工艺探讨[J].《造纸科学与技术》,2010,(5):12-14
    56.刘仁庆.纤维素化学基础[M].北京:科学出版社,1995.
    57.刘文,黄小雷.2012年溶解浆市场概况和纤维素工业的发展.全国特种纸技术交流会暨特种纸委员会第八届年会论文集,2013.
    58.刘文,蒲俊文.再生纤维素纤维的发展[J].中国造纸,2010,11:65-69.
    59.刘轩,张曾,迟聪聪,等.水预水解提取半纤维素对桉木碱法制浆的影响[J].中国造纸,2009,28(1):30-34.
    60.刘雪莲.提高棉短绒加工质量的途径[J].中国棉花加工,2007,(5).
    61.鲁杰,石淑兰,刑效功等NaOH预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,12(1):1-6.
    62.吕卫军,蒲俊文,漆小华.聚木糖酶在溶解浆制备中的应用研究[J].造纸科学与技术,2007,26(2):16-25.
    63.吕卫军,蒲俊文,闫智陪等.竹制溶解浆生产新工艺的研究[J].林产化学与工业,2008,28(1):59-62.
    64.吕卫军,张勇,陈彬.溶解浆的生产技术现状与发展[J].中国造纸,2012(1):61-66.
    65.马君志,葛红,穆晓梅.醋醋酸纤维工业的发展现状[J].上海纺织科技,2006(9):1 5-17.
    66.马晓娟,曹石林,罗小林,陈礼辉等.溶解浆研究进展及发展前景[J].中国造纸学报,2013(2):44-48.
    67.马晓龙,沈琳,杨占平,等.国产木浆合成烟用醋酸纤维素的研究[J].合成纤维,2004,(5):10-12.
    68.马永生,安显慧,钱学仁.二氧化氯漂白技术的新发展[J].2010,(8):11-14.
    69.毛连山,余世袁.木聚糖酶在纸浆漂白中应用的研究现状[J].中国造纸学报,2006,(3):93-98.
    70.毛长斌,倪永浩.生物质提炼的研究进展及在造纸工业上的应用[J].中国造纸,,2008(7):63-69.
    71.梅洁,陈家楠,欧义芳.气—固相反应制备醋酸纤维素[J].纤维素科学与技术,2001,9(1):45-49.
    72.梅洁,欧义芳,陈家楠.醋酸纤维素的高温合成及其性质的研究[J].纤维素科学与技术,2000,8(1):9-16.
    73.梅洁.醋酸纤维素的现状与发展趋势[J].纤维素科学与技术,1999.04:56-61.
    74.梅凯.预水解对麦草制浆和漂白性能的影响[D].南京林业大学,2009.
    75.南通醋酸纤维有限公司.以棉短绒浆粕为原料制成的醋酸纤维素及制造方法和用途[P].CN200910030549.4,2009.
    76.牛方.粘胶纤维:“准入”门槛勒住产能脱缰[J].中国纺织,2013,02.
    77.潘燕如,邹君,曾胜.栎木研制烟用二醋酸纤维[J].广西化纤通讯,1996,(2):3-11.78.彭毓秀,李忠正,江达,等.短周期桦木浆打浆造纸特性的研究.[J]中国造纸,1994,13(6):8.
    79.蒲云桥,詹怀宇.己烯糖醛酸的选择性水解及其对纸浆漂白的影响[J].1999,(14):101-108.
    80.漆小华,蒲俊文,李雍,姚胜.制备桉木醋酸纤维浆粕的方法研究[J].北京林业大学学报,2009,31(S1):161-164.
    81.漆小华.以桉木为原料制备醋酸纤维的研究[D].北京林业大学,2009.
    82.齐晓伟,杨同仙,林璐.国产溶解浆的应用[C].山东造纸学会第七届会员代表大会暨山东造纸学会,2012年学术年会论文集.
    83.乔军,李中正.世界纸浆工业全无氯漂白发展概述[J].1998,(5):5-7.
    84.秦文娟,崔谷,梁文芷.DMD在桉木硫酸盐浆无氯漂白中的作用[J].中国造纸学报,1998,13(增刊):31-34.
    85.秦文娟,崔谷,梁文芷.桉木硫酸盐浆DMD漂白工艺条件的研究[J].纤维素科学与技术,1999a,2(6):16-21.
    86.秦文娟,崔谷,梁文芷等.DMD的活化预处理及其全无氯漂序的研究[J].林产化学与工业,1999b,19(3):11-15.
    87.邱有龙.国内外溶解浆的原料、技术及市场发展(一)[J].纺织导报.2011(7):60-64.
    88.邱有龙.国内外溶解浆的原料、技术及市场发展(二)[J].纺织导报,2011,(8):
    89.邱有龙.国内外溶解浆市场的发展现状及展望[J].纺织导报,2012,(10):
    90.邱有龙.粘胶纤维行业新技术、新产品的发展现状及趋势(Ⅰ)[J].纺织导报,2010,9.
    91.邱有龙.粘胶纤维行业新技术、新产品的发展现状及趋势(Ⅱ)[J].纺织导报,2010,10.
    92.商务部公告2013年第75号,《中华人民共和国商务部关于原产于美国、加拿大和巴西的进口浆粕反倾销调查的初步裁定》
    93.邵自强,李胤,王文俊.液晶显示屏用三醋酸纤维素的合成及性能[J].高分子材料科学与工程,2007,23(4):71.
    94.石淑兰,何福旺.制浆造纸分析与检测[M].北京,中国轻工业出版社,2009:294.
    95.苏纯阳,程学慧,刘涛,劳泰财.新一代的饲用酶制剂——细菌性木聚糖酶[J].饲料广角.2004,(12):41-43.
    96.苏燕妮,农尚勇.不同品质桉木的制浆造纸性能分析[J].造纸科学与技术,2004,(5):34-38.
    97.谭丽红.楠竹水预水解半纤维素溶出动力学的研究.长沙理工大学硕士学位论文,2012
    98.唐继福,李凤翥.棉短绒制浆新工艺[J].纸和造纸,2005,(1).
    99.唐继福,李凤翥.棉短绒制浆新工艺试验报告[J].中华纸业,2004,(8).
    100.樋口晓浩.6位高度乙酰化的二醋酸纤维素及其制备方法.CN101469034A.
    101.万纪强.纤维素化学改性研究进展与展望[J].中小企业管理与科技.2012,09.
    102.王承亮,孙,孙军译.选择最佳pH值改善二氧化氯漂白效率[J].国际造纸,2009,28(1):17-23.
    103.王丽娟,杨汝男.光谱在木素结构上的应用[J].黑龙江造纸,2004(1):21.
    104.王伦,韩卿.二氧化氯漂白过程pH缓冲体系的构建[J].纸和造纸.2010.29(10):9-12.
    105.王庆.纤维素与粘胶纤维[M].纺织工艺出版,1995.
    106.王少光,陈嘉川,杨桂花棉浆短程序高白度漂白的初步研究[J].黑龙江造纸,2004(2):1
    107.王习文,陈嘉川,詹怀宇.非木材纤维NaOH-AQ法浆二氧化氯漂白的研究[J].造纸科学与技术,2002,(4):12-14.
    108.王向强,陈嘉川,庞志强,杨桂花.木聚糖酶和过氧乙酸预处理改善棉秆SCMP浆过氧化氢漂白性能[J].中华纸业,2011,(18):13-16·
    109.王月江,刘文,陈雪峰,刘群华等.桦木制备醋酸纤维浆粕的研究[J].中国造纸,2013,32(9):1-5.
    110.王月江,刘文等.桦木制备醋酸纤维浆粕的研究[J].中国造纸,2013,(9):1-4.
    111.王运利,姚金波,陈杰等.木聚糖酶用于提高竹浆粕甲纤含量的研究[J].人造纤维,2006,(5):2-4.
    112.魏鸿辉,廖庆玉.桉树速生林基地生态环境影响原因浅析[J].北方环境,2011,(8):9-13.
    113.文小莉,韩卿.生物技术在制浆漂白过程应用的研究进展[J].黑龙江造纸,2012,(1):41-45.
    114.吴可佳,王海松,孔凡功等.溶解浆生产技术现状及研究进展[J].中国造纸,2011(8):63-67.
    115.谢澄,陈中豪.两种桉木APMP制浆及其磨浆过程的研究[J].中国造纸学报,2000,(1):13-19.
    116.谢来苏,詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2001.
    117.薛崇昀,李玉华.桉木纤维特性及化学成分研究[C].中国桉树种植与制浆造纸研讨会论文集,2005-09:165-172.
    118.薛润林.棉短绒先打浆后蒸煮制浆的新方法[J].中国纤维素行业学术报告会,2012,北京.
    119.烟用醋酸纤维丝束不再依赖进口[J],化纤园地.2006(5):43.
    120.杨桂英,刘温霞.过氧化氢漂白[J].无机盐技术,2007,(4):22-27.
    121.杨桂花,陈嘉川,曹知朋等.化学添加剂对棉短绒NaOH-H2O2制浆的影响[J].中国造纸,2005(3):11-13
    122.杨民胜,李天会.中国桉树研究现状与科学经营[J].桉树科技,2005,(2):3-5.
    123.杨民胜,彭彦.中国桉树纸浆材现状与发展趋势[c].中国桉树种植与制浆造纸研讨会论文集,2005,海口.
    124.杨淑蕙.植物纤维化学[M].北京,中国轻工业出版社,2009.
    125.杨占平,曹建华等.醋化级竹浆粕的制备及醋化性能[J].高分子材料科学与工程,2009(7):152-154.
    126.姚光裕.棉短绒碱-过氧化氢制浆的研究[J].中国造纸,1987(3):63-64.
    127.叶代勇,黄洪等.纤维素化学研究进展[J].化工学报.2006,57(8):1782-1791.
    128.宜宾长毅浆粕有限责任公司.醋酸纤维用棉浆粕生产方法[P].CN200910059027.7,2009.
    129.殷亚方,姜笑梅等.我国桉树人工林资源和木材利用现状[J].木材工业.2001,(5):13-18.
    130.尤纪雪,毛连山,余世袁.聚木糖中纤维素酶对麦草浆生物漂白的影响.中国造纸,2003,(2),16-19.
    131.于建仁,张曾,伍红等.半纤维素预提取对桉木纤维形态及浆料性能的影响[J].造纸科学与技术,2007,26(6):25-28.
    132.余紫苹,彭红,林妲等.毛竹半纤维素热解特性研究[J].中国造纸,2012,31(11):10.
    133.袁志平.棉短绒无污染制浆的方法[J].江苏造纸,2003(3):6-7.
    134.曾园.低污染负荷纸浆漂白技术.广西轻工业,2011,(9):50-54.
    135.詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社,2005.
    136.詹怀宇.国际浆料漂白技术的新进展[J].中国造纸,1999,18(4):38.
    137.詹怀宇.过氧化氢高温漂白[J].纸和造纸,1994,(1):49-50.
    138.张光华.表面活性剂在树脂控制中的应用[J].2000,(3):17-18.
    139.张建功,黄干强,赖燕明等.马尾松硫酸盐木浆活性氧漂白的研究[J].中国造纸学报,1998,增刊:14-20.
    140.张瑞霞.过氧化氢漂白稳定剂的发展与展望[J].国际造纸.2009,28(2):47-52,
    141.张奇龄,陈樵鉴,胡镝.论棉短绒制浆技术的发展趋势[J].天津造纸,1992(1):1-13.
    142.张云龙,廖应时.棉短绒蒸漂一体化新工艺探索[J].上海造纸,1995,26(3):102-111.
    143.赵德清,陈克复,莫立焕,等.二氧化氯脱木素和漂白化学中的无机中间反应[J].中国造纸学报,2009,24(4):102-108.
    144.赵颜凤.溶解浆制备的工艺研究[J].纸和造纸.2011(7):31-33.
    145.赵健,李雪芝,曲音波等.助剂改善桉木硫酸盐浆H2O2漂白[J].西南造纸.2000(6):5-8
    146.周海东.溶解浆的生产工艺特点及项目技术改造[J].中华纸业,2011,9:50-53.
    147.周敏.麦草蒸汽爆破、低温碱预提取制备低聚木糖及其对烧碱法制浆影响的研究.中国制浆造纸研究院硕士研究生毕业(学位)论文.2012,6.
    148.周淑芳,赵传山,吴朝军,王永梅.溶解浆的研究现状及发展趋势[J].中华纸业,2012(12):33-37.
    149.周舒珂.醋化级溶解浆粕制备工艺及其乙酰化改性的研究[J].北京林业大学,2011.
    150.周学飞.制浆漂白技术最新进展[J].纤维科学与技术,2004,12(3):36-41.
    151.朱良成.棉短绒蒸煮漂白的研究[J].纸和造纸,1995(1):1-6.
    152.朱之悌,康向阳等.毛白杨天然三倍体选种研究[J].林业科学,1998,(4).
    153.朱之悌.我国造纸国情的若干特点及其解决对策[J].中华纸业,2001,(12).
    154.邹鸿春,谭国民.几种助剂在过氧化氢漂白中的应用[J],纸和造纸,(1):34-35.
    155.Alexandra A. Heat extraction of corn fiber hemicellulose[J]. Applied Biochemistry and Biotechnology,2007:253-266.
    156.Amidon Thomas E, Francis Raymond, Scott Gary M, et al. New product and processes from an integrate forest biorefinery[P]. WO/2006/016118,2006-11-16.
    157.Amidon,ThomasE, Francis, et al. New Product and Process from an Intergrated Forest Biorefinery [P], WO/2006/016118,2006-11-16.
    158.Amini B, Webster J. On-site peracids:tools for bleaching strategies to meet the cluster rule and considerations on selecting among them[J]. Tappi Journal,1995,78(10):121-133.
    159.Ander P, Hilden L, Daniel G. Cleavage of softwood kraft pulp fibres by HC1 and cellulases[J].Bioresources,2008,3(2):477-490.
    160.Argyropoulos D S, Sun Y, Berry R M, et al. Reactions of dimethyldioxirane with lignin model compounds[J]. JPPS,1996,22(3):84.
    161.Arodriguze,L.,.Jimznez, J., L.Ferrer. Use of oxygen in the delignification and bleaching of pulps[J].Appita Journal,2007,60(1):17-22.
    162.Bajpai P, Bajpait P K. Development of a process for the production of dissolving kraft pulp using xylanase enzyme[J]. Appita Journal,2001,54(4),381-384.
    163.Brasch D J, Free K W. Prehydrolysis-Kraft Pulping of Pinus Radiata Grown in New Zealand[J]. TAPPI,1965,48(4):245-248.
    164.Brewer R J. Catalyst for and method of preparing cellulose esters[P]. USP 4314056.1982.
    165.Brogdon B N, Mancosky D G, Lucia L A. New insights into lignin modification during chlorine dioxide bleaching sequences(J):Chlorine dioxide delignification[J]. Journal of Wood Chemistry and Technology,2004,24(3):201-219.
    166.Bujanovic, B., Goundlkar, M.J. and Amidon, T. E.. Increasing the value of a biorefinery based on hot-water extraction:Lignin products[J]. TAPPI,2012,11(1):19-26.
    167.C. F. Bennett and T. E. Timell. [J]. Svensk Papperstidn,1966,58,281.
    168.C.C. Spencer, [J]. Cellulosechemie,1921,10,61.
    169.Chen M K, Richard T. Manufacture of cellulose acetate by using bisulfate catalysts[P]. JP 09,188,702.1995.
    170.Christov L P, Prior B A. Xylan removal from dissolving pulp using enzymes of Aureobasidium pullulans[J]. Biotechnology Letters,1993,15(12):1269-1274.
    171.Christov L P, Akhtar M, Prior B A. Impact of xylanase and Fungal pretreatment on alkali solubility and brightness of dissolving pulp[J]. Holzforschung,1996,50(6):579-582.
    172.Clark T A, Steward D, Bruee M E, etal. Improved bleaehability of Radiata pine kraft pulps following treatment with hemicelluloytic enzymes[J]. Appita,1991, (6):389-391.
    173.Colodette J L, Gomes C M, Rabelo M S, et al. Porgress in eucalyptus kraft pulp bleaching[J]. Procedimientos,2005,1-18.
    174.Dence C. W., Reeve D. W. Pulp bleaching principles practice[M].Tappi Press,1996:23-28.
    175.Griswold P D, Cuculo J A.An experimental study of relationship between rhcological properties and spinnability in the dry spinning of cellulose acetate acetone solution[J].J Appl Polym Sci,1974,18:2887-2902.
    176.Gubitz G M, Lischnig T, Stebbing D, et al. Enzymatic removal of hemicellulose from dissolving pulps[J]. Biotechlogy Letters,1997,19(5):491-495.
    177.Hamzeh Y, Benattar N, Mortha G, et al. Modified ECF bleaching sequences optimizing the use of chlorine dioxide[J]. App Ita Journal,2007,60(2):151-154.
    178.Han J S, Rowell J S. Chemical Composition of Fibers, in Paper and Composites from Agro-Based Resources. London:CRC Press,1996:83-134.
    179.Hans Steinmeier. Acetate manufacturing, process and technology. Macrom01. Syrup,2004, 208,49-60.
    18O.Hans-J, Koslowski.国际化纤编辑部(德国).醋酯纤维诞生100周年纪念[J].国际纺织导报, 2005,(3):10-18.
    181.Hart P, Connell D. Improving chlorine dioxide bleaching efficiency by selecting the optimum pH targets[J]. Tappi Journal,2008,24(7):3-11.
    182.Hartle,N·Norrstrom H·and Rydin,S,Sveusk Papperstdn[J].1970(73):696
    183.Ibarra D, K·pcke V, Larsson P T. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp[J]. Bioresource Technology,2010, 101(19):7416-7423.
    184.Ibarra D, K·pcke V, Monica Ek. Exploring enzymatic treatments for the production of dissolving grade pulp from different wood and non-wood paper grade pulps[J]. Holzforschung,2009, 63(6):721-730.
    185.Jackson L S, Heitmann J A, Joyce T W. Production of dissolving pulp from recovered paper using enzyme[J]. Tappi Journal,1998,81(3),171-178.
    186.Jackson L S, Heitmann J A, Joyce T W. Production of dissolving pulp from recovered paper using enzyme[J]. Tappi Journal,1998,81(3),171-178。
    187.Janzon R, Puls J, Saake B. Upgrading of paper-grade pulp into dissolving pulps by nitren extraction: optimization of extraction parameters and application to different pulps[J]. Holzforschung, 2006,60:347-354.
    188.Janzon R, Saake B, Puls J. Upgrading of paper-grade pulp into dissolving pulps by nitren extraction: properties of nitren extracted xylans in comparison to NaOH and KOH extracted xylans[J]. Cellulose,2008,15(1):161-175.
    189.Jiang Z H, Lierop B Van, Berry R. Improving chlorine dioxide bleaching with aldehydes[J]. JPPS, 2007, (2):89-94.
    190.Jiang Z, Lierop B, Berry R. Improving chlorine dioxide bleaching with aldehydes[M]. Sweden: TAPPI Press,2002:225-235.
    191.K·pcke V, Ibarra D, Larsson P T, et al. Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp[J]. Nordic Pulp and Paper Research Journal,2010, 25(1):31-38.
    192.K·pcke V, Ibarra D, Monica E K. Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp[J]. Nordic Pulp and Paper Research Journal,2008, 23(4):363-368.
    193.Kantelinen A, et al. The role of reprecipitated xylan in the enzymatic bleaching of kraft pulp[C]. Proceeding of 6TH International Symposium on Wood & Pulping Chemistry, Melbourne,1991, 1:493.
    194.Kettenbach G, Stein A. Verfahren zur Abtrennung von Hemicellulosen aus hemicellulosehaltiger Biomasse sowie die mit dem Verfahren erh·ltliche Biomasse und Hemicellulose [P]. DE Patent 10109502 A 1,2002.
    195.Lachenal D, Hamzeh Y, Chirat C, et al. Getting the best from chlorine dioxide bleaching[J]. JPPS, 2008,34(1):9-12.
    196.Landucci L. Sanyer N.Influence of transition metalin oxygen pulping[J].Tappi Journal,1975,58(2):60-63.
    197.Liden. J, Ohman, L. O. Redox stabilization of iron and manganese in the oxidation state by magnesium precipitates and some anionic polymers, implications for the use of oxygen based bleaching chemicals [J]. Journal of Pulp and Paper Science.1997.23(5):193-199.
    198.Liu C, Wyman C E. Impact of fluid velocity on hot water only pretreatment of corn stover in a flow through reactor[J]. Ind. Eng. Chem. Res,2003,42(21):5409-5416.
    199.Liu Y X, Hu H R, Sun B. Pre-extraction of hemicelluloses in Soda-AQ pulping of aspen[C]. Proceeding of international conference on pulping, papermaking and biotechnology, Nanjing, China, 2008:93-96.
    200.Liu Y X, Hu H R. Study on pre-extraction of hemicelluloses in kraft pulping from triploid populous toomentosa carr[C]. Proceeding the second international papermaking&environment conference book A, Tianjin, P.R.China,2008a:142-145.
    201.Marie Jeanne Joncourt, Pierre Froment, et al. Reduction of AOX formation during chlorine dioxide bleaching. Tappi,2000,83(1):144-147.
    202.Mc Donough T J, Marquis A, and Ragauskas A J. Totally chlorine free bleaching with dimethyldioxirane[C]. Proc. Intl. Pulp Bleaching conf. Vancouver,1994,47-52.
    203.McDonough T J. Rapid low impact ECF delignification[C]. Annual Review Chemical Pulping and Bleaching. Atlanta:Institute of Paper Science and Technology,1995.
    204.Mckelvey J B, Webre B G, Klein E.Reaction of epoxides with cotton cellulose in the presence of sodiumhydroxide[J].Textile Research Journal,1959.918-925. doi:10.1177/004051755902901111.
    205.Mirahmadi K., KabirM M., JeihanipourA.,et al.. Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production[J]. Bioresources,2010,5(2):928-938.
    206.Miranda I. Pereira H. Kinetics of ASAM and Kraft Pulping of Eucalypt Wood (Eucalyptus globulus)[J]. Holzforschung,2002,56(1):85-90.
    207.Overend R P. Chornet E.. Fractionation of lignocellulosics by steam-aqueous pretreatments[J]. Phil. Trans. R. Soc. Lond,1987, A321:523-536.
    208.P. Bajpai, P. K. Bajpai. Application of xylanases in prebleaching of bamboo kraft pulp. Tappi Journal,1996, (4):225-230.
    209.Paice M G, Jurasek L. Removing hemicellulose from pulps by specific enzymic hydrolysis. [J]. Journal of wood chemistry and technology,1984,4(2):187-198.
    210.Puls J, Janzon R, Saake B. Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH, and KOH[J]. Lenzinger Berichte,2006,86,63-70.
    211.R.L.Mitchell. [J].Ind. Eng. Chem.,1953,45,2526.
    212.R.P.Sighn. Bleaching of ground wood pulp-investigation of methods based on chemical modification of wood pulp [J].Tappi,1966.
    213.Ragauskas A J. Investigation of dimethyldioxirane as a bleaching reagent for kraft pulp[J]. Tappi Journal,1993,76(7):87-90.
    214.Rapson W H, Strumila G B. The Bleaching of Pulp[M].3 edition. Atlanta:Tappi Press,1979.
    215.Rudra P Singh. The Bleaching of Pulp[M]. Third Ed. New york:Tappi Press,1979:255-273.
    216.S. K. Mittal SubbashMaheshwari.无元素氯(ECF)商品竹浆生产经验[J].国际造纸,1996,15(6):9.
    217.Schwanted T A, McDonough T J. The effect of D stage reaction time on the characteristics of whole effluents and effluents fractions from D(EO) bleaching of oxygen delignified softwood kraft pulp[C].1994 International Pulp Bleaching Conference. Vancouver:Tappi Journal,1994.
    218.Senior D. J.,Hamilten J. Biobleaching with xylanases brings biotechnology to reality[J]. Pulp&Paper,1992,(9):111-114
    219.Silverstein R.A., Chen Y, Sharma-Shivappa R.R., et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresource Technol,2007,98(16): 3000-3011.
    220.Spencer R R, Akin D E. Rumen microbial degradation of potassium hydroxide-treated coastal Bermuda grass leaf blads examined by electron microscopy [J]. Anim. Sci,1980,51(5):1189-1196.
    221.Suurnakki A, Clark T A, Allison R W, etal. Xylanase-and mannanase-aided ECF and TCF bleaehing[J]. Tappi,1996,79(7):111-117.
    222.Suurnakki, A., Kantelinen, A., Buchert, J., Viikari, L. Enzyme-aided bleaching of industrial softwood kraft pulps[J]. Tappi Journal,1994, (77),111-116.
    223.Svenson D R, Jameel H, Chang Houmin, et al. Inorganic reactions in chlorine dioxide bleaching of softwood kraft pulp[J]. Journal of Wood Chemistry and Technology,2006,26(2):201-213.
    224.Viikari L, Ranua M, Kantelinen A, et al. Proeeedings of the 3rd International Conference on Bioteehnology in the Pulp and Paper Industry [M].STFI:Stoekholm,1986:67-69.
    225.Vivian Stannett. [M]Cellulose Acetate Plastics,1950.
    226.Watanabe A., Morita S. Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis [J]. Journal of Molecular Structure,2006,799:102-110.
    227.WH Rapson,CB Anderson- Trans.Tech. Sect. CPPA,1977.
    228.Wong K K Y, Yokota S, Saddler J N, et al.Enzymic hydrolysis of lignin-carbohydrade complex Isolated from kraft pulp[J]. Joumel of wood chemistry technology,1996,16(2):121-125.
    229.Wright P J, Ginting Y A, Abbot. Kinetic models for peroxide bleaching under alkaline conditions. Part 1. One and two chromophore models[J]. Journal of Wood and Technology,1991,11(3): 349-371.
    230.Yoon Sung Hoon, Heiningen A V.. Kraft pulping and papermaking properties of hot-water pre-extracted loblolly pine in an integrated forest products biore finery [J]. Tappi journal,2008,7(7): 22-27.
    231.Zhao Ziun. A process of making bamboo pulp for producing cellulose diacetate. WO2005CN00527 (CN),2005.
    232.Zhuang J M, Alfred W. A novel method for the Preparation of cellulose acetate. Int Symp Wood Pulping Chem,8th,1995:1685-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700